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Strongly interacting arrays of Rydberg atoms provide versatile platforms for exploring exotic
many-body phases and dynamics of correlated quantum systems. Motivated by recent experimental
advances, we show that the combination of Rydberg interactions and appropriate lattice geometries
naturally leads to emergent Zs gauge theories endowed with matter fields. Based on this mapping,
we describe how Rydberg platforms could realize two distinct classes of topological Zs quantum spin
liquids, which differ in their patterns of translational symmetry fractionalization. We also discuss
the natures of the fractionalized excitations of these Zs spin liquid states using both fermionic and
bosonic parton theories and illustrate their rich interplay with proximate solid phases.

Programmable arrays of Rydberg atoms [1-4] have re-
cently emerged as powerful quantum simulators to probe
important questions in diverse areas of physics. Over
the years, these systems have been used as clean, tun-
able platforms to study interesting many-body phases
[5, 6], quantum dynamics [7, 8], combinatorial optimiza-
tion problems [9], and gauge theories [10-12].

Generically, the setup consists of atoms individually
trapped in an array of optical tweezers and pumped by
lasers to highly excited Rydberg states. The interac-
tion between two atoms in the Rydberg state is very
large at short distances, and this significant energy cost
prohibits—or blockades—the simultaneous excitation of
neighboring atoms, thereby inducing robust quantum
correlations between the atomic states. This “Rydberg
blockade” effect [13] can be exploited to study a number
of interesting phases of quantum matter and the transi-
tions between them, thus prompting a wealth of experi-
mental [5, 14-17] and theoretical [18-26] investigation.

Quantum spin liquids (QSLs) form one such class of
highly sought-after phases of matter. These are strongly
correlated phases characterized by long-range many-body
quantum entanglement, which gives rise to exotic prop-
erties such as fractionalized excitations, emergent gauge
fields, and topological ground-state degeneracies [27-29].
The simplest example of such a QSL which does not break
any symmetries, including time-reversal, is the Zs spin
liquid [30-32]—a stable, gapped quantum state with the
same topological order as the toric code [33]. Despite
some indications that such a phase may exist in certain
electronic systems on the kagome lattice [34], direct ex-
perimental detection thereof has so far proved elusive in
solid-state materials.

Today, efforts towards realizing Zo QSL phases have
turned to Rydberg atom arrays. A promising playground
to look for QSL phases is the family of quantum dimer
models [35, 36]. Recently, Ref. 37 theoretically showed
that the phases of various quantum dimer models [35, 36]
can be efficiently implemented using Rydberg atoms ar-
rayed on the sites of a kagome lattice and argued that Ry-
dberg platforms could be used to realize topological spin
liquid states based solely on their native interactions [38].

Recent experiments on an array of Rydberg atoms placed
on the links of a kagome lattice yielded evidence for a
state with topological correlations [6], in accordance with
theoretical proposals [39]. However, even though numer-
ics and experiments support a Zs QSL phase, a general
understanding of the connection between Rydberg atom
arrays and Zs QSLs remains to be obtained.

In this Letter, we bridge the gap and establish the
underlying reason why geometrically frustrated Rydberg
atom arrays host spin liquids. We do so by constructing
an ezact mapping from the Rydberg Hamiltonian to a Zo
gauge theory. In this formulation, the Zy QSL is nothing
but the deconfined phase of the gauge theory while the
various ordered solids correspond to the confined phases.
However, this emergent gauge theory is necessarily en-
dowed with matter fields. These matter fields are the
three distinct anyonic quasiparticle excitations of the Zo
QSL. Such fractional excitations are the hallmark of a
QSL, and can be either bosonic (e and m) or fermionic
(€). The e and € anyons are particle-like excitations, and
are collectively referred to as “spinons”, whereas the m
anyon is a vortex-like excitation called a “vison” [40].
For each of these excitations, constructing detailed par-
ton theories (which are widely employed effective theories
for anyonic excitations of QSLs [27, 30, 41]), we analyze
their static spectra using fully self-consistent mean-field
theory and illustrate their relation to neighboring non-
topological phases in the context of spinon condensation.

