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We study the energy cost of flocking in the active Ising model (AIM) and show that besides the
energy cost for self-propelled motion, an additional energy dissipation is required to align spins in
order to maintain the flocking order. We find that this additional alignment dissipation reaches its
maximum at the flocking transition point in the form of a cusp with a discontinuous first derivative
with respect to the control parameter. To understand this singular behavior, we analytically solve the
two-site and three-site AIM models and obtain the exact dependence of the alignment dissipation on
the flocking order parameter and control parameter, which explains the cusped dissipation maximum
at the flocking transition. Our results reveal a trade-off between the energy cost of the system and
its performance measured by the flocking speed and sensitivity to external perturbations. This
trade-off relationship provides a new perspective for understanding the dynamics of natural flocks
and designing optimal artificial flocking systems.

Understanding how collective coherent motion (“flock-
ing”) emerges from a system of self-propelled, interacting
individuals has been a central question in nonequilibrium
statistical physics and biophysics [1–3]. Familiar exam-
ples include birds, fish, bacteria [3, 4] and synthetic sys-
tems such as active colloids [5]. Theoretical studies have
involved models of self-propelled, aligning particles with
continuous [6–10] or discrete [11, 12] symmetry. Despite
their diversity, these systems are all far from thermo-
dynamic equilibrium [13] and thus a continuous dissipa-
tion of free energy is required to create and maintain
the long-range flocking order. Indeed, energy dissipation
plays a crucial role in driving living systems out of equi-
librium to achieve important biological functions, such
as adaptation [14], error correction [15–20], spatial pat-
terns [21], and temporal oscillation [22]. Here, we study
the nonequilibrium thermodynamics of dry aligning ac-
tive matter [23] aiming to elucidate the relationship be-
tween the energetic cost of flocking and its performance
measured by the flocking speed and sensitivity.

The dynamics and energy dissipation (entropy pro-
duction) of flocking can be studied at the microscopic
level by prescribing the single-particle dynamics [6] or
at the coarse-grained level with hydrodynamic field the-
ories [7, 8]. In the latter case, the entropy produc-
tion rate (EPR) calculated from the standard procedure
gives a measure of irreversibility but usually has no ther-
modynamic interpretation (unless under special condi-
tions such as linear irreversible thermodynamics [24]).
Namely, it does not give the (physical) heat dissipa-
tion rate, and an alternative term “information EPR”
has been proposed to differentiate it from the micro-
scopic EPR, which has unambiguous thermodynamic in-
terpretation [25–27]. The reason behind this discrepancy
is that coarse-graining drastically decreases the dissipa-
tion rate [28–30], which means that macroscopic theories
tend to dramatically underestimate the energy dissipa-
tion. Therefore, it is fundamentally important to elu-

cidate the energy cost of flocking using a microscopic
model, which gives the “true” heat dissipation, despite
existing work using hydrodynamic approaches [31, 32].

Here, we investigate the energy dissipation of the ac-
tive Ising model (AIM) [11, 12] which describes a lattice
gas of Ising spins with ferromagnetic alignment and bi-
ased diffusion. Our main finding is a cusped energy dissi-
pation maximum at the flocking transition point, which
is supported by numerical simulations and confirmed by
the analytical solution of reduced AIMs with two or three
sites. These findings uncover a new perspective on the
energy-speed-sensitivity trade-off in flocking.

Dissipation in the active Ising model (AIM).
The 2D AIM describes N particles on a Lx × Ly lattice
with periodic boundary conditions. Each particle car-
ries an Ising spin s = ±1, and the number of ± spins
on site (i, j) is denoted by n±i,j (no volume exclusion).
The system follows continuous-time Markovian dynam-
ics including flipping (local alignment) and hopping (self-
propulsion). Each particle can flip its spin from s to
(−s) at rate ωe−βE0smi,j/ρi,j , where mi,j = n+

i,j − n−i,j
and ρi,j = n+

i,j + n−i,j are the local magnetization and

density, respectively. ω−1 sets the flipping timescale. E0

measures the strength of the spin-spin alignment inter-
action, and β is the inverse temperature which is set to
1. Each spin can also hop to one of the four neighbor-
ing sites, at rate D(1 + sε) to the right, D(1 − sε) to
the left, and D to up and down. The flipping dynamics
obeys detailed balance according to the Hamiltonian of a
fully-connected (mean-field) Ising model, but the hop-
ping dynamics breaks detailed balance and drives the
system out of equilibrium. Flocking is defined as the
emergence of long-range order (LRO) among spins char-
acterized by a finite 〈s〉 with the mean flocking speed
given by v = 2Dε 〈s〉 in the x-direction. Note that in
the special case of unbiased diffusion ε = 0, RLO can
still emerge albeit with zero flocking speed (see Fig. S3
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in Supporting Material (SM) for details).
Two equivalent approaches are employed to calculate

the steady-state entropy production (energy dissipation)
rate. The first method calculates the average dissipation
rate from the ratio of forward and backward realizations
of a sufficiently long trajectory (assuming ergodicity) ob-
tained by simulating the AIM dynamics [33]. The sec-
ond approach considers the different spin configurations
(
{
n±i,j
}

