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Armchair graphene nanoribbons are a highly promising class of semiconductors for all-carbon
nanocircuitry. Here, we present a new perspective on their electronic structure from simple model
Hamiltonians and ab initio calculations. We focus on a specific set of nanoribbons of width n = 3p+2,
where n is the number of carbon atoms across the nanoribbon axis and p is a positive integer. We
demonstrate that the energy-gap opening in these nanoribbons originates from the breaking of
a previously unidentified hidden symmetry by long-ranged hopping of π-electrons and structural
distortions occurring at the edges. This hidden symmetry can be restored or manipulated through
the application of in-plane lattice strain, which enables continuous energy-gap tuning, the emergence
of Dirac points at the Fermi level, and topological quantum phase transitions. Our work establishes
an original interpretation of the semiconducting character of armchair graphene nanoribbons and
offers guidelines for rationally designing their electronic structure.

Introduction. Graphene nanoribbons (GNRs) — few-
atom wide strips of sp2-bonded carbon atoms — are
prime candidates for post-silicon electronics [1, 2] owing
to the combination a sizable energy gap [3–5], intrinsic
high carrier mobility [6], long mean free path [7], and
peculiar field effects [8–10]. GNRs can be fabricated in
an atom-by-atom fashion by bottom-up on-surface syn-
thesis [11, 12], resulting in a wide spectrum of atomically
precise edges [13] and more complex structures [14–17].
Of particular interest for next-generation logic electron-
ics are armchair graphene nanoribbons (AGNRs) [13, 18]
and related one-dimensional heterojunctions [19–22] be-
cause of their transferability onto insulating substrates
[23], fabrication scalability [24], and width-controllable
energy gaps [5, 25, 26]. Integration of AGNRs into ex-
perimental devices has led to the realization of short-
channel field-effect transistors operating at room tem-
perature that exhibit high on-to-off current ratios and
on-currents at finite voltages [20, 27, 28].

Previously, it has been shown that the opening of an
energy gap in AGNRs can be explained either by struc-
tural distortions occurring at the edges [8] or by long-
range hopping interactions between π-electrons [29]. In
this Letter, we provide a fresh understanding of the elec-
tronic structure of AGNRs by demonstrating that their
energy-gap opening originates from the breaking of a pre-
viously overlooked hidden symmetry. This is in contrast
to zigzag-edged nanoribbons, where the energy-gap open-
ing is driven by electron-electron interactions [26, 30, 31].
We show that this hidden symmetry can be manipu-
lated by means of lattice strain and used to enforce Dirac
points at the Fermi level or cause topological quantum
phase transitions. Through these insights, we formulate
guidelines to engineer the electronic properties of arm-
chair graphene nanoribbons.

Origin of energy gaps in AGNRs. To elucidate the
electronic structure of AGNRs, we rely on the tight-
binding Hamiltonian for the pz-electrons [32],

Ĥ =

∑
〈i,j〉

t1 +
∑
〈〈i,j〉〉

t2 +
∑
〈〈〈i,j〉〉〉

t3

 (ĉ†i ĉj + h.c.), (1)

where t1 = −2.88 eV, t2 = 0.22 eV, and t3 = −0.25 eV
are the first, second, and third nearest-neighbor hopping
interactions, respectively, as illustrated in Fig. 1(a). Im-
portantly, the first nearest-neighbor hopping interactions
at the edges of the nanoribbon are smaller than those
in the inner region by ∆t1 = −0.20 eV because of the
shortening of the interatomic distance between carbon
atoms at the edges by ∼4% as a result of a lattice relax-
ation [26]. We obtained the amplitudes of the hopping
parameters through Wannierization of the ab initio band
structure, as described in the Supplemental Material [33]
(Supplemental Note 1). This ab initio-parameterized
tight-binding Hamiltonian allows us to effectively disen-
tangle the contribution of each hopping interaction to the
resulting electronic structure.

