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(Dated:)

Superradiance occurs when a collection of atoms exhibits cooperative, spontaneous emission of
photons at a rate that exceeds that of its component parts. Here, we reveal a similar phenomenon
in a hydrodynamic system consisting of a pair of vibrationally-excited cavities, coupled through
their common wavefield, that spontaneously emit droplets via interfacial fracture. We show that
the droplet emission rate of two coupled cavities is higher than the emission rate of two isolated
cavities. Moreover, the amplified emission rate varies sinusoidally with distance between the cavities,
as is characteristic of superradiance. We thus present a hydrodynamic phenomenon that captures
several essential features of superradiance in optical systems.

When a group of N quantum emitters (e.g. excited
atoms) interact coherently with a common electromag-
netic field, they may collectively emit photons at a rate
that is proportional to N2 [1, 2]. In quantum optics,
this phenomenon is known as superradiance [3], an ef-
fect of both fundamental and practical interest, with
applications in various fields, including quantum infor-
mation technologies [4–6], cryptography [7], and narrow
linewidth lasers [8–10]. When the emitters are separated
by less than a wavelength, this situation requires the
emitters to radiate with the same phase [3]. When they
are separated by distances comparable to or greater than
the wavelength, each emitter must radiate with the local
phase of the mode into which they emit [11–13]. In the
case of coherently driven emitters, the atomic coherence,
and thus the phase of the radiated field, is set by the local
phase of the drive field. The phase-matching condition
then leads to a sinusoidal modulation of the spontaneous
emission rate versus the emitter spacing [14]. This mod-
ulation was first demonstrated using a pair of trapped
ions whose separation distance, d, was varied gradually
[15]. Experiments revealed sinusoidal oscillations of the
spontaneous emission rate Γ(d) of the two-ion crystal,
in accord with detailed quantum mechanical theoretical
analysis [16]. This type of superradiance was first consid-
ered to be a purely quantum phenomenon [15, 16], but
has since been rationalized in terms of classical electro-
magnetic theory [17].

Fluid mechanics has produced laboratory-scale physi-
cal analogs for phenomena as disparate as the wave na-
ture of light [18], black holes [19], the Casimir effect [20],
the Aharonov-Bohm effect [21], and the periodic table
[22]. The relatively recent discovery of a pilot-wave hy-
drodynamic system [23] has led to a new class of hydro-
dynamic quantum analogs [24] that includes analogs of
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FIG. 1. The experimental setup (see also Supplementary Fig.
1). (a) A schematic illustration of a circular bath with two
cavities spanned by a thin layer of fluorinated oil. The bath
is vertically oscillated by an electromagnetic shaker, resulting
in the emission of droplets from the two cavities. (b) A rare
generation event in which two droplets are about to be created
simultaneously. Scale bar, 3 mm.

quantized orbital states [25, 26], quantum corrals [27, 28],
Friedel oscillations [29] and spin lattices [30].

We here show that superradiance can also be seen in
a hydrodynamic setting. We consider a system of vi-
brationally excited hydrodynamic cavities that sponta-
neously emit droplets via interfacial fracture. The cavi-
ties are deep circular wells spanned by a thin layer of oil
that allows for their coupling through a common wave-
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field (see Fig. 1). We demonstrate that the wavefield in
each cavity is influenced by the presence of its neighbor.
Specifically, the neighboring cavity may amplify the local
oscillation amplitude, resulting in an increased chance of
interfacial fracture and thus an amplified droplet emis-
sion rate.

Figure 1 shows a schematic representation of our ex-
perimental set-up. A bath of fluorinated oil has two 6-
mm-deep circular wells that serve as hydrodynamic cav-
ities. The cavities, each with diameter 7 mm, are sepa-
rated by a center-to-center distance d that is varied be-
tween experiments, from 8 mm to 12 mm, in 0.5 mm
increments. In the shallow layer spanning the wells, the
depth is 0.75±0.05 mm. The system is subjected to ver-
tical vibration by an electromagnetic shaker with forcing
F (t) = γ cos(2πft), where γ = 1.75g and f = 39 Hz
are the peak driving acceleration and frequency, respec-
tively. A more detailed description of the experimental
setup is provided in the Supplemental Information (SI)
[31], which includes Ref. [32].