Importantly, depending on whether elementary trans-
lations anticommute or commute when acting on the vi-
sons, Zs spin liquids can be further classified as “odd” or
“even”, respectively [42-44]. We highlight how this sub-
tle distinction is reflected in a parton formulation and
adds to the rich variety of possible QSL states.

Model.—In the simplest description, each Rydberg
atom can be effectively regarded as a two-level system
(i.e., a qubit). We identify the atomic ground state |g)
with an empty bosonic state |0) and the Rydberg state |r)
with the filled bosonic state BT |0) (Fig. 1). By construc-
tion, this mapping associates the states with “hard-core”
bosons, i.e., N, = BEBZ = 0, 1. These two states are cou-
pled by the external lasers with a Rabi frequency 2. The
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Figure 1. Rydberg atoms are positioned on the sites of the
kagome (-lattice with lattice spacing a; the associated i-lattice
(red dots) is triangular. The two atomic states |g) and |r) are
depicted in gray and blue, respectively. Here, V), represents
the interaction between p-th-nearest neighbors. [Upper-right]:
The effective two-level bosonic mode defined by the presence,
BT|0), or absence, |0), of the Rydberg excitation. [Lower-
right]: Mapping of the configuration shown on the left to
the triangular-lattice dimer model, where an occupied boson
(blue circle) on the kagome lattice is mapped to the presence
of a dimer on the link of the triangular lattice. In general,
any configuration of Rydberg excitations can be mapped to a
set of dimers that need not satisfy a close-packing constraint.

frequency of the laser is adjusted such that the detun-
ing away from resonance of the |g) to |r) transition is §
(see Fig. 1). Atoms in the Rydberg state interact via a
van der Waals potential of the form V(r) = V;/r%, which
arises from strong dipole-dipole interactions. Putting
these ingredients together, the full Hamiltonian [45, 46]
is given by

Q
Hygs = ; [2 (Bé + Bg) - 5N£} + ;é;f/ VZ,@/NeNz/a
(1)

where £ labels a set points on the kagome lattice with
position 7, and we have defined Vo =V(r; — 7¢) for
notational brevity. The interaction strength can equiva-
lently be parametrized by the Rydberg blockade radius
Ry = (Vo/92)/5; intuitively, this means that atoms within
a radius of approximately Ry are blockaded from occupy-
ing the Rydberg state simultaneously. The first term in
the Hamiltonian (1) breaks U(1) symmetry, so the num-
ber of B bosons is not conserved.

Emergent gauge theory.—At the moment, Hygs is not a
lattice gauge theory, and By is the annihilation operator
of a boson which does not carry gauge charges. We are
interested here in configurations of the FSS model which
can realize a Zs spin liquid. To begin, we identify the two
bosonic states on each site with the qubits of a Zs gauge
theory as B, +B} =07, N, =(1-0f)/2. Then, without
approximation, one can write the FSS model as a model
of interacting qubits:

1 z T 1 w’é/ T T
Hyys = 52[905 +505]+§ Z 1 (I—o7)(1—07).
¢ G
(2)

In order to study possible Zy spin liquid states, we ex-
plore making (2) gauge invariant by introducing zero-
energy matter fields which carry a Z, gauge charge. First,
we introduce an “i-lattice” of sites i, j, ..., such that the
centers of the (7, j) links on the i-lattice coincide with the
¢ sites in Eq. (2) (see Figure 1). Note that the i-lattice
has to be defined in a manner which does not break any
symmetries of the ¢-lattice. Such a construction is feasi-
ble for only some lattices—like the kagome [37] and the
ruby [39]—but not others; e.g., the square and honey-
comb /-lattices do not have a corresponding i-lattice.

