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We introduce and explore an interacting integrable cellular automaton, the Fredkin staircase,
that lies outside the existing classification of such automata, and has a structure that seems to
lie beyond that of any existing Bethe-solvable model. The Fredkin staircase has two families of
ballistically propagating quasiparticles, each with infinitely many species. Despite the presence
of ballistic quasiparticles, charge transport is diffusive in the d.c. limit, albeit with a highly non-
gaussian dynamic structure factor. Remarkably, this model exhibits persistent temporal oscillations
of the current, leading to a delta-function singularity (Drude peak) in the a.c. conductivity at
nonzero frequency. We analytically construct an extensive set of operators that anticommute with
the time-evolution operator; the existence of these operators both demonstrates the integrability of
the model and allows us to lower-bound the weight of this finite-frequency singularity.

Introduction— In conventional metals, the optical con-
ductivity has a peak at zero frequency with a width set
by the mean free time. This zero-frequency peak is called
the “Drude peak” and becomes sharp in the limit of low
temperatures or weak interactions. Recently, motivated
by experiments on bad metals [1, 2], there has been con-
siderable interest in systems that have finite-frequency
Drude peaks [3–7]. Attempts have been made to model
these in terms of imperfect Anderson localization [4] and
fluctuating density waves [6]; such explanations yield a
broad maximum: the peak frequency and the width of
the peak are set by the same scale. To our knowledge,
no model has been shown to have both an O(1) d.c. re-
sistance and a sharp finite-frequency Drude peak.

In the present work we construct an exactly solvable
model with these features. This model is an interacting
integrable cellular automaton, with an update rule anal-
ogous to the Fredkin model which we dub the Fredkin
staircase automaton (FSA) [8, 9]. The Fredkin model
is one of a large class of kinetically constrained mod-
els (KCMs) that have recently been explored and shown
to exhibit anomalous dynamical properties [10–21]. Re-
markably, there are deep links between integrable sys-
tems and KCMs: if one applies the update rules of a
KCM in certain deterministic sequences (rather than at
random) one obtains discrete-time integrable cellular au-
tomata. This correspondence has been noted in multi-
ple cases, see e.g. [22–32]; how general it is, and how the
properties of the stochastic and integrable versions of the
model are related, remain open questions.

We show that the FSA is integrable—we can construct
extensively many conserved quantities, and identify sta-
ble quasiparticles. Remarkably, our simulations of scat-
tering events between quasiparticles suggest that, despite
its integrability, the FSA does not fit the standard Bethe
ansatz paradigm, and hence evades exact solvability at
present. Whether the Bethe ansatz framework can be
extended to the FSA is an important topic for future

work.

After discussing the quasiparticle structure, we study
transport in this model by numerically computing its
a.c. conductivity through the Kubo formula [33]. Our
central result is that the a.c. conductivity has an in-
finitely sharp (i.e., δ-function) “Drude” peak at a nonzero
frequency, associated with persistent oscillations of cur-
rent fluctuations. We are unaware of any other integrable
systems with a nonzero-frequency Drude peak. We ex-
plain this finite-frequency Drude peak in terms of an in-
finite family of charges that anti-commute with the time
evolution operator. In terms of these charges, we de-
rive an analytic lower bound for the weight of the Drude
peak. In addition to this feature, the d.c. limit of the con-
ductivity is finite, so transport is asymptotically diffusive
despite the presence of ballistic quasiparticles. This pecu-
liar phenomenon has been observed and explained in the
context of the easy-axis XXZ spin chain [34–38]; remark-
ably it also occurs in this model although its transport
properties are otherwise very different. In contrast to the
XXZ spin chain, although the FSA exhibits diffusion, its
dynamical structure factor is spatially strongly asymmet-
ric, and obeys a scaling form C(x, t) = t−1/zf(x/t1/z),
with z = 2 and f a skewed, non-Gaussian scaling func-
tion.