For completeness, in Fig. 1(b,c) we start by recalling
the dependence of the energy gaps of AGNRs, Eg, on
their width, which is quantified by the number of car-
bon atoms across the nanoribbon axis, n. Nanoribbons
can be grouped according to their width, depending on
whether n = 3p, 3p+1, or 3p+2, where p is a positive in-
teger [26]. First, we consider only nearest-neighbor hop-
ping interactions and ignore the shortening of the bond
lengths at the edges of the nanoribbon; see Fig. 1(b).
For n = 3p + 2, AGNRs are gapless and possess a zero-
energy Dirac point, while for n = 3p or n = 3p + 1 they
exhibit a direct energy gap located at the center of the
Brillouin zone, the magnitude of which scales inversely
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FIG. 1. (a) Crystal structure of armchair graphene nanoribbons (AGNRs) with n carbon atoms in the lateral direction, along
with the isomorphic transformation at the center of the Brillouin zone, Γ, resulting in a finite-size auxiliary model. Also
illustrated are the first, second, and third nearest-neighbor hopping parameters t1, t2, and t3, respectively, as well as the change
of the first-nearest neighbor hopping parameter at the edges of the nanoribbon, ∆t1 due to a structural distortion. Evolution
of the energy gap, Eg, of nanoribbons of increasing width n obtained using the tight-binding Hamiltonian in Eq. (1) when (b)
t2, t3, and ∆t1 are ignored, and (c) t2, t3, and ∆t1 are included. The insets show the band structures in the vicinity of the Γ
point for the representative width n = 8. (d) Contribution of t3 and ∆t1 to Eg of AGNRs with width n = 3p+ 2.

with the width. Next, we account for both the farther
nearest-neighbor hopping interactions, t2 and t3, and the
shortening of the bond lengths at the edges; see Fig. 1(c).
A width-dependent energy gap opens in AGNRs with
n = 3p + 2 too, in agreement with earlier theoretical
works [26, 29]. In Fig. 1(d), we assess the relative contri-
bution of these two mechanisms to the energy gap of AG-
NRs, as further detailed in Supplemental Material [33]
(Supplemental Notes 2–3). Our analysis reveals that the
effect of long-range hopping interactions and structural
distortions at the edges are comparable in determining
the magnitude of the energy gap, with the contribution
from including t3 exceeding that from accounting for ∆t1
by ∼20%. Overall, this observation points to a distinct
nature of the semiconducting state in AGNRs of width
n = 3p+ 2 compared to n = 3p or n = 3p+ 1.

To explain the origin of the energy-gap opening in
nanoribbons with n = 3p + 2, we initially consider the
nearest-neighbor tight-binding Hamiltonian with ∆t1 =
t2 = t3 = 0 along with with an isomorphic transfor-
mation from the extended nanoribbon to the auxiliary,
finite-size model shown in Fig. 1(a), which features the
same energy spectrum of the corresponding AGNR at
the center of the Brillouin zone [26]. For the illustrative
case of n = 8 (p = 2), the energy spectrum of the auxil-
iary model is given in Fig. 2(a). The pair of zero-energy
degenerate levels corresponds to the Dirac point in the
band structure of the equivalent AGNR.

The presence of this double degeneracy is surprising
because it is not enforced by the rectangular point sym-
metry group D2h of the auxiliary model, which has only
non-degenerate irreducible representations. These degen-
erate zero-energy modes, therefore, must arise from an
additional, hidden symmetry. The most famous exam-

ple of such a hidden symmetry is the degeneracy of the
energy levels of the hydrogen atom with respect to the
orbital angular momentum, associated with the Laplace-
Runge-Lenz vector [37]. To reveal the hidden symmetry
associated with the auxiliary model, we solve analyti-
cally its nearest-neighbor tight-binding Hamiltonian [see
Supplemental Material [33] (Supplemental Note 4) for
details], deriving energy levels and states

Emxmy
= 2t1

[
cos
(πmx

3

)
+ cos

(
πmy

n+ 1

)]
, (2)

ψmxmy (xi, yi) =
2√

3(n+ 1)
sin
(πmxxi

3

)
sin

(
πmyyi
n+ 1

)
,

(3)
where mx = 1, 2 and my = 1, 2, . . . , n are the quantum
numbers that label the states while xi and yi are the
actual Cartesian coordinates of the i-th atom of the aux-
iliary model.