The i-lattice qubits are acted on by Pauli matri-
ces ;%% and these transform under Z, lattice gauge
transformations as 0'% — Qi()'% 0js a% =05, T =T
7 =7, with ¢; ==+1, where 0% = o} on the (-lattice
site between the ¢ and j sites on the i-lattice. Then, an
explicitly Zs-gauge-invariant form of the FSS Hamilto-
nian is

Q z __Z z 5 xr Vé7l/ xr xT
HFSS: 5271 0'537‘7 +§ZO’Z+Z 3 (170'()(170'6/)
@ R,
(3)

The other canonical terms of Ising gauge theory, which
are unessential to our discussion here, are described in
Sec. ST of the Supplemental Material (SM) [47].

With the introduction of the 7% Ising matter fields,
we also introduce an infinite number of gauge charges
G; that commute with Hess as G; =77 [, ondsoni 0% >
[Hess: G;] =0; we choose G; =1, whereupon the Hilbert
space of Eq. (3) is identical to that of Eq. (1). In the
Zo gauge theory framework, there is a unit Zs electric
charge on each lattice site of an odd Zs gauge theory,
which is a manifestation of nontrivial lattice symmetry
fractionalization in this phase [48-51]. The visons see
the spinons as a source of 7 flux, so the adiabatic mo-
tion of a vison around a lattice site picks up a phase of
+1(—1) in an even (odd) QSL. Thus, without dynamic
matter, a state with 77 =1 (—1) V¢ will correspond to an
even (odd) Zs spin liquid; with dynamic matter, these
identifications will continue to hold in a phase where 7.
has small fluctuations from the matter-free case.

Mean-field theory of bosonic spinons.—Focusing here-
after on the case where the ¢-lattice is the kagome and
the i-lattice is triangular (Fig. 1), we formulate a theory
for the ground state and its e excitations by returning
to the bosonic description in Eq. (1). The ;7% opera-
tors can be similarly represented in terms of hard-core
bosons b such that b, +bl =77, blb, =n, =(1 + 77)/2,
where the signs correspond to the odd/even cases, so that
(n; ) < 1 for both. Then, the gauge charge operator can
be rewritten as G; = exp (47 [7; + Y pondsons Vo) » Wwhere
n; =n; (=n; + 1) for an even (odd) QSL; so, we look for
ground states with n; + >, 4eon; V¢ = 1,2. We can
now perform a self-consistent mean-field theory calcula-
tion, after expressing Eq. (3) in terms of B, and b;, and
imposing the constraint above by a Lagrange multiplier.
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Figure 2. (a) Mean-field phase diagram highlighting the four
possible QSL solutions for e-spinons. Corrections beyond
mean-field are expected to shift the QSL phases’ boundaries
towards smaller §/Q and larger R,/a. Note that the extent
of the nematic solid in the DMRG phase diagram of Ref. 37
is set by the points where the visons of the QSLs condense.
There are four distinct types of QSL solutions which we label
as [E/Q) %E//H, based on the even (odd) nature of the QSL and
the location of the spinon dispersion minimum. (b) Represen-
tative energy dispersion of the bosonic spinon excitation of the
Or QSL in the first Brillouin zone. (c) The static structure
factor of this state (calculated from the e particle theory) dis-
plays prominent spectral weight at the I' point but is broadly
featureless in the extended Brillouin zone (cf. Fig. S2).

In this process [47], we condense B, and replace it with
a real number B. Retaining terms quadratic in b; and
diagonalizing the resulting Bogoliubov Hamiltonian, we
arrive at the gapped e-particle spectrum. We note that
such a diagonalization procedure via a Lagrange multi-
plier only imposes the Gauss-law constraint on average
(see SM, Sec. SII [47]).

The results of such an analysis are presented in Fig. 2
and Figs. S1-S3 [47]. In total, we find four distinct non-

trivial QSL states, which we label as [E/O) EE//H In this
notation, E and O denote even and odd spin liquids, re-
spectively, the + in the superscript indicates the sign of B
in the corresponding solution, and the subscript conveys
whether the minima of the dispersion in the Brillouin
zone occur at the I' point or at the K, K’ points. In
Fig. 2(a), we construct a mean-field phase diagram by
plotting the lowest-energy solution among these four at
each point in parameter space. While mean-field theory
is not expected to capture the precise parameter values
for QSL solutions, it does correctly describe the change

in the nature of the QSL state from even to odd as the
density of Rydberg excitations decreases with increasing
Ry/a [38].