Model.— Our system is a one dimensional chain of
qubits of length L whose basis states we represent as |•〉
and |◦〉 to denote whether a particle has occupied a site
or not. The dynamics is governed by a Floquet operator
U , shown pictorially in Fig. 1, which is composed of three
layers of four site unitary gates, i.e. U = V3V2V1, where

Vi =
∏

j≡imod 3

Uj,j+1,j+2,j+3, (1)
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FIG. 1. Model. (a) Pictorial representation of the circuit
geometry described by Eq.1. (b) Pictorial representation of
the rules associated to the Fredkin constraint as described in
Eq.2. • represents particles while ◦ represents holes. (c) Time
evolution of a random product state in the occupation basis.

and

Uj,j+1,j+2,j+3 = P •j SWAPj+1,j+2P
•

+ P •j SWAPj+1,j+2P
◦
j+3

+ P ◦j SWAPj+1,j+2P
◦
j+3

+ P ◦j 1j+1,j+2P
•
j+3.

(2)

P •j = |•〉〈•|j , P ◦j = |◦〉〈◦|j and SWAPj,j+1 is the usual
swap gate. Note that these gates locally preserve par-
ticle number so that the total particle number of the
system is conserved. By inspection, one can see that
the Floquet operator is invariant under translation by
three sites, thus we break our system into three site unit
cells. This gate geometry was first used (but with dif-
ferent gates) in Ref. [27] and one can show that the gate
geometry is equivalent to a staircase geometry hence the
name: Fredkin Staircase Automaton, as the constrained
swaps satisfy the so-called Fredkin constraint [39–49]. We
note that the gate pattern we are using is crucial for the
model to be integrable. In the supplemental material
[50], we show that deforming the gate geometry breaks
the integrability of the model and leads to subdiffusion
with an exponent z ' 8/3 in line with the predictions
of Ref. [8]. Each update conserves the total number of •
(and ◦) sites, so we can regard the fraction of • sites as
the “filling fraction” f .

Quasiparticles.— We first identify single quasiparticle
excitations of the FSA model above its vacuum state (i.e.,
the state |◦〉⊗N ). One can create states with a single el-
ementary quasiparticle by occupying a single site. Since
there are three inequivalent sites in the unit cell there
are three inequivalent quasiparticles [50]. For the gate
pattern and unit cell in Fig. 1, quasiparticles on the first
and third sites of the unit cell move ballistically leftward
with velocity vσ = 3/2, shown in red in Fig. 2, whereas
those on the second site move rightward with velocity
vβ = 3, shown in black in Fig. 2—as this notation an-
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FIG. 2. Quasiparticles scattering. (a) A collision between
a single σ (colored red) and β (colored black) quasiparticle
where integer time steps represent evolving by a full Floquet
step while fractional steps indicate evolving by individual lay-
ers. One can see the σ particle receives no scattering shift
but the β particle is delayed by one Floquet time step. (b)
A β string of (moving right) collides with 10 σ quasiparticles
consecutively spaced by 2 unit cells (moving left). One can
clearly see that the velocity of the β-string is renormalized
when passes through the σ quasiparticles. (c) A size 40 β-
string collides with 10 σ quasiparticles consecutively spaced
by 10 unit cells. Observe that the the β-string’s velocity is
much lower than compared to the previous situation indicat-
ing that the effective velocity of β-strings is highly dependent
on spacings of σ quasiparticles. (d) Two β strings collide when
they encounter the large number of σ particles. One can see
that the smaller β-string overtakes the larger one after the
collision occurs.

ticipates we will call the two left-moving quasiparticles
σ-quasiparticles and the right-moving quasiparticle a β-
quasiparticle. (We will avoid calling them left- and right-
movers as the direction they move is set by the arbitrarily
chosen chirality of the gate pattern.)

We now turn to the scattering between quasiparticles.
Here, in contrast to standard integrable systems, we find
a strong asymmetry between σ and β quasiparticles: the
trajectories of σ quasiparticles are totally unaffected by
collisions, while β quasiparticles are slowed down. When
colliding with a single σ quasiparticle, a sequence of s
β quasiparticles is slowed down by s unit cells. These
sequences thus form collectively moving bound states,
which we call β-strings of size s. Collisions with σ quasi-
particles renormalize the velocities of such β-strings in
an s-dependent way. Because β-strings of different sizes
have different renormalized velocities (in the presence
of σ strings), two β-strings can collide (when a smaller
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string overtakes a larger one), as in the bottom-right
panel of Fig. 2. When two β-strings of size (s, s′) col-
lide the faster of them is further sped up (and the slower
is further slowed down) by 2 min(s, s′) unit cells. This
scattering phase shift precisely parallels the result for
Heisenberg and XXZ spin chains. We note that all the ob-
servations that we have made regarding scattering have
been empirically deduced from the numerics. It would
be interesting to construct an analytical proof for these
statements as well as further investigate why the scatter-
ing shift of β-strings parallels that of the Heisenberg and
XXZ spin chains.