A liquid bath of uniform depth subject to vertical vi-
bration at a fixed frequency, undergoes two critical tran-
sitions as the driving amplitude is increased progressively.
The first transition occurs as the vibrational acceleration,
γ = 4π2f2A, where A is the vibration amplitude, is in-
creased beyond the Faraday threshold, γF , at which point
the initially flat free surface destabilizes into a pattern of
standing Faraday waves [33]. As the driving amplitude
is increased further, the stabilizing influence of surface
tension is exceeded by the destabilizing inertial forces
associated with the bath vibration, and the interfacial
fracture threshold, γB , is crossed. Above this threshold,
the Faraday waves break spontaneously, and millimetric
droplets are emitted from the free surface in an irregular
fashion [34, 35]. Importantly, for shallow layers, both γF
and γB depend strongly on the local depth of the liquid.
We thus define γcF and γsF to be the Faraday threshold
above the cavities and the shallow region, respectively,
and likewise for γB .

With the increase of the driving acceleration, γ, our
variable-depth system undergoes the following evolution.
First, as the acceleration crosses γcF , Faraday waves ap-
pear above the cavities and propagate some distance into
the surrounding shallow region. When γ > γsF , Fara-
day waves emerge over the entirety of the bath surface,
but are most vigorous above the cavities. Figure 2 illus-
trates the instantaneous wavefield near the cavities when
γsF < γ < γcB . Figure 2a shows the wavefield of a single
cavity, whereas figures 2b-d show the two-cavity wave-
field for three different values of the center-to-center sepa-
ration distance, d = 8, 10.5, 12 mm, respectively. Figure
2e depicts the resulting wavefield for two distant cavities,
with d = 87 mm. Notably, even at such large separation
distances, the perturbation wavefield can reach the other
cavity, allowing for long-range interactions. The pertur-
bation wavefield, recorded near the frequency of the most
unstable Faraday mode, f/2, is shown in Supplementary
Movie 1.

FIG. 2. Images of the instantaneous wavefield generated by
the cavities (red circles). (a) A single cavity. Two cavities
with center-to-center distances of (b) d = 8 mm. (c) d = 10.5
mm. (d) d = 12 mm. (e) d = 87 mm.

When the acceleration is increased beyond the inter-
facial breaking threshold of the cavities, γcB < γ < γsB ,
droplet emission sets in. Supplementary Movie 2 shows
the spontaneous droplet emission from a pair of hy-
drodynamic cavities. The emission events occur unpre-
dictably, as indicated by Fourier analysis shown in the
SI [31], but arise exclusively within the cavities. We de-
fine a spontaneous emission rate, Γ, for the combined
two-cavity system, as the average number of emission
events per second, and the anomalous emission rate,
ΓN (d) = (Γ(d) − 2Γ0) /2Γ0, where Γ0 = 1.47 s−1, is the
measured emission rate of a single cavity in isolation.

In Figure 3(a), we present our experimental measure-
ments of the dependence of the anomalous emission rate
ΓN (d) on the separation distance d. An amplification
of up to 46% relative to 2Γ0 is evident. One expects the
emission rate to be a function of the kinetic energy of the
fluid inside the cavity. For an isolated cavity, the average
kinetic energy per oscillation period is constant, corre-
sponding to a steady emission rate, Γ0. In the presence
of a second, coupled cavity, the wave-field inside each
cavity is effected by its neighbor, and the average kinetic
energy per oscillation period will depend on the distance
between the two. As in the trapped ion pair experiment
[15], the amplified emission rate of our two-cavity sys-
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FIG. 3. Experimental measurements of the droplet emis-
sion rate: (a) Dependence of the anomalous emission rate,
ΓN (d) = (Γ(d) − 2Γ0) /2Γ0 (black dots) on center-to-center
intercavity distance d. Each data point represents an average
over a time interval of 300 seconds, corresponding to roughly
950 − 1300 droplet emission events. The dashed curve repre-
sents A cos2(2kd), with A = 1.36 and k = 0.85 mm−1 being
the experimentally measured Faraday wave number in the
vicinity of the cavities. (b) Time series of the emission events
from a single cavity over a 300-second interval indicates the
unpredictability of a single emission event. (c) Histogram of
the inter-emission time intervals and its comparison to the
first passage time model [36]. The red curve represents an
inverse Gaussian distribution as given by Eq. (2). (d) Mea-
sured correlation, C, of the drop emission event in the two
cavities as a function of their separation distance d. The up-
per dashed line represents two uncorrelated cavities.