The representative spectra of the candidate Rydberg
QSLs are shown in Fig. 2(b) and Fig. S2(a—c) [47]. While
all these states are gapped, one can reach an instabil-
ity of the QSL state by tuning some parameter to bring
the quasiparticle energy gap to zero. Then, the transi-
tion out of the QSL into the proximate phases can be
viewed as a condensation of the bosonic spinon [32, 52].
For instance, consider the Op QSL [Fig. 2(b)]: since its
dispersion minimum occurs at the I' point, when the
b; are also condensed, one obtains a trivial paramag-
netic or “disordered” phase as is commonly observed in
the Rydberg phase diagram [37]. This quantum phase
transition [53] belongs to the so-called Ising* universal-
ity class [54-56]. Moreover, to investigate spin correla-
tions in the QSL phase, in Figs. 2(c) and S2, we ana-
lytically calculate the static structure factor S**(q) =
Serp, €0 TTR) (0F 0F ) /N, [Eq. (S24) in the SM] in
Fourier space based on the two-point functions <0§1 a§2>.
Such correlation function can be measured via implemen-
tation of local basis-rotation operations detailed, for in-
stance, in Ref. 6. Since it only requires measurement of
local observables, §** provides a nontrivial experimen-
tally accessible prediction to probe and distinguish pos-
sible spin liquid states.

Pictorially, the Ising electric charge e, which sits at
the center of the hexagonal plaquettes of the kagome
lattice, is defined by “defect hexagons” [57] such that
[I;co0f=—1(+1) for an even (odd) QSL, as sketched
in Fig. 3(a). It is also easy to see from this figure why
the gauge-charged matter fields 7 are gapped. Naively,
given the presence of 7%-gapless matter, one could antici-
pate that 7% would condense, destroying any possible Zo
QSL phase. However, from Fig. 3(a), we notice that the
motion of the Ising matter 7% requires a o* operation;
by virtue of the qubit-boson mapping, this can add or
remove a By boson, leading to a large energetic cost from
either V(r) or 0, respectively. Consequently, 7% gauge
charge fluctuations are expensive, and this could help
stabilize a deconfined phase of the Zs gauge theory (3).

Dual theory of visons.—The second type of bosonic ex-
citations of the Zs QSL are the visons, which carry Zo
magnetic flux [40, 58]. For a full description of the m par-
ticles, we perform a duality transformation on Eq. (3) to
obtain an Ising gauge theory with Ising matter on the
lattice dual to the (triangular) i-lattice. This is the me-
dial honeycomb lattice formed by connecting the centers
of the kagome triangles [Fig. 3(b)]; on its sites, we define
the Ising matter fields 7, = +1, and on its links, we intro-
duce the gauge fields 77, =+1. The mapping between
the direct (o,7) and dual (5, ) variables is derived in
Sec. SIITA [47], following which, we arrive at the theory



Figure 3. (a) Creation and motion of bosonic spinon (e parti-
cle) excitations in an even QSL by the repeated application of
o”*, as depicted from left to right. The red plaquettes identify
the defect hexagons on which the spinons reside. (b) Same,
but for the visons (m particles), which live at the centers of
the kagome triangles. Both excitations can only be created in
pairs by any local operator acting on the ground state.

for the visons:

~ 0 )
Hpgs = 9 Z 77?7]7/ + 3 (uf/niz*,jvuj/ — 1) (4)
(7'5") (i’5")
Vir,: — "'kvp)
: (1= pimi o) (L — miomip i)

