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We prove that spin chains weakly coupled to a large heat bath thermalize rapidly at any tem-
perature for finite-range, translation-invariant commuting Hamiltonians, reaching equilibrium in a
time which scales logarithmically with the system size. This generalizes to the quantum regime a
seminal result of Holley and Stroock from 1989 for classical spin chains and represents an exponen-
tial improvement over previous bounds based on the non-closure of the spectral gap. We discuss the
implications in the context of dissipative phase transitions and in the study of symmetry protected
topological phases.

INTRODUCTION

Understanding how thermal noise affects quantum sys-
tems is a major open problem in emerging quantum tech-
nologies. A key question there is how long does it take for
a system to thermalize? i.e. to converge to its thermal
Gibbs state. Or more specifically, which is the depen-
dency of the thermalization time, also known as mixing
or decoherence time, on the temperature and the system
size?

In particular, it is important to identify those scenarios
in which the mixing time scales only logarithmically with
the system size - such property is usually called rapid
mixing. From a negative point of view, in this regime
quantum properties that hold in the ground state but
not in the thermal state are suppressed too fast for them
to be of any reasonable use. In the positive side, thermal
states with such short mixing time can be constructed
very efficiently with a quantum device that simulates the
effect of the corresponding thermal bath. Let us note that
constructing thermal Gibbs states is one of the main ex-
pected applications of a quantum computer, both as an
important self-standing problem [1], and also as a step-
ping stone in optimization problems, via simulated an-
nealing type algorithms [2–6]. On top of that, rapidly
mixing systems have very desirable properties, such as
stability with respect to extensive perturbations in the
noise operator [7, 8].

Despite the importance of the question, very few math-
ematically rigorous results are known in this direction.
The reason is the lack of mathematical techniques to
tackle the problem. Indeed, the analogous results for
classical systems already required sophisticated mathe-
matical tools, in particular, the notion of log-Sobolev
constant for the noise infinitesimal generator, whereas
estimates for the spectral gap of the generator are not

enough to guarantee such rapid mixing. Starting with the
pioneer work of Glauber for the particular case of classi-
cal 1D Ising model in 1963 [9], Holley and Stroock [10]
(building upon a previous result of Holley [11]) managed
to prove the rapid mixing property for all 1D classical
models at any temperature. This was done by showing
that the log-Sobolev constant decreases at most logarith-
mically with the system size. Later, Zegarlinski [12] im-
proved their result showing that the log-Sobolev constant
was indeed bounded.

In the quantum regime all results have focused on sys-
tems with commuting interactions. Note that this does
not imply at all that the system is classical. Indeed,
such systems include all types of non-chiral topological
phases of matter. However most known results deal only
with the spectral gap of the generator, what can only
guarantee a mixing time that grows polynomially (and
not logarithmically) with the system size [13]. For in-
stance, Alicki et al. [14] proved that the spectral gap has
a uniform bound independent of the system size for the
quantum ferromagnetic 1D Ising model and for Kitaev’s
Toric Code in 2D at all temperatures. This result was
extended later for all abelian [15] and non-abelian [16]
Kitaev’s quantum double models in 2D, as well as for all
1D models with commuting interactions [13].

In [17], a log-Sobolev inequality was also introduced in
the quantum regime. In particular, a bounded (or loga-
rithmically growing) associated constant is known to im-
ply rapid mixing [18, 19]. Since then, several works have
appeared trying to estimate such constant for different
noise models in many body quantum systems with com-
muting interactions [18–21]. Despite considerable effort,
the state of the art is that estimates have been obtained
either for rather artificial noise operators [22, 23] or only
for sufficiently high temperature [21].

In this Letter, we prove that at any temperature,
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1D quantum systems with commuting interac-
tions are rapidly mixing. That is, they thermalize in
a time that scales only logarithmically with the system
size. Our approach is to bound the log-Sobolev constant
of the associated Davies generator, which is the standard
choice for the action of a thermal bath in the weak cou-
pling limit.

This result yields interesting consequences in the con-
text of phase transitions. It is well known that the phases
of a given system in thermal equilibrium can be classified
according to its physical properties. Moreover, changes
of the system allow for the transformation of one phase
to another, sometimes abruptly, which results in the ap-
pearance of a phase transition. Such phase transitions
can also occur in systems which are away from their ther-
mal equilibrium. In this case, due to dissipation, the en-
vironment drives the system to the aforementioned equi-
librium, which is represented by a state and depends on
the system and the environment parameters. As such pa-
rameters change, the properties of the system might also
change suddenly, yielding a so-called dissipative phase
transition [24–28], sometimes also referred to as noise-
driven quantum phase transitions [29] or simply quantum
phase transitions driven by dissipation [30].

