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We experimentally and theoretically demonstrate that nonlinear spin-wave interactions suppress
the hybrid magnon-photon quasiparticle or “magnon polariton” in microwave spectra of an yttrium
iron garnet film detected by an on-chip split-ring resonator. We observe a strong coupling between
the Kittel and microwave cavity modes in terms of an avoided crossing as a function of magnetic
fields at low microwave input powers, but a complete closing of the gap at high powers. The exper-
imental results are well explained by a theoretical model including the three-magnon decay of the
Kittel magnon into spin waves. The gap closure originates from the saturation of the ferromagnetic
resonance above the Suhl instability threshold by a coherent back reaction from the spin waves.

The spectral properties of many-body systems can of-
ten be understood in terms of weakly interacting quasi-
particles. When tuning the energies of two elementary
excitations into degeneracy by an external parameter,
their coupling leads to a level repulsion. When the re-
sultant gap is larger than the level broadening, it be-
comes observable in the spectrum. This so-called strong
coupling generates a hybrid quasiparticle that shares the
properties of both ingredients. The strong coupling be-
tween magnons, phonons, photons, excitons, plasmons,
etc. has important consequences and applications in
condensed matter physics [1–6]. Here we address the
magnon polariton, i.e. the mixed state of a spin wave
in a ferromagnet and a microwave magnetic field [7–10].
While magnon polaritons are often discussed in the con-
text of quantum computing by discrete qubits [11], they
are more generally relevant for the control of continuous
magnon variables by electromagnetic fields. Although
they have been extensively studied in the linear response
regime of weak microwave excitation, their nonlinearities
have so far escaped similar attention.

In comparison, nonlinearites in magnetic excitations
have been known for many decades [12–14]. They can be
useful in, for instance, probabilistic bits [15, 16], and of-
fer continuous variables with controllable squeezing and
entanglement that act as resources in quantum informa-
tion [17, 18]. The magnon nonlinearities can be treated
systematically by the Holstein-Primakoff power expan-
sion of a spin Hamiltonian in creation and annihilation

operators b†k, bk. With increasing excitation, progres-
sively higher-order terms of the expansion become im-
portant. We focus on the three-magnon scattering; the
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leading nonlinear term that involves the splitting of a
magnon into two and the reciprocal confluence [13, 19].
The interaction causes the first-order Suhl instability of a
uniform precession of the magnetic order, or Kittel mode
represented by b0, at a threshold power that can be very
small in low-damping magnets [19–26]. Figure 1(a) illus-
trates the scattering process in which a Kittel magnon
decays into two magnons of half its frequency and oppo-
site momenta ±k. This three-magnon splitting is allowed
only when magnetic dipole-dipole interactions render a
nonmonotonic magnonic dispersion with minima at half
the Kittel mode frequency or below. When the Kittel
mode is excited, the three-magnon splitting pumps the
magnon pair amplitude 〈bkb−k〉 at a rate proportional to
that of the Kittel mode |〈b0〉|. When the pumping rate
exceeds the relaxation rate of the magnons ηk, a nonther-
mal magnon population accumulates in the valleys of the
magnon dispersion. This first-order Suhl instability man-
ifests itself in microwave reflection spectra by e.g. distor-
tions of the spectral line shape from a Lorentzian [13].

In this Letter, we study this nonlinear instability un-
der the condition that the Kittel magnon strongly couples
to the photon in a discrete microwave cavity [Fig. 1(b)].
Since magnon-photon coupling can be used to read infor-
mation out or distill entanglement in these applications,
nonlinear magnon-polariton phenomena may become a
crucial ingredient in novel computing and information-
technology paradigms [7, 16, 17]. Our main result is
the observation and modeling of the suppression of the
strong-coupling gap by the instability. The nonlinear
spin-wave equation coupled to the cavity mode explains
our observations in terms of the saturation of the Kit-
tel mode by a dynamical phase correlation between the
cavity photons and the magnon pairs in the valleys. To
the best of our knowledge, a tunable strong coupling has
not been reported for magnon polaritons and adds to the
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FIG. 1. (a) Spin-wave dispersion of a YIG film. Red arrows
indicate the split of a Kittel magnon with the frequency ω0

into two magnons of frequency ω0/2. (b) Schematic of the
magnon polariton with the spin-wave instability as explained
in the main text. (c) Measurement set-up.

appeal of magnetic materials for classical and quantum
information technologies [7, 17, 27].

