ars CHGRUS

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Pair Density Wave Order from Electron Repulsion
Yi-Ming Wu, P. A. Nosov, Aavishkar A. Patel, and S. Raghu

Phys. Rev. Lett. 130, 026001 — Published 13 January 2023
DOI: 10.1103/PhysRevLett.130.026001


https://dx.doi.org/10.1103/PhysRevLett.130.026001

Pair density wave order from electron repulsion

Yi-Ming Wu,! P. A. Nosov,! Aavishkar A. Patel,> and S. Raghu'

LStanford Institute for Theoretical Physics, Stanford University, Stanford, California 94305, USA
2 Center for Computational Quantum Physics, Flatiron Institute, New York NY 10010, USA

A pair density wave (PDW) is a superconductor whose order parameter is a periodic function of
space, without an accompanying spatially-uniform component. Since PDWs are not the outcome of a
weak-coupling instability of a Fermi liquid, a generic pairing mechanism for PDW order has remained
elusive. We describe and solve models having robust PDW phases. To access the intermediate
coupling limit, we invoke large N limits of Fermi liquids with repulsive BCS interactions that admit
saddle point solutions. We show that the requirements for long range PDW order are that the
repulsive BCS couplings must be non-monotonic in space and that their strength must exceed a

threshold value. We obtain a phase diagram with both finite temperature transitions to PDW
order, and a T' = 0 quantum critical point, where non-Fermi liquid behavior occurs.

Introduction. A pair density wave (PDW) is a rare
and exotic superconductor in which pairs of electrons
condense with non-zero center of mass momentum]1].
Similar phases of matter were conceived decades ago by
Fulde, Ferrel, Larkin and Ovchinnikov (FFLO), in the
context of spin-polarized superconductivity[2-7]. In ad-
dition to exhibiting the usual properties of superconduc-
tors, PDWs break translation symmetry and are there-
fore accompanied by charge modulation. PDW order
is believed to occur in a variety of correlated electron
materials[8-18], in cold atom systems[19-21]. More re-
cently, they have been observed in the Iron based su-
perconductor EuRbFeyAss[22], the heavy fermion su-
perconductor UTey[23], as well as the Kagome metal
CsV3Sbs[24]. In the absence of fine-tuning (e.g. perfectly
nested Fermi surfaces in the particle-particle channel[25—
30]), PDWs do not stem from a weak-coupling instability
of a Fermi liquid, and robust mechanisms of PDW for-
mation have therefore remained elusive, despite intense
efforts[14, 31-40] .

It is easy to see why PDW order requires intermediate
coupling. In a clean Fermi liquid with inversion and/or
time-reversal symmetry, the static pair susceptibility is
a positive-definite quantity that diverges logarithmically
only at zero center of mass momentum g = 0, reflecting
the celebrated BCS instability. Away from q = 0, the
logarithmic divergence is cut off, and pairing with q # 0
requires a finite interaction strength. Therefore, many
proposed mechanisms for FFLO superconductivity have
relied on shifting the large pair susceptibility away from
q = 0, say by the application of a zeeman field[2, 3], or,
say, by considering the effects of Rashba spin-orbit ef-
fects on odd parity superconductivity[41]. By contrast,
we wish to ask whether there can be an intrinsic mech-
anism for PDW order, which requires only the existence
of sizeable interactions.

In this letter, we study various models of Fermi lig-
uids in the presence of repulsive BCS interactions. We
solve such theories beyond the weak-coupling regime by
appealing to a large N limit whose saddle point corre-
sponds to a self-consistent set of solutions for the prop-
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FIG. 1. Phase diagram obtained from the large-IN model. At
T = 0, there is a QCP separating the PDW phase and the
normal metallic state. The PDW transition temperature 7.
scales linear in g in strong coupling limit. Above the QCP,
fluctuation of PDW gives rise to NFL behavior.

agators of the theory. From these solutions, we deduce
the existence of both finite temperature continuous tran-
sitions to PDW order, as well as a quantum critical point
(QCP) at T = 0 separating a Fermi liquid metal from a
PDW. Our analysis leads to robust pairing mechanisms
in d > 1 of PDW order in a variety of continuum and
lattice systems. Despite such robustness, we find that
PDW order emerges from physically reasonable micro-
scopic models only under special circumstances, which
we precisely outline below. This perhaps accounts in part
for why PDW order is so rare in real materials.

