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Polarization is a ubiquitous phenomenon in social systems. Empirical studies document sub-
stantial evidence for opinion polarization across social media, showing a typical bipolarized pattern
devising individuals into two groups with opposite opinions. While coevolving network models
have been proposed to understand polarization, existing works cannot generate a stable bipolarized
structure. Moreover, a quantitative and comprehensive theoretical framework capturing generic
mechanisms governing polarization remains unaddressed. In this paper, we discover a universal
scaling law for opinion distributions, characterized by a set of scaling exponents. These exponents
classify social systems into bipolarized and depolarized phases. We find two generic mechanisms
governing the polarization dynamics and propose a coevolving framework that counts for opinion
dynamics and network evolution simultaneously. Under a few generic assumptions on social inter-
actions, we find a stable bipolarized community structure emerges naturally from the coevolving
dynamics. Our theory analytically predicts two-phase transitions across three different polarization
phases in line with the empirical observations for the Facebook and blogosphere datasets. Our the-
ory not only accounts for the empirically observed scaling laws but also allows us to predict scaling
exponents quantitatively.

Recently published discourse around opinion polariza-
tion, a process by which the opposition of opinions in-
creases with time, has received much attention [1–4].
Empirical studies observe a typical bipolarized pattern
where individuals are divided into two groups with rad-
ically opposite opinions. For instance, the political di-
vision between liberal and conservative parties reflects
the heterogeneity in opinions regarding political orien-
tations. These different attitudes are observed on social
media [5–10], finding that the most frequently shared po-
litical opinions are aligned with a large proportion of the
liberal or conservative population, i.e., the opinion bipo-
larization. On the other hand, empirical data also show
a depolarization phase for some systems, where opinion
distribution peaks around a neutral state with a signifi-
cant variance in non-political fields [5].

Empirical studies show that the echo chamber ef-
fect underlies the opinion polarization in social networks
[6, 7, 11, 12], suggesting that like-minded users tend to
interact [5, 6, 13]. Indeed, the coexistence of polarization
of opinions and network structures implies that the in-
terplay between opinion and network dynamics plays an
essential role in polarization. While growing coevolving
models are proposed to understand mutual interactions
between opinion and network structures, these studies
did not focus specifically on opinion polarization [14–17].

More recently, a reinforced coevolving model has been
proposed to explain network polarization [18, 19]. The re-
inforcement model (RM) generates either a stable mono-
polarized phase where everyone leans towards one-sided
opinions or a global consensus phase where everyone has
the same neutral opinion. While a metastable bipolarized
pattern has been observed numerically, it only appears
temporarily and degenerates rapidly to a mono-polarized
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pattern. Moreover, its occurrence heavily relies on the
initial state.

While the partial success of the RM model hints that
polarization patterns might originate from the coevolving
dynamics, the discrepancy between the existing models
and the stable bipolarized pattern observed empirically
has a deep origin. Indeed, the exiting polarization mod-
eling framework is a variation of synchronization models,
where individuals synchronize to a single state when the
system falls into an ordered phase. To capture a bipolar-
ized structure, however, one requires a different frame-
work. Moreover, coevolving network models are infa-
mously difficult to solve due to the complicated interplay
between opinion and network structure. Hence, existing
models mostly rely on numerical simulations and quali-
tative approximations, and a quantitative model that ac-
counts for the empirically observed bipolarized pattern is
missing.

In this Letter, we report a universal scaling law char-
acterized by a set of scaling exponents for empirical opin-
ion distributions. These exponents classify social systems
into polarization and depolarization phases. To explain
this finding, we propose two ubiquitous mechanisms for
the polarization dynamics: 1) Opinion homogenization.
Individuals’ opinions are influenced by their neighbors in
a social network and tend to converge to similar views
[20–24], and 2) Homophily clustering. Social connections
evolve with time, where individuals tend to connect to
those with similar beliefs. Consequently, similar individ-
uals group together to form clusters [6–8, 11]. These two
mechanisms lead to the entanglement of network evo-
lution with opinion dynamics. Therefore, we propose a
generic coevolving framework capturing the interplay be-
tween opinion dynamics and network evolution. We find
the exact solution of the proposed modeling framework
and predict analytically the universal scaling laws ob-
served in the empirical data. We calculate the phase
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(a) Blogosphere (b) Minimal Model

FIG. 1. Polarized networks. (a) The Blogosphere network.
Colors represent political opinions, i.e., blue for liberals and
red for conservatives. (b) A social network generated by nu-
merical simulations of our model for the polarization phase.

diagrams analytically for the proposed model, predicting
three stable new phases: (i) polarization, (ii) partial po-
larization, and (iii) depolarization, where both polariza-
tion and partial polarization phases show a stable bipo-
larized pattern. To our best knowledge, we offer the first
coevolving network model that predicts a stable bipolar-
ized pattern analytically, validated by numerical simula-
tion and empirical measurements.