tem oscillates sinusoidally as a function of the distance
between the cavities. The observed oscillatory behaviour
shows that the probability of the emission events is af-

fected by the interference between the waves generated
by the individual cavities. The dashed curve in Fig.
3(a) represents a simple fit to the anomalous emission
rate, ΓN (x) = A cos2(2kd) for A = 1.36, and k = 2π/λ,
with λ = 6.60 ± 0.05 mm being the experimentally mea-
sured wavelength of the Faraday waves in the vicinity of
the cavities (Fig. 2. Owing to experimental limitations,
we did not systematically characterize the decay of the
anomalous emission rate with increasing separation dis-
tance, d. Nevertheless, we note that the influence of the
neighbouring cavity’s wavefield will decay with d due to
viscous damping, as will the anomalous emission rate.

Figure 3(b) depicts the time dependence of the emis-
sion events from a single cavity, showing the unpre-
dictability of a single emission event, as is confirmed
by the FFT analysis presented in the SI [31]. While
the highly non-linear and chaotic nature of the emission
events makes theoretical or numerical modeling of the
emission phenomenon a daunting task, we proceed by
demonstrating that the problem lends itself to a stochas-
tic approach. Let Xt be a stochastic process represent-
ing the maximal wavefield amplitude inside the cavities,
with X0 = 0 representing the initially flat state. Be-
tween each two consecutive emission events, we assume
that the maximal wavefield amplitude oscillates stochas-
tically about some mean value µ(t) that grows in time as
a result of the resonant interaction between the external
forcing and the cavities. Eventually, the maximal ampli-
tude crosses a threshold α, resulting in an emission of a
droplet, after which Xt relaxes back to X0 = 0 and the
process starts over. Thus, one may write:

Xt = νt+ σWt, ν, σ > 0 (1)

where νt is a stochastic drift representing the increase
in µ(t) between consecutive emission events, and Wt is
a Wiener process with an amplitude σ, representing the
stochastic oscillations of Xt about µ(t). The emission
process can thus be modeled as a first passage time prob-
lem, where we seek to find the first time that Xt reaches
the critical value α, at which point an emission event oc-
curs. For a Wiener process with a stochastic drift, the
probability density function for the first passage time is
given by the inverse Gaussian distribution [36]:

P (Tα) =

√
κ

2πT 3
exp

(
−κ(T − µ)2

2µ2T

)
(2)

where Tα is the first time Xt crosses the threshold value
α, κ = α

σ is the shape parameter, and µ = α
ν is the

mean value of Tα. Fig. 3c presents a histogram of the
experimentally measured inter-emission time intervals for
the case d = 12 mm, which shows good agreement with
Eq. (2) when κ = 3.3 is used for the shape parameter.

The mechanism responsible for the superradiant emis-
sion of droplets is the wave coupling between the two
cavities. We quantify this coupling by measuring the cor-
relations between the emission events in the two-cavity
system, as detailed in the SI [31]. We see that the two
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cavities are strongly anti-correlated, with the correlation
values varying from C = −0.30 (for d = 11.5 mm) to
C = −0.41 (for d = 10 mm). Figure 4 shows the mea-
sured correlation, C, of the drop emission event in the
two cavities as a function of their separation distance d.
Presumably, the anti-correlation arises because each time
a droplet is emitted, a small amount of liquid is removed
from the system for a brief period of time, leading to a
diminution in the probability of another ejection. The
emission of one droplet serves to delay the emission of
the next.