These states ψmxmy
are identical to the continuum

wavefunctions of the two-dimensional quantum box of
dimensions 3 × (n + 1), mapped onto the atoms of
the auxiliary model. Notably, the rectangular quan-
tum box possesses a hidden symmetry associated with
the four-fold rotation around one of the corners of the
box, Ĉ4ψ(x, y) = ψ(y,−x) [51]. This symmetry enforces
the seemingly accidental degeneracy of pairs of states
(mx,my) and (m′x,m

′
y) that transform into each other

as ψmxmy
= −Ĉ4ψm′

xm
′
y
. Such pairs are determined by

the conditions

m′x =
3

n+ 1
my, m′y =

n+ 1

3
mx. (4)

Since mx only assumes values 1 and 2, the ratio (n+1)/3
must be an integer and we naturally obtain the condition



3

B2gB3g B2gB3g

a b c

FIG. 2. (a) Energy spectrum at the Γ point of an AGNR
with n = 8, as obtained from the tight-binding Hamiltonian
ignoring long-range hopping interactions and the structural
distortion at the edges of the nanoribbon (t2 = t3 = ∆t1 = 0).
(b) Wavefunctions corresponding to the pair of zero-energy
degenerate levels |ψ〉 and |φ〉 of the auxiliary model with n =
8, as obtained through the tight-binding Hamiltonian with
t2 = t3 = ∆t1 = 0; red and blue colors indicate opposite signs
of the wavefunction. (c) Same as panel (b), but including
long-range hopping interactions, t2 and t3, and the structural
distortion occurring at the edges of the nanoribbon, ∆t1, in
the tight-binding Hamiltonian.

n = 3p+ 2, yielding

m′x =
my

p+ 1
, m′y = (p+ 1)mx. (5)

For any n, there is only one pair of states that satisfies
these conditions: (mx,my) = (1, 2p+ 2) and (m′x,m

′
y) =

(2, p + 1). Importantly, the electron-hole symmetry fol-
lowing from the nearest-neighbor tight-binding Hamilto-
nian requires that this double degeneracy occurs at the
Fermi level, hence explaining the vanishing energy gap
at this level of theory. Note, however, that the hidden
symmetry is only relevant at the Γ point, and that the
AGNRs are gapped throughout the rest of the Brillouin
zone.

To further understand the effect of the hidden sym-
metry Ĉ4 on the electronic structure, we examine the
wavefunctions of the two degenerate states, |ψ〉 and |φ〉,
illustrated in Fig. 2(b). As can be seen in the figure,
these wavefunctions are strictly localized in regions of
square symmetry that are separated by nodal lines (sites
denoted by empty circles). Even though |ψ〉 and |φ〉 be-
long to the irreducible representations B3g and B2g of
the D2h group, the wavefunction in each square region is
reminiscent of a doubly degenerate irreducible represen-
tation E2g of D4h, which is the point symmetry group of
the square molecule cyclobutadiene (C4H4), arguably the
simplest π-electron model system hosting zero-energy de-
generate levels. And it is indeed the case that the wave-

functions of these degenerate states |ψ〉 and |φ〉 trans-
form into each other through a hidden four-fold rota-
tional symmetry, as demonstrated in Supplemental Ma-
terial [33] (Supplemental Note 5); furthermore, in Sup-
plemental Material [33] (Supplemental Note 6) we show
and discuss the full set of wavefunctions of the auxiliary
model.

The origin of the degeneracy in the energy spectrum of
the ANGRs with n = 3p+2, therefore, traces back to the
presence of a hidden four-fold rotational symmetry Ĉ4,
that is, a symmetry operation of the electronic states
that is not inherent to the symmetry of the crystal struc-
ture. This hidden symmetry enforces the peculiar square-
shaped localization pattern of electrons, which only AG-
NRs of the n = 3p+ 2 class can accommodate according
to our analysis.