Experimental observations. We use two datasets to
uncover the polarization. The first dataset consists of
the 500 most shared online domains on Facebook col-
lected [5]. These domains are classified as either hard
content (FB-HC) or soft content (FB-SC). The second
dataset consists of 1,490 blogs and 19,090 references in
Blogosphere [25]. We compute the mean score of politi-
cal leanings s for each domain or blog, where s ranges
from −1 (liberal) to 1 (conservative) (see SM for de-
tails). Figure 1a depicts the Blogosphere network, sug-
gesting that this network is polarized into two opposite
communities, a phenomenon known as the echo chamber
[6, 7, 11, 12, 18].

To quantify the observed polarization, The scatter plot
in Figure 2 depicts the opinion distribution P (s) for all
three empirical datasets. We find that the opinion distri-
butions in two politics-related datasets (FB-HC and Blo-
gosphere) are U-shaped, suggesting a polarization phase.
In contrast, opinions in the FB-SC dataset are inverse U-
shape distributed, indicating a depolarization phase. To
investigate the scaling relation between the population
size and opinion extremeness, we plot P (s) as a function
of 1±s in the insets of Fig.2a-c, where 1±s measures the
opinion deviation from the most extreme ±1 ones. We
find

P (s) ∼

{
(1− s)δ+ s→ 1

(1 + s)δ− s→ −1
, (1)

satisfying power laws, where δ± characterizes the power-
law exponents when opinion s approaches ±1. The neg-
ative exponent values indicate that the population in-
creases with the extremeness of their opinions and di-
verges when the opinion score s reaches limiting cases
±1. In contrast, positive δ± exponents indicate P (s) is
peaked around 0. Therefore, the exponents δ± charac-
terize polarization, i.e., δ± < 0 and > 0 for polarized and
depolarized systems, respectively.
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FIG. 2. Empirical measures and theoretical predic-
tions. (a)-(c) The empirical (dots) and theoretical results
(green curves) of opinion distributions for FB-HC, FB-SC,
and Blogosphere. The scatter plots in the insets indicate that
empirical opinion distributions follow power laws. The solid
lines represent our theoretical prediction from our model. (d)
The empirical results and theoretical predictions of the cor-
relation between the network’s degree and opinions for the
Blogosphere. (e)-(f) Heatmaps for the empirical and theoret-
ical normalized joint-opinion distributions.

To explore the impact of the opinion’s polarization on
the network structure, we measured the average degree
k̄ as a function of the opinion s for the Blogosphere
dataset. The scatter plot in Fig. 2d shows k̄ increases
with the extremeness of opinion score s, indicating that
users who hold extreme political opinions are more likely
to be the network’s hubs. We further measured the
joint opinion distribution Q(s, s′) on each edge of the
Blogosphere network, which computes the number of
edges connected from an individual with opinion s to
another with s′. Figure 2e plots the normalized joint

opinion distribution R(s, s′) = Q(s,s′)
P (s)P (s′) , measuring

the deviations from the uncorrelated distribution [26].
We found a strong enhancement of the number of two
connecting agents with similar opinions and suppression
of the number of two connecting agents with dissimilar
opinions, indicating the existence of homophily cluster-
ing in the real-world social network (Fig.1a).

Modeling framework. To account for the empirical ob-
servations, we consider a coevolving network consisting
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of N interactive agents, each with an opinion s, varying
continuously between −1 and 1. Agents’ connection is
described by an adjacency matrix A, where the matrix
element Aij = 1 or 0 represents the agent i being con-
nected or disconnected to j. Both agents’ opinions and
the connections among them evolve in continuous time t.
Moreover, we require the opinion dynamics and network
evolution coupled together, satisfying two intrinsic mech-
anisms: 1) Opinion homogenization, that is, the change
of an agent’s opinion is influenced by the opinions of its
neighbors and tends to change to similar views. 2) Ho-
mophily clustering, that describes the social connections
being more likely established if agents hold similar views.
The two mechanisms are coupled dynamically with the
coevolution of opinions and social connections. Below we
discuss the proposed coevolving dynamics in detail.