These anti-correlations, together with the amplifica-
tion of the combined emission rate, suggest that the two
cavity system cannot be factored into distinct states, as
the probabilities of emission events in the two cavities
are coupled. Acting on one of the cavities of this coupled
system, by, for example, changing its position or depth,
would affect the emission rate of its neighbouring cavity.
The possibility thus arises of altering the system’s global
emission rate by a local operation on one of its individual
components, thereby creating a new platform for proba-
bilistic computational operations in fluid mechanics.

It is also worth considering the relation between the
system introduced here and pilot-wave hydrodynamics
[24, 37]. In the latter, the notion of an analog photon is
more nebulous: when the system jumps between quan-
tized states (e.g. the walking droplet transitions from one
orbit to another, or tunnels between two energetically
distinguishable cavities [37]), energy is dumped into or
extracted from the bath. In the system considered here,
droplets are generated by breaking waves, their appear-
ance representing a discrete transition event, an analog
of photon emission from an excited state. We note that
in our current experiments, we used fluorinated oil in
order to facilitate the rapid reabsorption of the emitted
droplets into the bath. However, this reabsorbtion can
be minimized by using a relatively low density silicon oil,
in which case the generated particles may persist on the
surface, bounce and self-propel, thereby providing a pos-
sible link between pilot-wave hydrodynamics and the new
class of analog systems established here.

We proceed by enumerating several notable differences

between optical superradiance and our hydrodynamic
analogy. First, in our experiments we did not character-
ize the structure of the energy levels as would potentially
be prescribed by the size and kinetic energy of the emit-
ted droplets, or the transition rates associated with these
levels, both of which are well characterized in the quan-
tum mechanical system. Second, in our experiments we
did not observe subradiant droplet emission. We believe
that the later is due to the chosen cavity geometry pre-
cluding the possibility of robust destructive interference.
Specifically, in order to support a single oscillatory mode
in each cavity, the liquid bath would need to be strongly
driven at a frequency on the order of 10 Hz, which was
unreachable with our current setup. Driving the system
at 39 Hz excited higher harmonics inside the cavities,
yielding a complex 2-D wavefield which could not be can-
celed by the ordered wavefield in the shallow inter-cavity
region. We note that in the optical case, while superra-
diance is readily observed in a wide variety of systems,
subradiance is very difficult to obtain. [13, 38].

Another comparison can be made between the gener-
ation of droplets in our hydrodynamic system and the
emission of photons in its optical counterpart. Both
processes represent dissipative mechanisms, the rates of
which depend nonlinearly on the amplitude of the rel-
evant field. In the hydrodynamic case, the probability
of random discrete events, specifically drop ejection, is
prescribed by a continuous wavefield resulting from two
interfering sources. This statistical behavior is reminis-
cent of the way probabilities of outcomes are obtained
from Born’s rule in the standard quantum theory.

We have introduced a new hydrodynamic system that
shares several key features with the phenomenon of su-
perradiance in optics. In addition to the amplification of
the emission rate typically associated with superradiance,
our system exhibits sinusoidal dependence of the ampli-
fied emission rate on separation distance (see Fig. 3b),
as arises from classical wave interference. Finally, our
study suggests that droplet creation through interfacial
fracture may provide a valuable new platform for explor-
ing hydrodynamic analogs of particle emission phenom-
ena, and so further extend the range of hydrodynamic
quantum analogs.
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able discussions, as well as Shimon Rubin and Tal Kach-
man for their constructive comments on the manuscript.

Funding

The authors gratefully acknowledge the financial sup-
port of the United States Department of State (V.F.),
the European Union’s Horizon 2020 research and in-

novation programme under the Marie Sklodowska-Curie
project EnHydro, grant agreement No 841417 (K.P.), and
the National Science Foundation grant CMMI-1727565
(J.B.).

Competing interests

The authors declare no competing interests.

Data and materials availability

All data are available in the main text or the supple-
mentary materials.