We study a 5 µm thick YIG film grown on a gadolinium
gallium garnet substrate by liquid-phase-epitaxy [28, 29]
and placed on a split-ring microwave resonator (SRR) as
depicted in Fig. 1(c) [30, 31]. We measured microwave
absorption/reflection spectra |S11| at room temperature
using a vector network analyzer (VNA). Figure 2(a)
shows |S11| for different input microwave powers P as a
function of frequency ω/2π and magnetic field µ0H. For
P = −20 dBm, a prominent avoided crossing between
the Kittel mode frequency ω0/2π and the cavity photon
mode ωr/2π ≈ 1.5 GHz is evidence for strong magnon-
photon coupling. The minimum frequency difference,
half of which is the coupling strength g/2π = 41 MHz,
occurs at the resonance field µ0Hres = 16.8 mT. In
linear response, |g| = ηγ

√
~µ0ωr

√
N/Vc, where η, γ,

~, µ0, N , and Vc are the filling factor that character-
izes the spatial mode overlap between the photon and
magnon modes, the gyromagnetic ratio, reduced Planck
constant, vacuum permeability, number of spins, and
the cavity mode volume, respectively [7]. The individ-
ual linewidths of the photon and magnon are obtained
by Lorentzian function fittings of the respective reso-
nances κr(κ0)/2π = 52.0(28.0) MHz at µ0H = 26.1 mT
far from the avoided crossing. With increasing P , the
avoided crossing gap narrows and the two peaks eventu-
ally merge [Fig. 2(a)]. Figures 2(b) and (c) show that
the two peaks on resonance H = Hres coalesce into a sin-
gle one at high powers, seemingly cancelling the magnon-
photon coupling. Figure 2(d) summarizes the frequencies
of the peaks in the spectra, illustrating the vanishing of
the gap that constitutes our main result. As argued in
the following, we attribute it to the first-order Suhl in-
stability.

The Suhl instability alters magnetic susceptibility [19,
32, 33] and lineshape [13] by the nonlinear back reac-
tion of the excited magnon pairs on the Kittel magnon.

We confirm an implied increased broadening by measur-
ing the P dependence of the Kittel mode linewidth at
µ0H = 26.1 mT > µ0Hres, far away from the cavity res-
onance. As shown in Fig. 2(e), we observe an increase
in broadening for P & 0 dBm, which is expected for
entering the power regime of the first-order Suhl insta-
bility. The critical number of Kittel magnons per spin
at the threshold is |〈b0〉|2/N = const × η2k/ω

2
M where

ωM = γµ0Ms is the saturation magnetization. The dif-
ference between the onset powers for the gap closure in
Fig. 2(d) and the broadening in Fig. 2(e) implies that
the dimensionless constant of order unity depends on the
system parameters including H and ω.

We can corroborate our interpretation by increasing
H to couple the Kittel mode with a higher SRR cavity
mode. Energy conservation ω0 = 2ωk, where ωk is the
frequency of a magnon with wavevector k, demands that
ω0 ≥ 2ωb where ωb is the band edge frequency. Since
both ω0 and ωb increase roughly linearly with H, the
three-magnon splitting is forbidden above a critical field
value Hcr, at which ω0 (Hcr) /2π = 2.59 GHz for our YIG
sample with a thickness of 5 µm, Ms = 1.26× 105 A/m,
and a stiffness constant of λex = 3 × 10−16 m2 [34] (see
SM [35]). The magnon polariton of the 3.0(3.5) GHz SRR
mode in Fig. 3(a) (in Fig. S5 in SM) should therefore
depend much less on the microwave power. By increas-
ing P up to 8 dBm as before, the reflection spectrum
[Fig. 3(b)] and the fixed-field plot in Fig. 3(c) confirm
that the avoided crossing gap does not vanish and Kittel
mode linewidth in Fig. 3(d) remains unchanged, which
supports our hypothesis that the Suhl instability explains
Fig. 2.