To set up generalized hydrodynamics for this model,
we would need the scattering shifts between an arbitrary-
size β-string and an arbitrary configuration of σ quasi-
particles. In a typical Bethe-ansatz solvable problem, the
σ quasiparticles would form some set of bound states or
“σ-strings”, and the scattering shift accumulated by a
β-string passing through the σ quasiparticles would be
a sum of shifts due to each σ-type string. In the FSA
this separation does not happen: rather, the scattering
shift is sensitive to the full pattern of spacings between
σ quasiparticles (Fig. 2). Thus, from the point of view
of their scattering properties, even two arbitrarily well
separated σ quasiparticles cannot be treated as indepen-
dent scatterers with additive scattering shifts. Although
we are able to find expressions for the scattering shift
of an arbitrary β-string in an arbitrary background of
σ quasiparticles, it is not clear how to express these in
the standard Bethe ansatz form. Nevertheless, our nu-
merical results strongly suggest that all quasiparticles are
stable (so the model is integrable), and we now explicitly
demonstrate this for the σ quasiparticles.

Integrability.— In this section we show that there
are an infinite number of quasi-local operators that are
conserved. The construction relies on the observation
that evolution by one Floquet step maps P •3x+1P

◦
3x+3 to

P •3xP
◦
3x+1 and maps P •3xP

◦
3x+1 to P •3x−2P

◦
3x (we use the

convention that the index of the first site in the unit cell
has the form 3j + 1). Intuitively the evolution of these
projectors corresponds to a σ quasiparticle propagating
to the left. One can construct a number operator count-
ing the total number of σ quasiparticles spaced by s unit
cells and it is given by

Ns = NA
s +NB

s , (3)

where

NA/B
s =

L/3−1∑
x=0

PA/Bx

s∏
y=1

(1− PA/Bx+y )P
A/B
x+s+1, s > 0 (4)

N
A/B
0 =

L/3−1∑
x=0

PA/Bx P
A/B
x+1 , (5)

where PAx = P •3x+1P
◦
3x+3 and PBx = P •3xP

◦
3x+1. We note
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FIG. 3. Transport. (a) a.c. conductivity σ(ω). Note that
ω = π features a prominent peak indicating a π Drude weight
and that we also have a finite non-zero value at ω = 0 which
suggests diffusive behavior. (b) Behavior of the Kubo cor-
relator CJJ(t) + CJJ(t + 1) which is twice the average value
over one period of the oscillations in the current-current cor-
relator. CJJ(t) + CJJ(t + 1) falls off in a power law fash-
ion, i.e. t−β , with β ≈ 1.7 > 1 indicating the presence of a
finite non-zero diffusion constant at low frequency. (c) Be-
havior of the particle structure factor C(x, t) at short times
and (d) Diffusive scaling collapse of the structure factor,

C(x, t) = t−1/2f(x/t1/2) with f a non-Gaussian skewed scal-
ing function. (a) and (b) is data averaged over 108 realizations
and (c) and (d) are averaged over 107 realizations.

that the N
A/B
s correspond to the asymptotic spacings

[35] of the σ quasiparticles.

One can see that Ns is conserved since the Floquet op-
erator maps PAx to PBx and PBx to PAx−1. All operators
commute with each other since they are diagonal in the
occupation basis. Additionally, they are orthogonal to
each other under the Hilbert-Schmidt inner product (i.e.,
〈A,B〉 ≡ 2−L〈A†B〉) because for s′ > s, all terms in Ns′

have larger support than all terms in Ns. Since we con-
structed an infinite set of linearly independent conserved
quasi-local operators, the FSA model is integrable. We
note that there are clearly more operators which are con-
served such as the total number of β-strings. It would be
interesting to further investigate the algebraic integrable
structure of this model in future work [26–29, 51, 52].

