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Many experimentally relevant systems are quasi-one-dimensional, consisting of nearly decoupled
chains. In these systems, there is a natural separation of scales between the strong intra-chain
interactions and the weak interchain coupling. When the intra-chain interactions are integrable,
weak interchain couplings play a crucial part in thermalizing the system. Here, we develop a
Boltzmann-equation formalism involving a collision integral that is asymptotically exact for any
interacting integrable system, and apply it to develop a quantitative theory of relaxation in coupled
Bose gases in the experimentally relevant Newton’s cradle setup. We find that relaxation involves
a broad spectrum of timescales. We provide evidence that the Markov process governing relaxation
at late times is gapless; thus, the approach to equilibrium is generally non-exponential, even for
spatially uniform perturbations.

The dynamics of thermalization—the approach to
equilibrium of a quantum system initialized far from
equilibrium—is a central theme in contemporary many-
body physics [1]. This dynamics is particularly rich in
one dimension, since many paradigmatic models, such
as the Hubbard, Heisenberg, and Lieb-Liniger models,
are integrable [2]. Integrable models do not thermal-
ize in the conventional sense, since they have exten-
sively many local conserved densities; rather, they ap-
proach generalized Gibbs ensembles [3–5] that can have
strikingly different properties (e.g., persistent charge and
heat currents) from the standard Gibbs ensemble. Real-
istic experiments, especially in solid-state systems such
as spin chains, never involve perfectly one-dimensional
systems; the typical situation is that of a quasi-one-
dimensional geometry of weakly coupled chains. One
does not expect the system of coupled chains to be
integrable; nevertheless, quasi-one-dimensional systems
can feature a wide separation of scales between the
intra-chain interactions—which generate the short-time
dynamics—and the interchain interactions, which break
integrability and thermalize the system. When this sepa-
ration of scales is well-developed (as in cold atoms [6, 7],
as well as solid-state magnets [8]), the short-time dynam-
ics is that of the integrable system, and at late times one
sees a crossover to thermalization driven by the inter-
chain couplings.

In the present work we address thermalization in
such weakly coupled interacting integrable chains, ini-
tialized in arbitrary (but spatially uniform) nonequi-
librium states. In this sense our work is complemen-
tary to the generalized hydrodynamics (GHD) program,
which focuses on the relaxation of initially nonuniform
states [9–16]. We study the dynamics of thermalization
via the time-evolution of the quasiparticle rapidity dis-
tribution, which is experimentally measurable through
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FIG. 1. (a) Depiction of two tubes coupled by the pertur-
bation H ′. The leading contribution to thermalization comes
from collisions among three quasiparticles, which rearranges
the rapidity distribution (sketched on the right side of the
figure). (b) Schematic for the evolution of the rapidity distri-
bution under the experimental protocol, which consists of a
Bragg pulse followed by thermalization.

time-of-flight experiments [17]. The rapidity distribu-
tion evolves according to a Boltzmann equation, with a
collision integral for which we develop an efficient, quan-
titatively accurate computational scheme. Finding such
explicit collision integrals has been one of the persistent
challenges in the study of nearly integrable models: col-
lision integrals that are similar to the one we derive were
previously proposed in the literature [18–25], but have
not been used to study relaxation from physically rele-
vant nonequilibrium initial states. (For complementary
approaches to the problem of weak integrability break-
ing see Refs. [26–32].) Here, we apply our collision inte-
gral to characterize the relaxation of coupled Bose gases
initialized in the experimentally relevant “Newton’s cra-
dle” setup [33] (Fig. 1). In an (idealized) Newton’s cra-
dle experiment, a gas is prepared in a low-temperature
equilibrium state, and is then subjected to a pulse that
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boosts the momenta of half the atoms by p and the other
half by −p. When the dynamics is not exactly inte-
grable [6], this nonequilibrium state slowly relaxes to a
higher-temperature equilibrium state (Fig. 1b).

Our main result is a quantitative description of how the
quasiparticle distribution evolves during this relaxation
process. From the quasiparticle distribution, we can also
straightforwardly compute the evolution of charge and
energy currents, and of the entire hierarchy of charges
that are strictly conserved in the integrable limit [4, 34].
For the far-from-equilibrium initial state we focus on, this
relaxation is a complex multiple-scale process that we can
only solve numerically. However, assuming the system
thermalizes, then at late times it is near equilibrium and
one can linearize the Boltzmann equation. We present
evidence that the spectrum of the resulting linear opera-
tor is gapless and spans several orders of magnitude. The
late-time approach to equilibrium is thus not governed by
a single characteristic timescale. This is true, remarkably,
even though the initial state is spatially uniform, so the
quench does not directly couple to any hydrodynamic-
scale density fluctuations.