We substantiate the above arguments by the kinetic
theory of nonlinear spin wave dynamics [13, 36] extended
to incorporate the magnon polariton. We start from the
model Hamiltonian H = H1 + H2 + H3 (in frequency
units), in which

H2 = ωrb
†
rbr +

[
gb†0br + h.c.

]
+ω0b

†
0b0 +

∑
k 6=0

ωkb
†
kbk (1)

describes non-interacting fields as coupled harmonic os-
cillators, where br is the annihilation operator for the
selected cavity photon, and ωr is its frequency. The mi-
crowave stripline drive contributes

H1 =
[
he−iωt

(
Urb
†
r + U0b

†
0

)
+ h.c.

]
, (2)

where h and ω are the amplitude (in frequency units)
and frequency of the stripline field, and U0 and Ur are
its (dimensionless) coupling strengths to the Kittel and
cavity mode, respectively. The nonlinear coupling Vk ∼
ωM/

√
N in

H3 =
1

2

∑
k 6=0

Vkb0b
†
kb
†
−k + h.c. (3)

is a function of the material parameters [13]. Over-
lines denote complex conjugation throughout. We omit-
ted four-magnon scattering terms because in the present
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FIG. 2. (a) Microwave absorption spectra (|S11| (dB)) as a function of microwave frequency and magnetic field strength, for
different microwave power ranging from -20 to 8 dBm. (b)–(c) Collection of frequency domain scans for a fixed magnetic field
of 16.8 mT. (d) Comparison between measured and calculated gaps. Peak frequencies are extracted from individual fits for
different microwave powers. (e) Microwave power evolution of the observed and calculated linewidths of the Kittel mode in the
weak coupling regime (µ0H = 26.1 mT).
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FIG. 3. |S11| as a function of microwave frequency and magnetic field strength, for low (a) and high (b) microwave powers. (c)
Microwave absorption spectra for the 3.0 GHz SRR mode at a fixed magnetic field of 60 mT, at which the frequency difference
between the two peaks is the smallest. (d) Power evolution of Kittel mode linewidth (κ0) at a fixed magnetic field above the
avoided crossing (63 mT) for the 3.0 GHz SRR mode.
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FIG. 4. (a) Microwave reflection spectrum |S11| (defined in Supplementary Materials) calculated from Eqs. (4) and (5) for
model parameters in the text and an arbitrary reference input power href . (b) |S11| at µ0H = 16.8 mT. (c) Schematic of the
particle number growth with h for magnon polaritons with the Suhl instability.

setup the critical power of the first order Suhl instability
is much smaller than the second order one (see SM [37]).
At room temperature, one may safely interpret the field
operators as classical amplitudes with thermal fluctua-
tions. In the film geometry with an in-plane static mag-
netic field, only a narrow band of magnons are involved in
the onset of the instabilities [38], which we approximate
here by the single pair ±k ‖ H with smallest ηk/ |Vk|.
The steady-state solutions are characterized by the ther-
mal averages 〈b0,r〉 and 〈bkb−k〉. The coherent amplitude
of the Kittel mode 〈b0〉 is a root of a (complex) cubic alge-
braic equation (Eq. (S25) in the SM), which at sufficiently
high powers |h| → ∞ approaches

〈b0〉 → −e−iωt+iψkccr, ccr =
ωk − ω/2 + iηk

Vk
(4)

where ψk is the phase of the magnon pair amplitude
〈bkb−k〉. The absence of h on the r.h.s. implies sat-
uration, i.e., the number of Kittel magnons n0 cannot
exceed the critical value |ccr|2, which depends only on
the magnonic parameters. Furthermore (for all |h|),

〈br〉 =
g〈b0〉+ hUre

−iωt

ω − ωr + iκr
, (5)

〈bkb−k〉 =− ccr〈b0〉
|ccr|2 − |〈b0〉|2

kBT

~ωk
, (6)

where T is the temperature and kB the Boltzmann con-
stant. Photon and magnon pair amplitudes coherently
oscillate with the Kittel mode, whose phase in turn locks
to that of the driving field h. The saturation limit
Eq. (4) is valid in a nonvanishing interval above the crit-

ical power [38] and explains the main features of the ob-
servations.