Opinion homogenization. To model opinion homoge-
nization, we assume the opinion dynamic follows

dsi = µ(si, ~s,A)dt+ σ(si)dWt, (2)

where ~s = (s1, s2, ...sN ) represents the set of opinions
of all agents, and si is the opinion of agent i. A is the
adjacency matrix of the agents, and Wt is the standard
Wiener process. µ is the drift term that controls the
change of opinions on average, and σ is the diffusion term
that controls the variance of opinion dynamics. More-
over, we assume that the opinion drift µ depends on the
opinions of agent i and its neighbors, satisfying

µi =
∑
〈i,j〉

F (si, sj) =

N∑
j=1

AijF (si, sj), (3)

where 〈i, j〉 summing over interactions across all neigh-
bors of i [22, 23, 27–30]. The pairwise force F (si, sj)
quantifies the interaction between individuals i and j.
The opinion homogenization requires F (s, s) = 0 and
∂sF (s, s′ = s) < 0. On the other hand, the diffusion
D(s) ≡ σ(s)2/2 depends only on each agent’s own opin-
ion s. The boundness of opinion requires the vanishing
of the diffusion at the boundaries, i.e., D(s = ±1) = 0,

implying a Taylor expansion, D(s) = σ(s)2

2 =
σ2
0

2 (1−s2)+

O((1− s2)2). Solving Eq.(2) leads to the time evolution
for single-agent opinion

∂P (s; t)

∂(αt)
=− ∂

∂s

∫ 1

−1
F (s, s′)Q(s, s′; t) ds′

+
∂2

∂s2

[
D(s)P (s; t)

]
, (4)

where the integral captures the neighboring interactions,
since Q(s, s′; t) depends on the underlying network A
implicitly.

Homophily clustering. To model homophily clustering,
we assume that agents with similar opinions are more
likely to be connected. Specifically, an agent i will con-
nect to an unlinked agent j to construct a new edge with
a probability rate γ+(si, sj)/N , where si and sj are the

opinions for agents i and j, respectively. The factor 1/N
guarantees the sparsity of the network. At the same time,
an agent i will disconnect with a linked agent j with prob-
ability rate γ−(si, sj), leading to annihilating an existing
edge. That is,

dP [Aij(0→ 1)] =
γ+(si, sj)

N
dt (5a)

dP [Aij(1→ 0)] = γ−(si, sj)dt. (5b)

To capture the homophily clustering, we assume that γ±
depends on the opinions of the agent i’ and its neighbors
j. This dependency leads to the coupling of network
evolution with opinion dynamics.

However, we notice that in most social media, opin-
ion changes are much slower than network evolution. To
quantify their relative time scales, we rescale the opinion
drift F → αF and diffusion D → αD by a factor α that
characterizes the opinion update rate relative to the net-
work evolution. In terms of the power expansion of α, we
find the time evolution of the joint opinion distribution
Q(s, s′; t) satisfies

∂Q(s, s′; t)

∂t
=γ+(s, s′)P (s; t)P (s′; t)

−γ−(s, s′)Q(s, s′; t) +O(α), (6)

where O(α) term captures higher-order corrections. We
will keep our discussion below at the limit α→ 0, i.e., the
network evolves adiabatically, and O(α) will be omitted
under this adiabatic approximation.
Stationary solution. Below we will focus on the sta-

tionary solution of the proposed framework. Equa-
tion (6) leads to the stationary joint opinion distribution,

Qst(s, s
′) = γ+(s,s′)

γ−(s,s′)
Pst(s)Pst(s

′), where Pst(s) is the sta-

tionary opinion distribution. Substituting Eq. (4) leads

to
∫ 1

−1K(s, s′)Pst(s
′)ds′ = ln(D(s)Pst(s)), where the

kernel K(s, s′) ≡
∫ γ+(s,s′)F (s,s′)