) as states of a reaction network with flipping and
hopping as the two types of transitions between differ-
ent states. Once the AIM reaction network reaches its
nonequilibrium state state (NESS), the dissipation rate
can be determined by following the standard procedure
for computing entropy production rate of reaction net-
works [34, 35]. These two approaches are equivalent. The
former is suited for the numerical simulation of the full
AIM, and the latter offers analytical tractability in the
two-site (and three-site) AIM solution.

A finite amount of energy dissipation is needed to drive
the system sufficiently away from equilibrium to gener-
ate flocking behavior. As shown in Fig. 1A, a nonzero
flocking speed v can be achieved by increasing ε at fixed
E0, which also increases the total dissipation rate Ẇtot.
The flocking motion does not emerge until Ẇtot is above
a certain (nonzero) threshold.

The total dissipation rate can be decomposed into con-
tributions from the two types of transitions: Ẇtot =
Ẇm + Ẇa, where Ẇm and Ẇa correspond to the dis-
sipation rates due to motion (hopping) and alignment
(flipping) of the particles, respectively. Since each parti-
cle moves at an average speed v0 = 2Dε and each step
along the bias direction costs energy ln 1+ε

1−ε , the resulting

dissipation rate for motion is simply Ẇm = Nv0 ln 1+ε
1−ε

(see Appendix A for details). The alignment dissipation
Ẇa can be calculated by summing up the cost of all flip-
ping events during a sufficiently long time interval τ :

Ẇa = lim
τ→∞

1

τ

∑
0<t<τ

2E0
1−mi,js

ρi,j
. (1)

Each event flips a spin s to (−s) on site (i, j), which
has local magnetization mi,j and local density ρi,j (see
Appendix A). It will be convenient to henceforth refer to
the nondimensionalized alignment dissipation rate ẇa =
Ẇa/(2ωE0) as the alignment dissipation.

The motion dissipation rate Ẇm is responsible for driv-
ing the self-propulsion of the particles, which is inde-
pendent of the alignment dynamics. As expected, Ẇm

increases monotonically with ε, vanishing in the unbi-
ased limit (ε = 0) and diverging in the irreversible limit
(ε → 1). The origin of the alignment dissipation Ẇa is
more subtle. Although the local spin flipping dynamics
obeys detailed balance, the local spin system at a given
site is driven out of equilibrium by the continuous injec-
tion and ejection of new spins from its neighboring sites
due to the transport process and a continuous dissipa-
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FIG. 1. (A) The average flocking speed v versus the total

dissipation Ẇtot for fixed values of E0 and increasing ε. (B)
The average flocking speed (blue) and alignment dissipation
(black) for ε = 0.3. The red dashed line is the transition
point Ec above which v > 0. The inset shows the exponential
decay of dissipation at large E0. Lx = 300, Ly = 100, ρ̄ =
N/(LxLy) = 5, D = 1, ω = 1. See section IA in SM for
details.

tion rate Ẇa is needed to drive the spin alignment to
maintain the flocking order. As a result, Ẇa depends
on both the alignment strength (E0) and the particle’s
key transport properties in particular the motion bias ε
and the relative timescale D/ω. Next, we investigate how
the flocking behavior and dissipation rates depend on the
these key control parameters of the system (E0, ε, D/ω).

A cusped dissipation maximum at the flocking
transition. For a fixed bias ε, the system remains disor-
dered (v = 0) until E0 is increased above a certain thresh-
old Ec (Fig. 1B). The alignment dissipation ẇa increases
linearly in the disordered phase and decreases monoton-
ically in the flocking phase (exponentially at large E0 as
shown by the inset). Remarkably, it reaches maximum
exactly at the transition point Ec in the form of a cusp.
The value of ẇa is continuous across the transition, but
its derivative dẇa

dE0
changes abruptly from positive to neg-

ative across Ec forming a cusp at its maximum. Since
Ẇm stays constant, the same cusped maximum behav-
ior also exists for Ẇtot. Extensive numerical simulations
find this behavior to be general, regardless of the bias ε
or the relative timescale set by D/ω (see Appendix A).
The critical Ec decreases with ε and increase with ω,
but it always coincides with the maximum of ẇa. The
alignment dissipation can be decomposed into the prod-
uct of the frequency of flipping events ṅf and the mean
energy cost per flip w̄f = ẇa/ṅf . At the transition point,
they both have continuous values but discontinuous first
derivatives, which results in the cusp of ẇa [see Support-
ing Material (SM)].