Figures 4(a) and 4(b) summarize the theoretical re-
sults with the standard parameters for YIG, i.e. an ex-
tracted saturation magnetization Ms = 1.26 × 105 A/m
for γ/2π = 28 GHz/T, and a magnetic-relaxation-rate
parameter κ0/2π = 22 MHz. We model the microwaves
system by ωr/2π = 1.53 GHz, κr/2π = 52 MHz,
Ur = 0.95 × e0.4iπ, U0 = 0.31. We take magnon-
photon coupling g/2π = 41 MHz directly from the gap
of the avoided crossing at low P . The Kittel formula
is ω0 = µ0γ

√
H(H +Ms). For the coherently coupled

magnon pair at ωk = ω/2, we assume ηk = 0.01 × ω0/2
and Vk = ωM × 10−11/2 (see SM [39]). The calculated
spectra compare favorably with the observed gap closure
and the lineshapes [Figs. 2(d) and (e)]. Considering the
simplifications made in the model [40] that always tend
to predict a faster development of instability with more
extreme spectral distortions, the agreement is satisfac-
tory. It reproduces the asymmetry between the avoided-
crossing peaks at low powers, which is caused by the
broadening [41]. Note that the spectra at high powers
cannot be explained by the dissipative coupling observed
in very different regimes in Refs. [42, 43]. We can instead
attribute the quenching of the avoided crossing to the sat-
uration of the Kittel mode [Eq. (4)]. Below the critical
power, a photon injected into the cavity mixing with a
Kittel magnon causes the avoided crossing. Above the
critical power, however, cavity photons are much more
numerous than the Kittel magnons limited by the coher-
ent back reaction from the magnon pairs, as illustrated
in Fig. 4(c). The excess photons become effectively de-
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coupled and therefore do not show the avoided crossing.
Their spectral characteristics overwhelm the gap opened
by the few saturated magnons, thereby causing an ap-
parent closure of the gap.

In summary, we discovered suppression of the strong
magnon-photon coupling in highly excited microwave
cavities at the first-order Suhl instability. The closure of
the hybridization gap calculated with a nonlinear spin-
wave model coupled to a microwave cavity photon mode
agrees quantitatively with the observations. This effect
is a result of the phase coherence between the photons
and the entire spin wave system that saturates the num-
ber of Kittel magnons under large microwave drives. The
ability to coherently excite or detect magnon pairs in the
low energy valleys not only contributes to studying and

controlling quantum entanglement of magnons [17, 18],
but also opens new avenues in magnonics, such as the
microwave spectroscopy of magnon Bose Einstein con-
densates [44]. The present work promises ample room
for unexpected discoveries in nonlinear magnonics as an
exciting research frontier. [45, 46].
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[22] C. L. Ordóñez Romero, B. A. Kalinikos, P. Krivosik,

W. Tong, P. Kabos, and C. E. Patton, Phys. Rev. B
79, 144428 (2009).

[23] H. Schultheiss, X. Janssens, M. van Kampen, F. Ciub-
otaru, S. J. Hermsdoerfer, B. Obry, A. Laraoui, A. A.
Serga, L. Lagae, A. N. Slavin, B. Leven, and B. Hille-
brands, Phys. Rev. Lett. 103, 157202 (2009).

[24] H. Kurebayashi, O. Dzyapko, V. E. Demidov, D. Fang,
A. J. Ferguson, and S. O. Demokritov, Nat. Mater. 10,
660 (2011).

[25] H. Sakimura, T. Tashiro, and K. Ando, Nature Commu-
nications 5, 5730 (2014).

[26] I. Barsukov, H. K. Lee, A. A. Jara, Y.-J. Chen, A. M.
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