Model and method of solution. We will study the fate
of a Fermi liquid subject to a finite repulsive singlet BCS
interaction:

Hpoir = Z Vijb;rbj, b; = ¢; ¢ty (1)
ij

In a translationally invariant system, V;; = V(r; — 7;),
and the interaction above can equivalently be expressed

in momentum space as Hpair = >, V(q)bbqg.
We decouple the above interaction using an auxiliary
field ¢, which corresponds to a charge 2e pair field. The
bare euclidean Lagrangian density then consists of the



metal, the pair fields, and a Yukawa coupling between
them: £ =Ly + Ly + L4, where
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x = (x,7), n = 1(4) corresponds to attractive (repulsive)
BCS couplings parametrized by a dimensionless coupling
g (for the repulsive case, see [42] for details), and Gy, Do
are respectively the bare fermion and boson propagators
in the decoupled limit g = 0 (i.e. Dy is proportional to
the Fourier transform of the inverse [V (q)]™1).

The theory above can be solved for arbitrary g by con-
sidering a formal extension to large N limit where the
fermion and boson fields are promoted to N component
vectors that transform in the fundamental representation
of a global SU(N) flavor symmetry group. The coupling
between the fields is promoted to an all-to-all random
Yukawa coupling in the space of flavors:

Ly =n Y (T (@) (@)0) (@)
kmt . (3)
+gkmé wjm(x)wlti(m)@(xo )

N

where the quenched random Yukawa couplings are spa-
tially independent, and are chosen from a Gaussian uni-
tary ensemble with variance grmegy,,, p» = G261k Ot Oper
and with zero average. The global SU(N) symmetry is
thus only preserved on average. In terms of the original
fermionic operators, this extension corresponds to the in-
teraction of the form

Gkme
Hpair = Z Vij szib@, bei = Z N ChidCmit- 4)
ij ¢ km

Using by now standard saddle point methods[43-47],
the exact solution of the large N theory consists of self-

consistent propagators, G, D with associated self-energies
NI

S(k) = —g*> sen[V(q)]G(—k + q)D(q),

(q) = —g*sgn[V(q)] Y _ G(k)G(~k + q),
k

_ —1 _ —1
G(k) = [Gg' (k) + (k)] , D(a) = [Dg ' (q) — (q)]
Here, k = (k,iw,) and ¢ = (q,iQ,,), where w,(Q,,) are
fermion(boson) Matsubara frequencies. The sign func-
tion sgn[V'(q)] originates from the factor 7 introduced in
Eq.(2). From the exact propagators G, D, we extract all
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FIG. 2. D™!(q) in the zero temperature limit obtained from
Eq.(6). Here we set ¢ /r = 0.5, v/r = 0.1, and the momentum
is measured in units of 4wp /vF.

the salient physics, to obtain the schematic phase dia-
gram in Fig. 1. For instance, to identify the finite tem-
perature PDW transitions shown in Fig. 1, we need only
consider the static bosonic propagator D(q). The effec-
tive Ginzburg-Landau theory for the fields ¢ will have a
quadratic term whose coefficient is given by D~1(q). To
study the manner in which the order parameter grows
below the PDW transition, we again study the static
bosonic propagators but now with the inclusion of non-
linear effects stemming from a non-zero vacuum expecta-
tion value of ¢. Finally, we will describe the PDW QCP
and find the non-Fermi liquid behavior for the fermions.

Fluctuating PDW order. We first show that when the
interaction V(r) is monotonic, e.g. V(r) ~ e "/¢, the
PDW order is absent for any g. The Fourier transform
V(q) defines the bare inverse boson propagator, which
is purely static, and takes an Ornstein-Zernike form:
Do_l(q) = 7+ c2¢?, with » > 0. To see why the theory
fails to host long range PDW order, consider the limit
q/2krp < 1, in which the saddle point solution for the
exact static propagator D at T' = 0 can be analytically
obtained:

4
D1(q) = r + 2 + gvlog (“;;’) (6)

where the last term above is the contribution from the
q < kp limit of the static pair susceptibility, wp is a
cutoff, and v is the density of states at the Fermi level.
Even at T = 0, D~1(q) remains positive, indicating the
absence of a phase transition. Nevertheless, the mini-
mum of D~1(q) is at non-zero |q| = \/%, indicating
softened pair fluctuations at finite momentum. Figure 2
shows D~1(q) for various strengths g?>. With increasing
g2, the theory is driven further away from ordering, even-
tually having a correlation length short compared to the
wavelength of the putative PDW - thus, a failed PDW.
We next show that long ranged PDW order occurs when
the repulsive BCS couplings are non-monotonic in space.