Model—We consider an array of one-dimensional
bosonic gases (“tubes”), oriented along the x axis, each
governed by the Lieb-Liniger Hamiltonian

HLL,i =

∫
dx ψ̂†i (x)

[
− 1

2m
∂2
x + cρ̂i(x)

]
ψ̂i(x). (1)

Here, i indexes the tubes, m is the microscopic mass of
the bosons, ρ̂i(x) ≡ ψ̂†i (x)ψ̂i(x) is the density operator,
and c is a coupling constant. The tubes are coupled to
one another by density-density interactions of the form

H ′ = V0

∑
ij

∫
dxdx′Aij(|x− x′|)ρ̂i(x)ρ̂j(x

′). (2)

We will leave Aij(|x−x′|) generic for now, but we are pri-
marily interested in the case of dipole-dipole interactions,
where Aij = (1 − 3 cos2(θij))/(|x − x′|2 + |ri − rj |2)3/2.
Here, ri ≡ (yi, zi) is the position of the ith tube in the
array, and θij is the angle between the separation ri− rj
and the orientation of the dipoles (which is fixed in the
experiment by applying a magnetic field).

For simplicity we anticipate that Aij falls off fast
enough with distance between tubes that it is sufficient
to consider nearest-neighbor interactions between tubes.
Thus each tube interacts with z neighbors. With the
Newton’s cradle experiment in mind, we also assume in
what follows that the tubes have identical quasiparticle
distributions in the nonequilibrium initial state. Under
these assumptions, it suffices to consider the effects of
the integrability-breaking perturbation acting on a pair
of neighboring tubes; we thus drop the indices on the
interaction shape A(x).

Boltzmann equation for two tubes—We assume a sep-
aration of scales between the fast dynamics due to HLL

and slow dynamics due to H ′. Without loss of general-
ity we pick tube 1 as the “system” tube (whose rapidity
distribution is being measured) and tube 2 as a “bath”
tube. On timescales that are long compared with the fast
dynamics, the state of each tube can be characterized by
a generalized Gibbs ensemble [4, 35, 36], or equivalently
by its quasiparticle distribution function ρp(λ), where λ
is the “rapidity”. The rapidity labels particles in inter-
acting integrable models in an analogous way to momen-
tum in free theories. The distribution ρp(λ) evolves in
general as

∂tρp,1(λ) = τ−1Q[ρp,1, ρp,2](λ). (3)

We emphasize that the right-hand side (the so-called
“collision integral”) is a nontrivial functional of the den-
sity distributions in the two tubes. For the present, we
restrict to the case where the density distributions are
initially identical, and thus stay identical at all times
(at our level of analysis). The time scale for the evolu-
tion follows from the Fermi’s golden rule and is set by
τ−1 ≡ 16EF /(~π2) × γ2

inter, where EF is the Fermi en-
ergy of the single tube and γinter ≡ V0m/(n1D~2) is the
dimensionless coupling between the two tubes with n1D

the one-dimensional density of the gas. The full deriva-
tion of the collision integral, including the case of dif-
ferent distributions in the two tubes, is presented in the
Supplemental Material, Section 2. Here we discuss in
details the ingredients of the resulting expression.

The population at rapidity λ may change for two rea-
sons: either because a particle directly scatters into
or out of that rapidity, or indirectly due to interac-
tions. (As an example, in a finite system, changing
the rapidity of one particle alters the quantization con-
dition for all the others, via the Bethe equations.) In
the thermodynamic limit, this “backflow” effect can be
taken into account through the relation Q[ρp](λ) =∫
dµR[ρp](λ, µ)Q0[ρp](µ), where Q0 is the direct scat-

tering rate given by Fermi’s Golden Rule, and R is an
integral operator (which is purely a property of the in-
tegrable dynamics) that captures the influence of this
scattering process elsewhere in rapidity-space, see [37].
Henceforth we will drop the ρp argument, noting that
all quantities of interest are functionals of the full distri-
bution. A physical choice of Q0 must conserve particle
number in each tube, as well as total momentum and en-
ergy in the full array. In our setup, since the tubes are
identical, momentum and energy will be also conserved
on ‘average’ (in a temporal sense) in each tube.