γ−(s,s′)D(s) ds. When s → ±1, we

find
(∫ 1

−1 κ±(s′)Pst(s
′)ds′

)
ln(1 ∓ s) ∼ ln[(1 ∓ s)Pst(s)],

where κ±(s′) ≡ γ+(±1,s′)F (±1,s′)
γ−(±1,s′)σ2

0
. Therefore, our theory

predicts the universal scaling law Pst(s) ∼ (1 ∓ s)δ± ,

where the exponents δ± =
∫ 1

−1 κ±(s′)Pst(s
′)ds′−1, in line

with the scaling law (1) discovered in real-world networks
(see SM Analytical Solutions). This finding suggests that
the universal scaling law is rather generic for coevolving
networks and largely independent of microscopic details.
Opinion topology correlation. Equation (6) indicates

the underlying correlations between the network struc-
tures and opinions (see SM Analytical Solutions). Incor-
porating Eqs. (4–5) with Eq. (6) leads to the normalized

joint opinion distribution R(s, s′) = Q(s,s′)
P (s)P (s′) = γ+(s,s′)

γ−(s,s′)
.

Since the joint opinion distribution Q(s, s′) counts for
the number of edges connected by two agents with opin-
ions s and s′. Therefore the expected degree of an agent
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with opinion s, k̄(s) =
∫ 1

−1Q(s′|s)ds′ =
∫ 1

−1
Q(s,s′)
P (s) ds

′ =∫ 1

−1 ds′Pst(s
′) γ+(s′,s)
γ−(s′,s)

, allowing us to predict the correla-

tion between network measure, k̄, and opinion s.

Minimal Model. To compare our theory with the em-
pirical data, below we will focus on a minimal realization
of the proposed framework. To be specific, we use a lin-
ear opinion dynamics model [22, 23], F (s, s′) = λ(s′−s),
where λ is a constant controlling the opinion change rate.
We also assume the edge birth and death rates satisfy
γ±(s, s′) = r±(1 + J±ss

′), where |J±| ≤ 1 quantify the
strength of homophily clustering, that is, similar individ-
uals to establish their relationships. We find the explicit

form of the kernel K(s, s′) = g
∫ 1+J+ss

′

1+J−ss′
2(s′−s)
1−s2 ds for the

minimal model, where parameter g ≡ λ
σ2
0

r+
r−

. Here λ
σ2
0

represents the opinion homogenization rate and r+
r−

is the

birth-death ratio for network connections. The parame-
ter g integrates the interaction strengths of both opinion
and network dynamics. Together with Eqs. (4 & 6), we
solve P (s) for the minimal model (〈s〉 6= 0), finding our
predictions agree with the empirical data (Fig. 2a-c, see
SM Minimal Model). Note that the minimal model can
also generate asymmetric P (s) distribution as shown in
Fig. 2a-c. However, the average opinion 〈s〉 measured
on the empirical data is very close to zero, implying the
corresponding P (s) is well approximated by a symmet-
ric distribution. For simplicity, we will focus only on the
symmetric case (〈s〉 = 0) for the discussion below.

To explore different phases, we perform the numer-
ical simulations for various g with fixed J+ and J−.
Figure 1b demonstrates a simulated minimal model of
2, 000 nodes, showing a qualitative similarity with the
empirical network shown in Fig. 1a. Figure 3a shows
that a bipolarized U-shaped opinion distribution P (s)
emerges at a smaller g (g ≈ 0.9). By gradually increas-
ing the opinion change rate, we find that P (s) transits
from the U-shape to M-shape, indicating partial polar-
ization. For sufficiently large g values (g ≈ 2.4), P (s)
turns into a depolarized inverse U-shaped distribution.
To quantify different phases, we define an order parame-
ter smax = | arg maxs P (s)| as the most probable opinion.
We find smax = 0 for the depolarized phase (Fig. 3c),
and smax = 1 for the polarized phase (Fig. 3a). For
the partially polarized phase, smax are ranging between
0 and 1 (Fig. 3b). Figure 3d plots smax as a function of
g, indicating two phase transitions exist. The first phase
transition occurs at g∗ ≈ 1.3, when smax departs from
1, indicating that the system transits from polarization
to partial polarization. The second phase transition oc-
curs at g∗∗ ≈ 1.78 when smax vanishes, indicating the
transition between partial polarization and depolariza-
tion. Overall, decreasing g moves the system towards
polarization. Indeed, a smaller opinion homogenization
rate drives opinions far from homogenization, heading to
polarization. On the other hand, a larger birth-death ra-
tio leads to a lower chance for dissimilar agents to be con-
nected; hence, similar agents tend to cluster with their
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FIG. 3. Phase transitions. (a)-(c) The phase transition
of opinion distributions with fixed J+ = 0.7 and J− = −0.8.
These values are determined by empirical measurements. (a)
Polarization: g = 0.9; (b) Partial polarization: g = 1.5; and
(c) Depolarization: g = 2.4). (d) smax against the parameter
g. (g∗: polarization (yellow) to partial polarization (green);
and g∗∗: partial polarization to depolarization (blue)).

opinions homogenized, leading to polarization.