In many cases, such dissipative phase transitions are
associated to an abrupt change in the scaling of the ther-
malization time [28, 29, 31, 32]. Indeed, if the transition
is driven by temperature, one expects a slowdown in the
convergence to the thermal Gibbs state as one crosses the
critical temperature from above, in line with the well-
known behavior of the classical 2D Ising model, where
the mixing time scaling grows from logarithmic to expo-
nential when crossing the critical temperature [33, 34].
Our main result shows that this type of slowdown never
happens for 1D quantum systems with commuting inter-
actions, since they are all rapidly mix at any temperature.

The result also has implications in the context of
Symmetry Protected Topological (SPT) phases [35–37].
There has been a quite intensive study of SPT in open
quantum systems [38–48] and there is yet no consensus
on what is the fate of SPT in the presence of tempera-
ture (see e.g. [40, 43] for negative results and [42, 49] for
positive ones). The 1D cluster state [50] - which plays a
key role in the paradigm of measurement based quantum
computation [51, 52] - has a commuting Hamiltonian and
it is a non-trivial SPT phase under a Z2 × Z2 symmetry
[53]. Hence, our result applies to it and gives the first
example of a non-trivial interacting SPT phase with a
provable decoherence time growing only logarithmically
with the system size for thermal noise at every non-zero
temperature, where in addition all relevant interactions
in the problem can be asked to preserve the symmetry, at
least in a weak sense. The result has the extra benefit of
being stable to extensive perturbations, a general prop-
erty of quasi-local dissipative evolutions with logarithmic
decoherence time [7].

Our result does not apply however in the presence of
a strong symmetry [54, 55], a key condition identified in
[47] to preserve SPT in open quantum systems, which
emphasizes even more the totally different behavior be-
tween weak and strong symmetries in the context of SPT
phases in non-zero temperature regimes.

The proof of our main result has two main steps. One
step works in arbitrary dimension and gives a way to up-
grade a bound on the spectral gap of the Davies genera-
tor to a bound of the log-Sobolev constant for commuting
Hamiltonians. The proof requires among other things the
theory of operator spaces, that has been already proven
very useful in answering different questions within quan-
tum information theory [56]. The other step is to show
that 1D systems fulfill the hypothesis for such upgrade
to hold.

We expect the first step to be of independent inter-
est, since it opens the possibility to upgrade to the log-
Sobolev regime the recent result [16] showing that the
Davies generator of quantum double models in 2D have
a bounded gap.

MIXING TIMES FOR DAVIES MAPS

We now briefly recall the construction due to Davies
[57], which under the assumption of a weak-coupling
limit with a thermal bath at inverse temperature β,
gives a description of the evolution of the system as a
Markovian master equation. The joint Hamiltonian of
the system and the environment can be decomposed as
H = HS ⊗1E +1S ⊗HE +λHI , where HS is the Hamil-
tonian of the system, HE the one of the bath, and HI is
the coupling term between the two of them, with the
coupling constant λ ≥ 0. We can decompose HI as
HI =

∑
α S

α⊗Bα, where Sα, Bα are Hermitian. Renor-
malizing by the free evolution and sending λ → 0 while
keeping τ = λ2t constant, the reduced evolution of the
system is given by ρ(τ) = exp(τL)(ρ(0)) [57]. Here, L is
a Lindbladian whose Lindblad operators, which we de-
note by Sα(ω), satisfy eitHSSαe−itHS =

∑
ω S

α(ω)e−iωt,
where the sum is over the Bohr frequencies ω of the
system Hamiltonian HS (for more details, we refer the
reader to our companion paper [58]).

Under the assumption that there are no operators com-
muting with every Sα except the multiples of identity,
one can show [59] that the Gibbs state of HS at inverse
temperature β, namely σβ = Zβ

−1 exp(−βHS) is the
unique fixed point of the evolution generated by L, and
moreover:

∀ρ, exp(tL)(ρ)
t→∞−→ σβ . (1)

An important problem concerns the speed at which the
convergence (1) occurs. This is quantified by the mixing
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FIG. 1. Sketch of the proof of Theorem 1, which can be summarized in this chain of inequalities, further explained in the main
text. The segments of spins placed above and below represent the regions where the numerator, resp. denominator, is acting.
More specifically, the full blue segment is for the whole Λ, whereas the cutted-red segment means that the term is defined as
the sum of local terms acting on each x ∈ Λ (and their boundaries), which are individually represented by highlighting x and
fainting the color in the other sites.

time of the dynamics: for ε > 0,

tmix(ε) := inf
{
t ≥ 0| ‖etL(ρ)− σβ‖1 ≤ ε

}
, (2)

where ‖X‖1 := tr|X| denotes the trace norm. One way
of controlling the mixing time is via the analysis of the
spectral gap of L. It is well-known [18] that, whenever
the gap can be lower bounded by a constant indepen-
dent of system size |Λ| = n, tmix(ε) = O(

√
n). This

is the case for Davies generators over spin chains with
commuting interactions at any positive temperature [13].
Moreover, Glauber dynamics, which can be interpreted
as the classical analogues of Davies generators, are known
to thermalize logarithmically faster in 1D [10, 12] with
tmix(ε) = O(polylog(n)). This property of a local (quan-
tum) Markovian evolution is known as rapid mixing.