PDWs from mon-monotonic BCS interactions.  As
an illustrative example, consider the case where the BCS
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FIG. 3. (a)V(q) as a function of |g|ro with 7¢ = 1 from
Eq.(7). (b) D™%(q) at T = 0.05 as a function of |g|ro (also

with ro = 1) obtained by approximating II(q) in Eq.(8) by its
one-loop calculation. (c) Density plot of D™'(q) as a function
of g obtained by numerically solving the full saddle point
equations in (5) with 7o = 3. The two panels show the results
for T above T, and right at T., and the dashed circles mark
the minimum of D™*(q). (d) T. as a function of g*. At large
g?, our result indicate that T. scales linearly in g*>. (e) The
magnitude of A(q) below T, for a given g*> = 0.45. The energy
scale here are measured in unit of the Fermi energy Er.

coupling is non-zero only at a distance rg:
V(r) = g°6(r —ro), V(q) = 2mrog®Jo(gro),  (7)

where Jy(x) is the zeroth Bessel function. Although V' (7)
is repulsive, its Fourier transform V(q) is an oscilla-
tory function with both repulsive and attractive compo-
nents[Fig. 3(a)]. The exact boson propagator in this case
is

D™ Y(q) = +g%sgn[V(q)](q).  (8)

27ro]Jo(qro)|

To make sense of the above equation, we can approxi-
mate the boson self energy II(q) by the one-loop calcu-
lation IIp(q) obtained using Gy. The result is shown in
Fig.3(b). Clearly we see that when V(q) < 0, the as-
sociated Fourier components of D~!(q) get smaller (i.e.
closer to an ordering transition) as g2 increases whereas
the repulsive components get larger. Nonetheless, the
phase transition will not occur unless g2 exceeds a thresh-
old value. In Fig.3(c) we present the numerical results of
D~1(q) by solving the full saddle point equations (5) on
a 32 x 32 momentum mesh grid. The global minimum

(dashed circle) of D~!(q) indeed vanishes when T ap-
proaches T.. Thus, there is a line of finite temperature
phase transitions T,.(g?) as g2 is varies, obtained by the
condition D~!(gq) = 0. For T' > T, the minimum value
of D~1(q) forms a ring as is expected from the toy model,
but stays positive. Once T approaches T, its minimum
vanishes, indicating the PDW instability. Similarly, if we
fix T instead and increase g2, we can also see D~!(q)
vanishes at some finite g?. In Fig.3(d) we present T, and
a function of g2. At large g2, our result clearly shows a
linear relation between T, and ¢g2. The line of finite tem-
perature transitions terminates at a 7' = 0 phase transi-
tion at g = ge.

Below the ordering transition, we must solve the self-
consistent equations allowing for a non-zero expectation
value A(q) = (#(q)). Details of our calculation are pro-
vided in [42]. Fig. 3(e) shows A(q) as a function of T
below T,.. Within the accuracy of the numerical solutions,
the expectation value grows continuously indicating that
the finite temperature transitions are second order and
are well-decribed by mean-field theory. From the solu-
tion of the non-linear equations, we can also determine
the ordering wave-vector @ of the PDW by minimizing
D~1(q) with respect to momentum:

d

Q: @D_I(Q)lcz =0 9)

In the neighborhood of Q, _1(q) takes the form
1

DY (q) = (gl — Q)°, where y = 1L DY(q)]q.

Lattice models with PDW order. Emboldened by the
simplified model above, we consider a more realistic ex-
ample of electrons on a square lattice with nearest neigh-
bor hopping ¢ = 1, onsite Hubbard U, and second neigh-
bor pair-hopping J:

H=—t3Y clcjo+U Z nipniy +J Y chel ejieir,
(i,4),0 (i.7)

(10)
where ¢, 7 above label lattice sites. The model above can
similarly be N-enhanced and the resulting saddle point
solutions can be solved mutatis mutandis. In this case,
the Fourier transform of the BCS interaction V(q) is
V(q) = U + 2J(cosq, + cosgq,) and g*> = U/t. As long
as U < 4J, V(q) can be negative at some finite g. We
solve Eq.(5) with the fermion dispersion replaced with
& = —2t(cosky + cosky) — p. The results are shown
in Fig.4 In this case, we have four symmetry-related or-
dering vectors at (+m,+7) + O(Ut/JEF), that depend
on the strength of interactions and the filling. In this
sense, the pairing state from the large- N theory is differ-
ent from the n-pairing state found in numerical studies
of one dimensional analogs of such models[31, 48-51].