We now turn to computing Q0. We write Q0 =∑
n,mQ

(n,m)
0 , where Q

(n,m)
0 is a scattering process in-

volving n particle-hole excitations in the system tube
and m particle-hole excitations in the bath tube. We
can write Qn,m0 (λ) so that the focus is on the n-particle-
hole excitations in the system tube. Let these be in-
dexed by {(pi, hi)}ni=1. We want to consider all possible
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distinct particle-hole combinations such that the rapid-
ity λ is equal to pi or hi for some i. The scattering
event, {(pi, hi)}ni=1, will change the system tube’s en-
ergy/momentum by (ω, k). By energy-momentum con-
servation the m−particle-hole process in the bath tube
must change by (−ω,−k). The ability of the bath tube
to support such an excitation complex is encoded in the
spectral density of the bath tube, a quantity we denote
as Sm2 (k, ω). The scattering processes in both tubes

are governed by matrix elements of the density opera-
tor (as the interaction between tubes is density-density).
We write the matrix element for the system tube as
F ρ1({pi, hi}mi=1) = 〈ρp|ρ̂1(x)|ρp; {hi} → {pi}〉. The con-
tribution of the particle-hole combination {(pi, hi)}ni=1

in the system tube to Qn,m0 is controlled by the parti-
cle and hole densities, ρp1/ρh1 and so is proportional to∏n
i=1 ρp1(hi)ρh1(pi). Putting these features together al-

lows us to write Qn,m0 as

Q
(n,m)
0 (λ) =

n

(n!)2

∫ n∏
i=1

dpidhiδ(λ− p1)A2(k) |F ρ1({pi, hi})|2 [ρp1(hi)ρh1(pi)S
m
2 (−k,−ω)− (hi ↔ pi)] . (4)

We derive this form more concretely in [38].
To make further progress with Eq. (4) we must evalu-

ate the m-particle-hole matrix elements F ρ and the m-
particle-hole contribution to the dynamic structure fac-
tor. In general, processes with any (n,m) contribute
comparably to relaxation and one must sum over these
processes, which is evidently intractable. However under
the assumption that the intertube interactions are vary-
ing smoothly with the distance the relaxation is dom-
inated by processes transferring small momenta. This
implies that higher particle-hole processes that involve
higher powers of the momentum transfer (see Appendix
A), can be neglected. Another regime dominated by few-
particle processes is the c→∞ (Tonks-Girardeau) limit
in which processes involving n−particle-holes are sup-
pressed by c−2n.

The simplest interaction process is governed by Q
(1,1)
0 ,

i.e., by two-particle scattering. However, the kinemat-
ics of one-dimensional two-body scattering is too restric-
tive to lead to thermalization; indeed, if the distributions

in the two tubes are initially the same, Q
(1,1)
0 has no

nontrivial dynamical effects. Thus, the leading processes

that do contribute are Q
(1,2)
0 and Q

(2,1)
0 : i.e., diffractive

three-body scattering processes involving two particles in
one tube and one in the other [39].

The scattering rates Q
(1,2)
0 and Q

(2,1)
0 can be evaluated

in the limit of small momentum transfer, using recently
developed expressions for the form factors F ρ(p;h) and
F ρ(p1, p2;h1, h2) above a generalized Gibbs state [40–
46]. The dynamic structure factor can also be expressed
in terms of these same form factors by means of a spec-
tral representation [47]. One of the challenges in employ-
ing form factors in computing the scattering rates and
structure factors is to make sense of the non-integrable
singularities they introduce [48–50]. In order to tackle
this problem we use the Hadamard regularization [51],
the method used earlier in computing response functions
at finite energy density as well as in the context of diffu-
sion in generalized hydrodynamics, Refs. 44, 46, 52, and

53.

Results—

We study now in details the time evolution of the sys-
tem prepared in the following initial state motivated by
the recent experiments [6]. Initially, the two tubes are
in thermal equilibrium at temperature T0 and with the
chemical potential h0. The corresponding quasiparticle
distribution is ρT0,h0(λ). We imagine now performing a
Bragg pulse effectively boosting each cloud of atoms by
±p such that ρpi(λ, 0) = (ρT0,h0

(λ+p)+ρT0,h0
(λ−p))/2.