Transport.— Because of its integrability, it is natural
to expect particle transport in the FSA model to be bal-
listic: if the particle current overlaps with any of the
conserved charges, it cannot fully relax leading to persis-
tent currents. In what follows, we argue analytically and
numerically that transport in the FSA is a lot more ex-
otic and interesting: none of the charges uncovered above
overlap with the current operator, and we find numeri-
cally that low frequency transport is diffusive. However,
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we identify analytically another set of changes which an-
ticommute with the time evolution operator, and which
do have a finite overlap with the current. We argue that
this leads to a finite Drude peak in the conductivity at
frequency ω = π. Alternatively, it shows that the FSA is
a (fine-tuned) equilibrium discrete time-crystal [53–56],
as it exhibits persistent oscillating currents.

We characterize the transport properties of the FSA
by computing the current-current correlation function,
CJJ(t) = 1

L 〈J(t)J(0)〉, where J(t) =
∑
x j(x, t) and

j(x, t) represents the local current density and 〈A〉 ≡
2−Ltr(A) for an operator A. We present the details of
the calculation of j(x, t) and its lengthy expression in
the supplemental material [50]. We numerically com-
puted CJJ(t) using classical evolution and averages are
performed over 108 random initial states.

From the current-current correlator, we compute
the a.c. conductivity, σ(ω) by using the Kubo for-
mula [33]

σ(ω) =
1

2
CJJ(t = 0) +

∞∑
t=1

eiωtCJJ(t). (6)

Because of the Floquet (discrete time) nature of the
model, we have ω ∈ [0, 2π). We computed this con-
ductivity numerically, see Fig. 3. One can see a clear
peak at ω = π indicating persistent oscillations in the
time-dependent conductivity and hence also the current-
current correlator. We attribute these persistent oscilla-
tions to the existence of an extensive number of operators
Q such that U†QU = −Q. To see that such operators
imply such persistent oscillations , consider the π-Drude
weight, defined as

Dπ = lim
t→∞

1

t

t∑
τ=1

(−1)τCJJ(τ). (7)

The π-Drude weight characterizes the weight of a pos-
sible Drude (delta function) peak in the conductivity at
frequency π.

One can show that if a collection of operatorsQs satisfy
the aforementioned conditions then one can lower bound
Dπ through the application of a Mazur bound [57–59],
i.e.

Dπ ≥
3

L

∑
s

〈J(0)Qs〉2

〈Q2
s〉

. (8)

A family of such operators Qs are given by Qs = NA
s −

NB
s since U evolves NA

s to NB
s at each time step we have

{Qs,U} = 0. (9)

We remark that if these were all the charges which an-
ticommuted with U then Eq. 8 would become an equal-
ity. The fact that 〈J(0)Qs〉 6= 0 means that Dπ is non-
zero which implies that CJJ(t) necessarily has to be of

the form CJJ(t) = (−1)t(Dπ + sub-leading terms). Such
persistent oscillations indicate that the FSA is a discrete
time crystal—albeit fine-tuned rather than generic [53–
56, 60].

Despite this exotic behavior near ω = π frequency, low-
frequency transport appears to be diffusive. None of the
charges (4) overlap the current, so there is no obvious
zero-frequency Drude weight. Numerically, we find that
the averaged Kubo correlators CJJ(t)+CJJ(t+1) decays
as t−β , with an exponent β ≈ 1.7 > 1, indicating a finite
d.c. conductivity σ(ω = 0), and thus a finite diffusion
constant. The structure factor C(x, t) = 〈q(x, t)q(0, 0)〉,
with q the local particle number appropriately coarse-
grained over unit cells [50], displays an ever richer struc-
ture (Fig. 3), with some ballistic peak (shown in the bot-
tom left panel of Fig.3) carrying vanishing weight due
to σ-strings, and an asymmetric non-Gaussian diffusive
peak near the origin. This is drastically different from
non-integrable versions of the model where one sees sub-
diffusive scaling and a symmetric structure factor [8, 50].