One way to prove rapid mixing is to consider the expo-
nential decay of the relative entropy between the evolved
state at time t and the invariant state σβ :

D(etL(ρ)‖σβ) ≤ e−4αtD(ρ‖σβ) . (3)

The constant α appearing in (3) is known as the modi-
fied logarithmic Sobolev constant (MLSI constant) of the
semigroup. By Pinsker’s inequality together with the
bound D(ρ‖σβ) = O(log(n)), one can easily show that
α = Ω(polylog(n)−1) implies the rapid mixing property.
This is precisely what we achieve in this letter.

MAIN RESULT

We now state the main result of our paper, namely an
exponential decay for the entropy in the form of Equa-
tion (3). We consider a finite chain Λ with n sites and
the Davies generator LΛ of a quantum Markov semigroup
with unique invariant state σ ≡ σβΛ := e−βHΛ

tr[e−βHΛ ]
, the

Gibbs state of a finite-range, translation-invariant, com-
muting Hamiltonian at inverse temperature β <∞.

Theorem 1. In the setting introduced above, there exists
αΛ = Ω((ln |Λ|)−1) such that, for all ρ ∈ D(HΛ) and all
t ≥ 0,

D(etLΛ(ρ)‖σ) ≤ e−αΛtD(ρ‖σ) . (4)

A sketch of the proof of Theorem 1 is shown in Fig-
ure 1. The essential feature of the previous result is the
scaling of αΛ with |Λ|, which we show to be logarithmic,
thus implying rapid mixing of the thermal evolution. To
prove this, our approach is based on the idea of reducing
the MLSI constant in Λ to the MLSI constants in smaller
regions Ai, Bi ⊂ Λ, in particular taken to be composed
of fixed-size (growing logarithmically with |Λ|) separated
segments. By doing so, we reduce the expected scal-
ing of the inverse MLSI constant in Λ, which would be
O(poly|Λ|), to that of the inverse MLSI constants in Ai
and Bi, which are actually O(log|Λ|).

As we will show in Appendix I, (4) is equivalent to the
following inequality:

αΛD(ρ‖σ) ≤ −tr[LΛ(ρ) (log ρ− log σ)] . (5)

The right-hand side of (5) is called the entropy pro-
duction in Λ and denoted by EPΛ(ρ). Note that it is
additive in the region where the Lindbladian is consid-
ered, as LΛ =

∑
x∈Λ Lx. Therefore, for A ∪ B = Λ

with A ∩ B = ∅, this implies LΛ = LA + LB and thus
EPΛ(ρ) = EPA(ρ) + EPB(ρ). This is (I) in Figure 1.
The left-hand side, however, is much more subtle, as no
such property is valid for the relative entropy. We are
able to prove, though, some form of subadditivity for the
relative entropy, in terms of some so-called conditional
relative entropies (in subregions of Λ), up to a multi-
plicative factor which encodes how correlations decay on
the thermal equilibrium of the evolution: This result is
named quasi-factorization of the relative entropy and all
the combined steps listed below are represented as (II)
in Figure 1.
Quasi-factorization. This part of the proof is sketched

in Figure 2. We follow the next steps to reduce the global
relative entropy in Λ to on-site conditional relative en-
tropies of each site.

a) We consider the relative entropy between an arbi-
trary state ρ and the equilibrium state σ in Λ.

b, c) We reduce it to some conditional relative entropies
in smaller regions {Ai, Bi}, in the spirit of the re-
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FIG. 2. Quasi-factorizations of the relative entropy used in the proof of Theorem 1.

sults of [20–22], and a multiplicative error term de-
pending on how correlations decay on σ between
(∪iAi)c and (∪iBi)c, which can be interpreted as
a mixing condition and is controlled using Araki’s
estimates [60] as in the recent [61].

d) We use operator spaces to lift the results of [62]
to non-tracial conditional expectations to further
reduce the conditional relative entropies on each
smaller region Ai and Bi to the sum of on-site con-
ditional relative entropies.