PDW quantum critical point. Both the lattice and con-
tinuum models above have finite temperature continuous
PDW transitions that terminate at QCP. We can study
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FIG. 4. Numerical solution of D™'(q) from Eq.(10) obtained
at a fixed T' = 0.05 with J = 2U for different fillings. In
the left panel, there are n = 0.71 electrons per site, and
D™!(q) touches zero at g*> = 0.75. In the right panel, there
are n = 1.17 electrons per site, and ¢g> = 1.8 is the critical
coupling where D™ !(q) touches zero. The black dots mark
the positions of the ordering vector Q near (£, £7), which
leads to the PDW with checkerboard pattern in real space.

the fate of itinerant fermions around this 7" = 0 tran-
sition by solving the self-consistent set of equations in
Eq. (5). A straightforward computation of the one-loop
boson self-energy in the regime ¢ < kp yields (see sup-

plementary section [42]) II(g,iQ,,) = v(In v4:|2| - LZT;“ ).
It then follows that in the limit ¢ < kp,
2
_ g V|
Dla)" ~ (gl - @ + L8
vFQ
resulting in a boson dynamical exponent z, = 2. A

fully self-consistent solution is obtained by computing
the fermion self-energy using D(q) above. Performing
the integrals in the z, = 2 scaling limit (see supplemental
sections [42]), we obtain G~ (k, iw,) = Gy (k) + X(w,),
where

2
1/2 _ 9 Q
0= 2upy

The expressions for G, D are now fully self-consistent:
upon feeding back the fermions to the boson, II is un-
changed. Thus, superconducting fluctuations are Landau
overdamped and the fermions are dressed into a non-
Fermi liquid. If, following Hertz[52], we were to inte-
grate out the fermions, the bosonic sector would be at its
upper-critical dimension defined by d + z = 4, when d =
2. Thus, up to logarithmic corrections to scaling, the or-
dering transition has mean-field exponents, with v = 1/2.
The line of finite temperature transitions emanates from
the quantum critical point as T.(g%) ~ (g% — ¢2)", with
unit exponent vz = 1. Note that in our toy model Eq.(7),
the PDW ordering vector forms a ring, which renders the
whole Fermi surface to be a ‘hot region’ [53]. However, in
the lattice model where there are only limited number of
ordering vectors, there are only finite ‘hot spot’ regions
on the Fermi surface which has NFL behavior.
Discussion. We have shown that PDW order arises
unambiguously when electrons have sufficiently large re-

S(wn) = isgn(wy )wy!|w (12)

pulsive and non-monotonic BCS interactions. Interac-
tions in the particle-hole channel can certainly destabi-
lize the theory presented here. However, since order-
ing tendencies in the particle-hole channel require fi-
nite interaction strength, we expect our theory to re-
main robust, at least to the addition of weak interactions
in the particle-hole channel[54]. Other possibilities in-
clude Kohn-Luttinger superconductivity, which also arise
from repulsive interactions. However, such states are not
present in the large N limit considered here, and are
moreover at exponentially low temperature scales; by
contrast the PDW transitions occur at scales that ex-
hibit power law dependence in the bare interactions of
the system.

We speculate on the relevance of these results to real
solids. In microscopic descriptions of solids, pair-hopping
interactions are typically small compared to density-
density interactions[55, 56]. This is not true, however,
in low energy effective descriptions, obtained from in-
tegrating out short-distance modes. We have concen-
trated on such pair-hopping terms in this paper, since
they give rise to site PDW orders, where each fermion of
the Cooper pair “lives” on the same lattice site. Similar
mechanisms can give rise to bond PDW order, where the
pair is built from fermions separated by a nearest neigh-
bor distance. In this case, the repulsive BCS interactions
giving rise to PDW order are the more physically relevant
density-density interactions, which are always sizeable in
any solid. Indeed, such density-density interactions can
give rise to PDW order on the Kagome lattice, as sug-
gested in Ref. [57].

In addition, it is somewhat unusual to expect a rela-
tively suppressed BCS repulsion at short distances. This
requirement accounts at least in part for why PDW or-
der is so seldom found in real materials. For the case
of bond PDW order, Coulomb repulsion, in conjunction
with strong coupling to Holstein phonons can provide
such non-monotonic density-density interactions. This
may account for recent studies of Hubbard-Holstein lad-
ders reporting PDW order[58, 59]. A promising system
for realizing the conditions outlined here for PDW for-
mation are electrons on a Kagome lattice near the van
Hove singularity. In this regime, the electrons have a pe-
culiar property that short distance Coulomb interactions
are suppressed relative to nearest neighbor repulsion[60].
As a result, short-distance repulsive forces are suppressed
relative to nearest-neighbor repulsion, which is precisely
the requisite condition for PDW order identified here. A
recent study along these lines has shown that PDW order
naturally arises at intermediate coupling on the Kagome
lattice[57]. We shall investigate the relevance of these
findings to the phase diagram of Kagome metals such as
CsV3Sbs, in future studies.
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