Discussion.—In this work we introduced a new re-
versible cellular automaton based on the Fredkin update
rule. We showed that the spectrum of this automaton
contains two genera of stable quasiparticles, the β-strings
and the σ quasiparticles. The β-strings of all sizes have
the same bare velocity, but are renormalized differently
through their collisions with σ quasiparticles. Thus this
model features an infinite hierarchy of quasiparticles with
distinct effective velocities above a typical thermal state.
The motion of the σ quasiparticles, meanwhile, is unaf-
fected by the scattering, so it is not entirely clear if (and
how) one can assign them to “strings.” As we discussed,
the β − σ scattering depends nontrivially on the spacing
between adjacent σ quasiparticles; while this dependence
can be computed, we have not been able to factor it into
contributions due to a hierarchy of σ-type strings. Thus
the full Bethe ansatz solution of this model remains a
task for future work. We remark that this model does
not appear to fall under a current partial classification of
integrable CAs [28, 61].

Although we were unable to fully solve the model, we
could analytically establish the presence of an infinite hi-
erarchy of conserved charges; physically, these charges
represent the spacings between σ quasiparticles, which
are conserved. Such asymptotic spacings are also con-
served in the Rule 54 RCA [23, 26] but do not seem to
affect the hydrodynamics of the model. However, scat-
tering of β strings depends on spacings of σ-particles in
a σ-string suggesting that they might play a role in de-
termining the late time behavior of the FSA.

Finally, we studied transport properties in this model.
We found that the d.c. limit of transport is diffusive, but
with an asymmetric and non-gaussian dynamic structure
factor. Moreover, the model features persistent current
oscillations, leading to a finite-frequency delta-function
peak in the a.c. conductivity. A comprehensive under-
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standing of the transport behavior in this model should
be amenable to generalized hydrodynamics (GHD) [62].
However, this would require one to re-express the scat-
tering data in a standard Bethe-ansatz form; this task is
currently out of reach.
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https://doi.org/10.1103/PhysRevLett.88.147001
https://doi.org/10.1103/PhysRevB.95.041110
https://doi.org/10.1103/PhysRevLett.127.230602
https://doi.org/10.1103/PhysRevLett.127.230602
https://arxiv.org/abs/2202.06989
https://doi.org/https://doi.org/10.1016/j.physa.2017.12.149
https://doi.org/https://doi.org/10.1016/j.physa.2017.12.149
https://doi.org/10.1103/PhysRevLett.53.1244
https://doi.org/10.1103/PhysRevLett.53.1244
https://doi.org/10.48550/ARXIV.1009.6113
https://doi.org/10.48550/ARXIV.1009.6113
https://doi.org/10.1080/0001873031000093582
https://doi.org/10.1103/PhysRevE.94.052108
https://doi.org/10.1103/PhysRevB.100.214301
https://doi.org/10.1103/PhysRevLett.125.245303
https://doi.org/10.1103/PhysRevResearch.2.033124
https://doi.org/10.1103/PhysRevB.101.214205
https://doi.org/10.1103/PhysRevX.10.011042
https://doi.org/10.1103/PhysRevLett.119.110603
https://doi.org/10.1103/PhysRevB.98.060302
https://doi.org/10.1088/2058-9565/aad759
https://doi.org/10.1088/2058-9565/aad759
https://doi.org/10.1103/PhysRevLett.123.170603
https://doi.org/10.1088/1742-5468/ac096b
https://doi.org/10.1088/1742-5468/ac096b
https://doi.org/10.1088/1751-8121/ac1dbf
https://doi.org/10.1088/1751-8121/ac1dbf
https://doi.org/10.1103/PhysRevE.104.054123
https://doi.org/10.1103/PhysRevE.104.054123
https://doi.org/10.21468/SciPostPhys.12.3.102


6

transport in one-dimensional quantum lattice mod-
els, Reviews of Modern Physics 93, 10.1103/RevMod-
Phys.93.025003 (2021).

[34] J. De Nardis, D. Bernard, and B. Doyon, Hydrodynamic
diffusion in integrable systems, Phys. Rev. Lett. 121,
160603 (2018).