To explore the opinion topology correlation, we plot
predicted normalized joint opinion distribution R(s, s′) =
γ+(s,s′)
γ−(s,s′)

= r+(1+J+ss
′)

r−(1+J−ss′)
in Fig. 2f, showing two opposite

clustered domains around the bottom-left and up-right
corners, in line with the empirical observation (2e). Fig-
ure 2d depicts the analytical prediction of k̄(s), agree-
ing with the empirical measurement. Note that the em-
pirical data shows a small peak for neutral individuals,
implying that these users have expected a large degree
compared to our theory. This discrepancy might be due
to a small group of independent media that are politi-
cally neutral but attract a large amount of connectivity
from both sides. We will leave the investigation of this
phenomenon for future studies. This prediction suggests
that our model generates two highly polarized clusters
(Fig.1b), whose hubs show significant extremeness, in line
with real-world polarized networks (Fig. 1a).

Phase diagram. As our theory successfully captures
polarized and depolarized phases, one may wonder how
the modeling parameters control different phases. We fo-
cus only on symmetric cases for simplicity, i.e., 〈s〉 = 0.
As we discussed above, the exponent δ < 0 is for the po-
larized phase, whereas δ > 0 is for both partial-polarized
and depolarized phases. Therefore, the transition be-
tween polarization and partial-polarization emerges when
the exponent δ = 0, leading to g∗

−1+(J+−J−)f(J−) = 1,

where f(J−) = (1 + J−)
∫ 1

−1 ds′ s′2

(1−J2
−s
′2)
Pst(s

′).

For the transition between the partially polarized and
depolarized phases, the first derivative at the s = 0 van-
ishes, i.e., P ′(0) = 0 because of the symmetry. However,
for the M-shaped P (s) the second derivative P ′′st(0) > 0,
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FIG. 4. Phase diagram. This figure shows the phase transi-
tion of opinion distributions with parameters g and J±. The
solid lines are the exact solutions of the phase transition lines
between depolarization (blue), partial polarization (green),
and polarization (yellow). The dash lines are the analytical
approximations. The red and purple squares represent the
real data for FB-HC and Blogosphere respectively, whereas
the red triangle represents the data of FB-SC.

whereas P ′′st(0) < 0 for inverse U-shaped P (s). There-
fore, the transition occurs when the second derivative
vanishes, i.e., P ′′st(0) = 0. Substituting P ′st(0) = 0 and
P ′′st(0) = 0 into Eq. (4), we obtain g∗∗

−1+(J+−J−)〈s2〉 =
1, where 〈s2〉 is the variance of the opinion distribution.
Figure 4 plots the phase diagram predicted by our model.
The solid curves separate the domains corresponding to
different phases. We mark the empirical datasets in the
diagram based on the modeling parameters fitting from
the data. The plot shows that Blogosphere and FB-HC
are located at the polarization phase, whereas FB-SC is

located at the depolarization phase.
In conclusion, we discover a universal scaling law for

opinion distributions empirically, characterized by a set
of scaling exponents, allowing us to quantify different po-
larizing phases of the real social system. We propose a
generic framework for polarization dynamics of coevolv-
ing networks where opinion dynamics and network evolu-
tion are coupled based on two ingredients. Compared to
the existing RM model, our model predicts stable bipo-
larized phases and a depolarization phase. In particular,
our theory finds the bipolarized opinion distributions and
network structures analytically, in line with empirical ob-
servations. Moreover, our framework offers the exact so-
lution to coevolving network dynamics, which not only
counts for the observed scaling law but also predicts the
corresponding phase diagram with three different phases.

On the other hand, our analytic solution has been
found under the adiabatic approximation. We will leave
the seek of a general solution for future investigations.
Our theory provides a generic framework that can be
applied to other areas. For instance, by introducing
si = cos(θi) the framework is capable of modeling non-
linearly coupled oscillators involving background changes
[31–33]. Most importantly, our results potentially impact
the understanding of human society across disciplines in-
cluding social and political science.
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