The system then evolves according to (3). As discussed
above, for the distributions in both tubes are identical
the leading processes are (1, 2) and (2, 1). To be specific
we fix the interaction parameter c = 4 which corresponds
to a strongly correlated regime of the Lieb-Liniger model.
For the initial state we choose system at kBT = 1 and
unit density n1D = 1 and set p = 2.3. In Fig. 2 we show
the resulting time evolution and in Fig. 3(a) we compare
the initial distribution and the distribution at late time.

t [104 × ]

0.0
0.1

0.2
0.3

0.4
0.5 8 40

48

p( )

0.00
0.02
0.04
0.06
0.08
0.10
0.12

FIG. 2. Evolution of the quasiparticle distribution in one of
the tubes for the nonequilibrium protocol described in the
main text. The evolution is characterized by a quick washing
out of the two Bragg peaks followed by a relatively slower ap-
proach to the final equilibrium distribution, as further shown
in Fig. 3(a).
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FIG. 3. (a) Initial, post Bragg-pulse and final (at t = 2 × 104τ) quasiparticle distributions. The final distribution coincides
with the thermal equilibrium distribution with kBT ≈ 11.25 fixed from the energy of the post Bragg-pulse state. (b) Evolution
of the generalized chemical potentials βk(t) determining the ensemble of the gas as a function of time. We consider truncated
GGE of ultra-local charges with first 4 even charges. The dashed lines are the equilibrium values. In the inset we show that
the thermalization rates for different chemical potentials are different. (c) The eigenvalues of the dimensionless linearized and

truncated evolution operator Q̄
(1,2)
0 for the thermal state approached by nonequilibrium evolution and for different values of

the truncation order n. To simplify the interpretation, while evaluating Q̄
(1,2)
0 , we work in the large c limit, where the dressings

are subleading. All the eigenvalues are positive and the smallest and largest eigenvalues differ by few orders of magnitude. The
smallest value monotonically decrease upon increasing the truncation order n and conjecturally approaches zero.

This clearly shows the thermalization with the thermal
distribution fixed by the particle density and the energy
right after the Bragg pulse. Additionally the thermaliza-

tion process can be witnessed be observing the diagonal
entropy production [54] as we discuss in more details in
the Supplementary Material, Section S3).

The instantaneous states of the system can be de-
scribed by the generalized Gibbs ensemble (GGE). The
GGE involves, beside particle number and total energy,
also all other local conserved charges Qk present in un-
coupled Lieb-Liniger model. The GGE density matrix
takes then the form ρ̂ ∼ exp(−

∑
k βkQk). The distri-

bution ρp(λ) is in one-to-one correspondence with the
chemical potentials βk (see Appendix B). The dynamics
of ρp(λ) can be then translated in the time dependence
of the chemical potentials βk(t). This is a convenient
way to explore thermalization: in the thermal state only
β0 and β2 are not zero, so all other βn(t) should decay
to zero. The initial distribution is an even function of
the rapidity and the time evolution does not modify that
and therefore only even chemical potentials are poten-
tially non-zero. In Fig. 3(b) we plot first few chemical
potentials. We observe that βk(t) for k > 2 approach at
large times zero signalling again the thermalization. In
the inset we consider (βk(t)−βth

k ) for large times and nor-
malized by the values at specific time t∗ such that each
line starts at 1. This shows that the system does not
display a single timescale for thermalization. Instead the
thermalization rate depends on the generalized chemical
potential considered with the one corresponding to the
particle number and energy evolving the slowest.

At very late times, we can assume the system is near
a thermal state, allowing us to linearize the Boltzmann
equation about the thermal state. The process of ther-

malization is then determined by the spectrum of the
resulting linear operator Q0 [55]. This operator further

decomposes into contributions Q
(n,m)
0 analogously to the

full dynamics. The two leading processes (1, 2) and (2, 1)

lead then to a symmetric operator Q̄
(1,2)
0 = Q

(1,2)
0 +Q

(2,1)
0

whose spectrum we now analyse.

The spectrum of this operator has three zero modes,
corresponding to energy, particle number, and momen-
tum conservation. The rate of approach to the steady
state is set by the smallest-magnitude nonzero eigenvalue.
To learn about its spectrum we truncate the infinite-

dimensional operator Q̄
(1,2)
0 to a finite-dimensional space

spanned by the lowest ultra local conserved charges not
contained in its kernel. The spectrum of this truncated
operator is plotted in Fig. 3(c) as a function of the trun-
cation order. We find that the magnitude of the low-
est nonzero eigenvalue rapidly decreases with increasing
truncation order. Our numerical results suggest (though
we cannot prove) that the operator is gapless: thus, there
is a spectrum of relaxation times going all the way out
to infinity, and the approach to the steady state is non-
exponential. This feature is unexpected: usually, power-
law relaxation in nonintegrable systems is associated with
the hydrodynamics of long-wavelength density fluctua-
tions, but the initial states we consider are translation-
invariant and do not have such fluctuations. Understand-
ing the origin of this gapless spectrum—and whether it
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is generic—is an interesting question for future work.
Summary—In this work we addressed a central chal-