The energy-gap opening at the center of the Brillouin
zone arises as a consequence of long-range hopping inter-
actions between π-electrons and structural distortions at
the edges of the nanoribbon. Both mechanisms are op-
erative in deforming the square-shaped localization pat-
tern of the zero-energy states, as illustrated in Fig. 2(c),
thus breaking the hidden symmetry. Among the long-
range hopping interactions, only t3 is effective in lifting
the hidden symmetry through the effective shortening of
the longitudinal bonds in the auxiliary model, as shown
in Fig. 1(a). The second nearest-neighbor hopping t2 is
ineffective to this purpose as, by acting along the diagonal
of the square, it preserves the four-fold rotation. While
the energy gap within each square-shaped fragment is
determined only by t3 and ∆t1, the overall energy gap
decreases with the width of the nanoribbon because the
square fragments are coupled through t2 and t3.

Strain engineering of AGNRs. Having established the
origin of the semiconducting state in AGNRs of width
n = 3p + 2, we next devise strategies to engineer their
electronic structure. This is accomplished by exploit-
ing the interplay between the spatial and hidden sym-
metries through lattice deformations. As illustrated in
Fig. 3(a), tensile strain exerted along the nanoribbon
axis decreases the longitudinal hopping interactions in
the auxiliary model from t1 + t3 to t‖ ≈ (t1 + t3)(1−γε),
where γ = 2.0 is the spatial decay constant of the hop-
ping integrals and ε is the relative elongation. Due to the
Poisson effect, such an elongation induces a concurrent
compression of −νε in the perpendicular direction, where
ν = 0.2 is the Poisson ratio [38]. This, in turn, leads to
an increase of the lateral hopping interactions from t1 to
t⊥ ≈ t1(1 + γνε).

In Fig. 3(b), we show that a full control over the en-
ergy gap of AGNRs can be achieved by modulating the
ratio between t‖ and t⊥ via lattice strain. For each n,
three regimes can be distinguished: (i) t‖ > t⊥, where
Eg decreases linearly, (ii) t‖ = t⊥, occurring at a critical
strain ε0, where the hidden symmetry is restored, Eg is
quenched, and Dirac points develop at the Fermi level,
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FIG. 3. (a) Illustration of the lattice strain exerted on the auxiliary model, resulting in the elongation ε in the periodic direction
and compression −νε in the transverse direction, where ν is the Poisson ratio. (b) Evolution of the energy gap, Eg, of AGNRs
with n = 3p + 2 as a function of applied lattice strain, ε. (c) Evolution of the critical value of strain required to close the
energy gap, ε0, as a function of p; orange and red shaded areas denote trivial and topological insulating phases, respectively.
(d) Energy spectrum of a finite-size AGNR with n = 8 and length 50 nm as a function of ε. (e) Electron density of one of the
two end states for increasing values of strain, visualized along the nanoribbon x-axis; the inset shows the decay length of the
end states, ∆, as a function of the applied strain.

and (iii) t‖ < t⊥, where the energy gap increases linearly.
Similarly to the energy gap, the critical strain, ε0, follows
an approximate inverse dependence on the nanoribbon
width, w, as

ε0(w) =
α

w + δw
, (6)

where α = 2.7%·nm and δw = 0.2 nm, as extracted from
the fitting given in Fig. 3(c). Earlier theoretical works
predicted an analogous strain-dependence of the energy
gaps of AGNRs [39, 40], although the origin of these ob-
servations remained poorly understood. Our results pro-
vide an explanation to these otherwise elusive effects by
connecting them to a hidden symmetry in the electronic
structure of the nanoribbons.