Upon restricting ourselves to only nearest-neighbor
blockade interactions for simplicity and with the appro-
priate choice of a gauge (in the limit of low spinon densi-
ties), the minimal theory of the visons reduces to an Ising
model on the honeycomb lattice [Eq. (S41)] with first-
(J1) and second-nearest-neighbor (Jz) Ising interactions
(see Sec. SIIIB [47]). For the even QSL, Roychowdhury
et al. [57] demonstrated that in the presence of a third-
nearest-neighbor interaction J3 (which would arise from
the long-ranged Rydberg tails in our case), there is an
extended regime in J; 2 3 parameter space where the min-
ima of the vison spectra occur at the three inequivalent
M points in the Brillouin zone. Pairwise condensation
of these visons would then describe the transition to a
threefold-rotational-symmetry-breaking “nematic” phase
of Rydberg atoms on the kagome lattice [37, 57], charac-
terized by ordering wavevectors at 2M; 2 3. Furthermore,
in Sec. SIIIB [47], we show that for the odd QSL, the min-
ima of the vison dispersion are also consistent with the
development of nematic order by vison condensation, but
can additionally reproduce a subset of the ordering peaks
of a proximate “staggered” phase [37, 57].

Fermionic spinons.—The anyon content of the Z, QSL
also includes a fermionic spinon. In order to obtain a
theory of this € particle, we use the Abrikosov fermion
representation [59-61], in which the spin operator at
each site is fractionalized as S"Z =5,/2= (fg P f,)/2, with
fe=(fea, fe2)T being a two-component fermionic spinon
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Figure 4. (a) Mean-field spectrum of the e particle and (b) the
resultant static structure factor at §/Q2=4.0, Ry/a=1.6. The
qualitative nature of the fermionic band structure and static
structure factor is the same for all (6/Q, Ry/a) for which a
QSL solution is found.

operator, and g denoting the three Pauli matrices.

Writing H,,, in terms of these fermionic spinons
generates four-fermion terms, which we decouple into
fermion bilinears by introducing the mean-field parame-
ters th, = <fg,afl,’5>, AZ?, = (fy.ofe 5)- The expectation
values {t%, A28} then collectively define a mean-field
ansatz. The projective action [41, 48] of lattice or time-
reversal symmetries on this ansatz describes the partic-
ular QSL state of interest. Unlike systems with SU(2)
spin-rotation symmetry (for which ( fla fi5) o dap and
(fiafjB) & €ap [62]), in our ansatz, we have to allow
for hopping and pairing terms with all possible combina-
tions of a, 8 due to the lack of spin-rotation invariance
in Eq. (2). The full theory thus obtained is detailed in
Sec. SIV of the SM [47] [see Eq. (S66)]. Self-consistently
solving for {th,,AZ/Z} then yields the fermionic band
structure. As illustrated in Fig. 4(a), we observe that
the e particle is gapped too and the minima of its disper-
sion occur at the K, K’ points. To determine the experi-
mental signatures of this QSL state, we also calculate its
static structure factor in Fig. 4(b) and find that it has
broad features located at g =1" but no sharp Bragg peaks
anywhere in the extended Brillouin zone, indicating the
absence of long-range order. The distribution of the spec-
tral weight in S(q) resembles that of the bosonic theory’s
structure factor in Fig. 2(c), but is notably distinct from
the other candidates sketched in Fig. S2(a,c).

Discussion and outlook.—In this work, we have shown
how systems of Rydberg atoms arrayed on kagome or
ruby lattices can give rise to emergent Zo gauge theo-
ries with matter fields; the deconfined phase of such a
gauge theory is a Zy quantum spin liquid. We develop a
formalism to systematically characterize all three classes
of topological excitations of this Zs QSL, evaluate their
spectral properties in a parton description [Egs. (3), (4),
and (S66)], and discuss their experimental fingerprints
in static structure factors. In particular, we identify a



promising QSL candidate, labeled O, which is consis-
tent with observations of neighboring nematic and disor-
dered phases in the framework of vison/spinon conden-
sation [37]. These results bear direct relevance to recent
and ongoing experiments on Rydberg quantum simula-
tors that have opened the door to realizing and probing
highly entangled Zo QSL states. Our analysis herein of
the quasiparticle spectra and gaps should help inform the
feasibility of dynamical preparation of such QSL states
via quasiadiabatic sweeps [6, 63, 64].
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