As discussed previously, the key to understanding the
alignment dissipation is how the transport of spins be-
tween neighboring sites drives the local spin system out
of equilibrium. However, it is difficult to understand the
full AIM with a large system size due to the numerous
degrees of freedom. Next, we investigate the alignment
dissipation in a reduced AIM with the minimal number
of sites that allows transport of active spins.
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FIG. 2. (A) The effective free energy landscape demonstrates
the existence of a nonequilibrium phase transition in the two-
site AIM. N = 50, D = ω = 1. (B) The alignment dissipation
of the two-site AIM with different finite N (solid lines) and
infinite N (red dashed line) and the full AIM (purple dots,
normalized according to the text). Inset: the curvature at
the dissipation maximum in the two-site AIM.

The two-site (and three-site) AIM shows the
cusped maximum of flocking dissipation. We con-
sider a special case of the AIM with only two sites
(Lx = 2 and Ly = 1), which is the minimum system
size needed to drive the AIM out of equilibrium to pro-
duce flocking behavior. The flipping and hopping dy-
namics are the same as the full AIM. Importantly, hop-
ping leftwards and rightwards are considered to be two
different processes even though they reach the same site
due to the periodic boundary condition. In the flocking
phase, the left/right symmetry is spontaneously broken
and hopping in one direction dominates. Conceptually,
the two-site AIM can be considered as a coarse-grained
version of the full AIM. It retains much of the physics
of the full AIM including the flocking transition and the
associated dissipation maximum.

The model is fully characterized by the total number
of spins N and three state variables (a0, a1, b1) where a0

is the total number of + spins; a1 and b1 correspond to
the number of + and − spins on site 1, respectively. The
dynamics of the probability distribution P (a0, a1, b1) is
governed by the master equation:

dP (a0, a1, b1)

dt
= LP (a0, a1, b1), (2)

where L is a linear operator (matrix) capturing the tran-
sitions. (The full equation and its solution are cov-
ered in SM section II.) The steady-state distribution
P s(a0, a1, b1) can be found by solving LP s(a0, a1, b1) = 0
subject to normalization

∑
a0,a1,b1

P s(a0, a1, b1) = 1, and
can be used to compute all statistical properties of the
system, e.g., the average total magnetization 〈m〉 =∑
a0,a1,b1

(2a0 −N)P s(a0, a1, b1).

At finite N , the phase transition point Ec can be deter-

mined by computing the effective free energy landscape
F (m) = − lnP (m) where P (m) =

∑
a0,a1,b1

δ(2a0−N −
m)P s(a0, a1, b1) is the steady-state distribution of the
total magnetization m. As shown in Fig. 2A, as E0 in-
creases, the disordered state m = 0 goes from stable
(F ′′(0) > 0) to unstable (F ′′(0) < 0), indicating the
emergence of flocking. The transition point Ec (deter-
mined by F ′′(0) = 0) and the position of the alignment
dissipation maximum (Em = arg maxE0

ẇa) are extrap-
olated to converge at infinite N (see SM Fig. S3). More-
over, the curvature at the peak ∂2

E0
ẇa
∣∣
E0=Em

increases

with N (Fig. 2B inset) and it is projected to diverge
at infinite N . These results indicate a cusped dissipation
maximum at flocking transition of the two-site AIM, con-
sistent with observation in the full AIM.

In the infinite N limit, the steady-state probability P s

can be obtained analytically by assuming D � ω. How-
ever, this assumption is not essential to the results. Per-
turbation theory shows that higher order corrections of
the order O( ωD ) do not affect the cusped maximum be-
havior in ẇa(see Appendix B). The effective free energy
in the limit ω/D → 0 is

F (m)

N
= z ln z+(1−z) ln (1− z)+2E0z(1−z)+O(N−1)

(3)
where z = a0/N = (N + m)/(2N) is the fraction of
spin up. The flocking transition takes place at Ec = 1,
where the most probable state (saddle point) goes from
the disordered state (z = 1

2 ) to the flocking state with
z = z?(6= 1

2 ) where z? is determined by

1

2(1− 2z?)
ln

1− z?
z?