Finally, to assess how the observed evolution of the en-
ergy gap as a function of strain affects the band topology
of AGNRs, we determine the topological invariant, Z2,
as [41]

(−1)Z2 =
∏
i

δi, (7)

where δi = ±1 is the parity of the ith band with re-
spect to reflection across the nanoribbon width (x→ −x,
where x is the periodic direction), with the product taken

over all occupied bands. According to this definition, an
even (odd) number of antisymmetric valence states yields
Z2 = 0 (Z2 = 1), denoting a trivial (non-trivial) band
topology. For unstrained AGNRs, (−1)Z2 = (−1)n, so
that the topology is strictly defined by the width, i.e.,
nanoribbons with an even (odd) n are topologically triv-
ial (non-trivial) [41, 42].

Fig. 3(c) shows the dependence of Z2 on the strength
of the lattice deformation. The energy-gap closing and
subsequent reopening driven by strain is accompanied by
a change in Z2 between 0 and 1. This signals that topo-
logically trivial nanoribbons become non-trivial, and vice
versa. The observed topological quantum phase transi-
tion stems from the fact that the two states that form
the band edges [cf. Fig. 2(c)] have opposite parities with
respect to reflection across the width of the nanoribbon.
When the strain is strong enough to exchange the energy
ordering of these two bands, the total parity of the occu-
pied bands flips and so does the topological invariant.

We further analyze the emergence of the topological
phase transition by considering a finite-length nanorib-
bon. In Fig. 3(d), we present the effect of lattice strain
on the energy spectrum of a representative topologically
trivial finite-size ANGR of width n = 8 and length of
50 nm. The application of strain continuously reduces the
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energy gap, which eventually vanishes at the critical value
ε0 = 2.5 %, giving rise to a pair of zero-energy degener-
ate states. These are topologically protected end states
which, as shown in Fig. 3(e), selectively reside at the
nanoribbon ends and are the hallmark of one-dimensional
topological insulators [14, 17, 43]. Their electron density
decays exponentially into the nanoribbon, ρ(x) ∝ e−x/∆,
where ∆ is the decay length. By fitting, we obtain that
the decay length of these end states depends on strain
according to the relation

∆ =
∆0

|ε− ε0|
, (8)

where ∆0 = 5.4%· nm. Such end states can be ex-
perimentally probed through scanning tunneling spec-
troscopy [44].

Summary and conclusions. In summary, we have
demonstrated that the electronic structure of armchair
graphene nanoribbons of width n = 3p + 2 is domi-
nated by a previously unidentified hidden symmetry. The
energy-gap opening originates from the hidden-symmetry
breaking induced by long-range hopping interactions be-
tween π-electrons and structural distortions occurring
at the edges of the nanoribbon. The identification of
this hidden symmetry enables the engineering of the
properties of graphene nanoribbons through lattice de-
formations, which can give rise to Dirac points at the
Fermi level, tunable energy gaps, and topological quan-
tum phase transitions. To conclude, our findings present
a novel interpretation of the semiconducting character of
armchair graphene nanoribbons and provide means for
the precise control of their functionalities.
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B 104, 245402 (2021).
[43] D. J. Rizzo, J. Jiang, D. Joshi, G. Veber, C. Bronner,

R. A. Durr, P. H. Jacobse, T. Cao, A. Kalayjian, H. Ro-
driguez, P. Butler, T. Chen, S. G. Louie, F. R. Fischer,
and M. F. Crommie, ACS Nano 15, 20633 (2021).

[44] J. Lawrence, P. Brandimarte, A. Berdonces-Layunta,
M. S. G. Mohammed, A. Grewal, C. C. Leon, D. Sánchez-

Portal, and D. G. de Oteyza, ACS Nano 14, 4499 (2020).
[45] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car,

C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococ-
cioni, I. Dabo, A. D. Corso, S. de Gironcoli, S. Fabris,
G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis,
A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari,
F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello,
L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P.
Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcov-
itch, Journal of Physics: Condensed Matter 21, 395502
(2009).

[46] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau,
M. B. Nardelli, M. Calandra, R. Car, C. Cavazzoni,
D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo,
A. D. Corso, S. de Gironcoli, P. Delugas, R. A. DiStasio,
A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer,
U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawa-

mura, H.-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri,
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