Local control of the MLSI constant. It is only left to
show that the latter on-site conditional relative entropies
can be bounded by the entropy production on each site,
i.e. there is αx > 0 such that

αxD(ρ‖Ex(ρ)) ≤ EPx(ρ) , (6)

for every ρ ∈ D(HΛ). This is obtained as a consequence
of the findings of [62] and represents (IV) in Figure 1.
Note that (III) follows from choosing a universal α0 for
every x ∈ Λ in (6).

More details for the proof of Theorem 1 are provided
in Appendix I. For a complete proof, we refer the reader
to our companion paper [58].

SPT PHASES

In this section, we discuss how our result applies to the
understanding of the question whether non-trivial SPT
phases are robust against temperature. Let us consider
then an on-site symmetry ug for some group G and a
finite range frustration-free commuting system Hamilto-
nian HS which also commutes with ug,

[HS , ug] = 0 ∀g ∈ G ,

and belongs to a non-trivial SPT phase protected by the
on-site symmetry ug. The paradigmatic example is the

1D cluster state, where the group G is Z2×Z2. As a non-
trivial SPT system, when considered with open bound-
ary conditions, it has a degenerate ground space - the
edge states - which is protected by the symmetry against
symmetric perturbations of HS , very much like the case
of ordinary topological order [63]. We review the clus-
ter state example in Appendix II and refer to [64] for a
detailed introduction to SPT order.

In this setup, one needs to ask for the Davies thermal-
ization process to also respect the symmetry G. We will
do this by requiring that the Davies generator is covari-
ant with respect to the symmetry ug: for every state ρ
and every g ∈ G, it holds that

L(u†gρug) = u†gL(ρ)ug ∀ρ, ∀g ∈ G. (7)

We remark that a sufficient condition for this to happen
is that the jump operators Sα commute with ug up to a
phase:

Sαug = ωαg ugS
α, ωαg ∈ U(1) . (8)

It is easy to construct many examples of covariant Davies
generators. In fact, this is always possible when the sym-
metry ug is made of Pauli terms (tensor products of Pauli
matrices), by choosing Sα to be also Pauli operators.
This covers the case of the 1D cluster state.

We also remark that any such covariant generator L
can be obtained as the weak-coupling limit of the interac-
tion with a thermal bath that is weakly symmetric, in the
sense that there exists a representation Ug of G acting on
the Hilbert space of the environment such that, for each
g ∈ G and all α, [HE , Ug] = 0 and [Sα⊗Bα, ug⊗Ug] = 0.
In fact, if this is not the case, one can extend the original
environment by a conjugate copy of the system:

B̃α = Bα ⊗ Sα, Ug = 1⊗ ug,

obtaining a weakly-symmetric thermal bath.
Our main result applied to the 1D cluster state implies

the following.
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Corollary 1. There exist non-trivial 1D SPT phases
which thermalize in time logarithmic in the system size
for every inverse temperature β <∞, even when the ther-
mal bath is chosen to be weakly symmetric.

Since in the thermal Gibbs state all the information ini-
tially encoded in the ground space is washed out, this im-
plies that SPT protection is in general not robust against
temperature, at least in the weakly symmetric case.

DISCUSSION

In this work, we have shown that the Davies dynam-
ics associated to any 1D spin chain translation-invariant
commuting Hamiltonian at finite temperature satisfies a
log-Sobolev inequality, and therefore the corresponding
thermalization process converges logarithmically fast in
terms of the system size (the rapid mixing property).
This also holds under the assumption that the evolution
is weakly symmetric with respect to a given symmetry,
for example in the case of SPT phases.

We expect our two-step proof strategy to be relevant
in higher dimensions. We leave the study of log-Sobolev
constants for Davies generators of 2D quantum double
models, whose gap was recently investigated in [16], to
future work.

Finally, one could ask whether our result for SPT
phases would apply to the setting where the thermal bath
is chosen to be strongly symmetric, in the sense that the
representation Ug acting on the Hilbert space of the en-
vironment is the trivial one. This is not the case, given
that this condition prevents the thermal evolution to be
ergodic, and in particular for it to have a unique invariant
state. This can be seen by noticing that strong symme-
try would imply that all ug are invariant, in the sense
that tr [ug L(ρ)] = 0 for any ρ. A sufficient condition for
this to happen is that [Sα, ug] = 0 for each α and g ∈ G.
In the presence of a full rank invariant state, this con-
dition is also necessary [65]. When ug is not irreducible
(which is the case for local on-site symmetries), this im-
plies that L has multiple invariant states and therefore it
is not ergodic. This issue was solved in [43] by restrict-
ing the initial state only to the subspace of ug-symmetric
states, and studying the thermalization of the symmetric
Gibbs ensemble (a non-full rank state). We leave open
the question of whether our techniques could be adapted
to cover this case. [66]
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