[35] S. Gopalakrishnan, D. A. Huse, V. Khemani, and
R. Vasseur, Hydrodynamics of operator spreading and
quasiparticle diffusion in interacting integrable systems,
Physical Review B 98, 10.1103/PhysRevB.98.220303
(2018).

[36] S. Gopalakrishnan and R. Vasseur, Kinetic theory of spin
diffusion and superdiffusion in xxz spin chains, Phys.
Rev. Lett. 122, 127202 (2019).

[37] J. D. Nardis, D. Bernard, and B. Doyon, Diffusion in
generalized hydrodynamics and quasiparticle scattering,
SciPost Phys. 6, 49 (2019).

[38] V. B. Bulchandani, S. Gopalakrishnan, and E. Ilievski,
Superdiffusion in spin chains, Journal of Statistical Me-
chanics: Theory and Experiment 2021, 084001 (2021).

[39] L. Dell’Anna, O. Salberger, L. Barbiero, A. Trombettoni,
and V. E. Korepin, Violation of cluster decomposition
and absence of light cones in local integer and half-integer
spin chains, Phys. Rev. B 94, 155140 (2016).

[40] X. Chen, E. Fradkin, and W. Witczak-Krempa, Gapless
quantum spin chains: multiple dynamics and conformal
wavefunctions, Journal of Physics A: Mathematical and
Theoretical 50, 464002 (2017).

[41] X. Chen, E. Fradkin, and W. Witczak-Krempa, Quantum
spin chains with multiple dynamics, Physical Review B
96, 10.1103/PhysRevB.96.180402 (2017).

[42] K. Adhikari and K. S. D. Beach, Slow dynamics of the
fredkin spin chain, Phys. Rev. B 104, 115149 (2021).

[43] T. Udagawa and H. Katsura, Finite-size gap, magnetiza-
tion, and entanglement of deformed fredkin spin chain,
Journal of Physics A: Mathematical and Theoretical 50,
405002 (2017).

[44] Z. Zhang and I. Klich, Entropy, gap and a multi-
parameter deformation of the fredkin spin chain, Journal
of Physics A: Mathematical and Theoretical 50, 425201
(2017).

[45] O. Salberger and V. Korepin, Fredkin spin chain (2016).
[46] X. Chen, R. Nandkishore, and A. Lucas, Quantum but-

terfly effect in polarized floquet systems, Physical Review
B 101, 10.1103/PhysRevB.101.064307 (2020).

[47] R. Movassagh and P. W. Shor, Supercritical entangle-
ment in local systems: Counterexample to the area
law for quantum matter, Proceedings of the National
Academy of Sciences 113, 13278 (2016).

[48] O. Salberger, T. Udagawa, Z. Zhang, H. Katsura,
I. Klich, and V. Korepin, Deformed fredkin spin chain

with extensive entanglement, Journal of Statistical Me-
chanics: Theory and Experiment 2017, 063103 (2017).

[49] C. M. Langlett and S. Xu, Hilbert space fragmenta-
tion and exact scars of generalized fredkin spin chains,
Physical Review B 103, 10.1103/PhysRevB.103.L220304
(2021).

[50] Supplemental material, See supplemental material which
includes Refs. [62–64].

[51] T. Prosen, Reversible Cellular Automata as Integrable
Interactions Round-a-Face: Deterministic, Stochastic,
and Quantized, arXiv e-prints , arXiv:2106.01292 (2021),
arXiv:2106.01292 [cond-mat.stat-mech].

[52] T. Gombor and B. Pozsgay, Integrable deformations

of superintegrable quantum circuits, arXiv e-prints ,
arXiv:2205.02038 (2022), arXiv:2205.02038 [nlin.SI].

[53] V. Khemani, A. Lazarides, R. Moessner, and S. Sondhi,
Phase structure of driven quantum systems, Physical
Review Letters 116, 10.1103/PhysRevLett.116.250401
(2016).

[54] D. V. Else, B. Bauer, and C. Nayak, Floquet time crys-
tals, Phys. Rev. Lett. 117, 090402 (2016).

[55] V. Khemani, R. Moessner, and S. L. Sondhi, A Brief His-
tory of Time Crystals, arXiv e-prints , arXiv:1910.10745
(2019), arXiv:1910.10745 [cond-mat.str-el].
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