lenge in the study of nearly integrable systems: we de-
veloped a Boltzmann equation with a microscopically de-
rived collision integral, to describe the relaxation of the
system to equilibrium. This Boltzmann equation is quan-
titatively accurate for perturbations that fall off slowly
in space, e.g., dipolar interactions between integrable
chains. This Boltzmann equation applies to arbitrary
initial states, though for simplicity we assumed transla-
tion invariance. Our main result is that relaxation from
the Newton’s cradle setup is a process that involves many
different timescales: indeed, our numerical results on the
linearized Boltzmann equation suggest that relaxation is
non-exponential even at the latest times. An important
future direction would be to extend our results to spa-
tially inhomogeneous initial states and systems confined
in harmonic traps: this would involve combining our
Boltzmann equation (applied locally) with the nontriv-
ial evolution of the quasiparticle distributions under gen-
eralized hydrodynamics, including space-time inhomo-
geneities [56]. In experimental setups the gas is confined
in a 3D trap. This leads to a new integrability breaking
perturbation through virtual excitations into higher ra-
dial modes [27]. In the case considered here where the dy-
namics are dominated by low momenta particle-hole exci-
tations, virtual excitations involving higher radial modes
are suppressed by a high power of momentum [27] and
so presumably are subdominant. Nonetheless, it would
be valuable to understand the effects of such integrabil-
ity breaking on dynamics in more general scenarios. We
are also interested in applying the formalism developed
herein to the problem of thermalization in spin chain ma-
terials [8] including rare earth variants [57–59] placed out
of equilibrium and probed by neutron and resonant in-
elastic x-ray scattering.
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Appendix A—
In this appendix we analyze the dependence of the scat-

tering integral on the momentum k transferred between
the tubes. To this end, the integration over (pi, hi) in (4)
can be transformed into an integration over (ki, ωi) where

ki = k(pi)− k(hi), ωi = ω(pi)− ω(hi). (5)

The Jacobian of the J transformation is

J−1 =

n∏
j=1

k′(pi)k
′(hi)|veff(pi)− veff(hi)|. (6)

We assume that in the small momentum limit the rele-
vant excitations take the form of small particle-hole ex-

citations, pi ∼ hi. For small particle-hole excitations, we
have that J ∼

∏n
i=1 |ki|−1. Therefore each integration

over ki and ωi, including the presence of the Jacobian,
gives a factor ki (we assume the energy is linear in ki).
The Dirac δ-function reduces the number of integrals by
one and effectively decreases the order in k by 1. There-
fore, the phase space of the excitations scales like kn−1.

We use now that the the form-factors are, in the lead-
ing order, momentum independent and that for ω ∼ k,
Sm(k, ω) ∼ |k|m−2 [46]. Finally, because ρp1(hi)ρh1(pi)−
(hi ↔ pi) ∼ k, there is an additional power of k coming
from the particle-hole distributions. Collecting all the

factors we find Q
(n,m)
0 ∼ kn+m−2.

Appendix B—
To read off the chemical potentials βk from a given dis-

tribution ρp(λ) we invert the usual procedure of comput-
ing the distribution from the knowledge of the chemical
potentials [35]. In practice we first compute ρtot(λ) from
the defining integral equation [60],

ρtot(λ) =
1

2π
+

∫
dµT (λ− µ)ρp(µ), T (λ) =

c

π

1

λ2 + c2
.

(7)
This gives us an access to the filling function n(λ) =
ρp(λ)/ρtot(λ). The filling function is expressed through
the pseudo-energy ε(λ) as n(λ) = [1 + exp(ε(λ))]−1. The
pseudo-energy itself is related to the bare pseudo-energy
ε0(λ) through the integral relation,

ε(λ) = ε0(λ)−
∫

dµT (λ− µ) log
(

1 + e−ε(µ)
)
. (8)

Finally, the bare pseudo-energy is expressed through the
chemical potentials as ε0(λ) =

∑
k βkλ

k, where λk is the
single particle contribution to the charge Qk, namely

Qk =

∫
dλ λkρp(λ). (9)
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