= E0, (E0 > 1) (4)

which has two solutions z? and (1− z?) corresponding to
flocking leftwards and rightwards, respectively. Although
the free energy is equivalent to that of the mean-field
Ising model, the system continuously dissipates energy
due to non-vanishing state-space fluxes. The fluxes asso-
ciated with flipping give the alignment dissipation:

ẇa =
1

2ωE0

∑
flip

(J+ − J−) ln
k+

k−
=
∑

σ · P s ≡ 〈σ〉 (5)

where σ is the local alignment dissipation rate whose av-
erage over P s gives the steady-state alignment dissipa-
tion ẇa. The averaging is computed using the saddle-
point method, which expands σ around the most prob-
able state. Importantly, direct evaluation of σ at the
saddle point vanishes, and the leading order contribution
comes from expansion to the second order in (a1, b1).
This emphasizes particle number fluctuations as the es-
sential source of alignment dissipation, which is given by
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ẇa =
1

2

[
∂2σ

∂a2
1

〈
(a1 − a?1)

2
〉

+
∂2σ

∂b21

〈
(b1 − b?1)

2
〉]

=

{
E0 +O( ωD ), 0 < E0 < Ec(= 1)

8E0[z?(1− z?)]3/2 +O( ωD ), E0 ≥ Ec
, (6)

where the derivatives are evaluated at the saddle point
(a?0, a

?
1, b

?
1) = (z?N, z?N/2, (1 − z?)N/2). The explicit

expressions for theO( ωD ) terms can be found in Appendix
B and SM.

It is clear from Eq. 6 that ∂E0ẇa is discontinuous at the
critical point (E0 = Ec) because ∂E0

z? is discontinuous
there. Quantitatively, we have ∂E0

ẇa|E0=1− = 1 and
∂E0

ẇa|E0=1+ = −3.5, which shows that ẇa (red dashed
line in Fig. 2B) exhibits a cusped maximum exactly at
Ec = 1. Eq. 6 explicitly connects the dissipation ẇa to
number fluctuations (

〈
(a1 − a?1)2

〉
and

〈
(b1 − b?1)2

〉
).

To make a direct comparison between the two-site AIM
and the full AIM, we rescale E0 by Ec, normalize the
dissipation by its maximum, and plot them against each
other in Fig. 2B. The two models agree exactly in the dis-
ordered phase where dissipation grows linearly with E0

as well as deep in the flocking phase where dissipation
decays exponentially to zero. The cusped maximum at
transition is also in good agreement, evident from the dis-
continuity of the slope. There is a small quantitative dif-
ference in dissipation at E0 slightly above Ec because the
two-site model cannot capture the flocking band struc-
ture in the mixed phase [36].

Although the two-site AIM captures the flocking tran-
sition and the cusped dissipation maximum of the full
AIM, ẇa does not depend on the bias ε (Eq. 6) since
hopping to the left and to the right end up at the same
site. To make sure this special property of the two-site
model does not affect the general results, we extend the
analytical solution to the three-site AIM. Aside from be-
ing more tedious, the three-site AIM can be solved in
a similar fashion as the two-site AIM (see Appendix B
and SM for details), which not only confirms the exis-
tence of the cusped dissipation maximum at the flocking
transition but also captures the dependence of ẇa on ε
explicitly.

The energy-speed-sensitivity trade-off. The
flocking of interacting particles is conceptually analo-
gous to the synchronization of coupled oscillators [37, 38],
which can be understood as flocking in the state (phase
of the clock) space. In both cases, an extra energy dis-
sipation is needed to maintain coherence among individ-
ual subsystems (spins/oscillators) that are already out
of equilibrium. However, the dissipation of these two
systems exhibits different behaviors. For coupled oscil-
lators, the dissipation increases with the order parame-
ter, meaning that it is very costly to maintain a system
of highly coupled (and therefore synchronized) oscilla-
tors [38]. In the AIM, however, dissipation peaks exactly
at the transition and decreases with interaction (E0) in
the flocking phase. At large E0, the highly ordered flock
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Ẇtot/(LxLy)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

v
=

2D
eh

si

E0 = 1.34
E0 = 1.35
E0 = 1.38
E0 = 1.42

A B

°40 °20 0 20 40
m

3

4

5

6

7

F
(m

)
=
°

ln
P
(m

)

E0 = 0.60
E0 = 0.96
E0 = 1.04
E0 = 1.40

A B

0 50
N

0

5

10

∂2 E
0ẇ
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FIG. 3. The energy-speed-sensitivity trade-off in the two-site
AIM. (A) Contours for constant v in the (ε, E0) plane. (B)
The total dissipation and sensitivity along different v con-
tours. N = 40, D = ω = 1.

requires a smaller energy to maintain. The difference be-
tween the two behaviors stems from the alignment mech-
anisms. The active spins align locally, which effectively
synchronizes their velocities. The coupled oscillators are
synchronized by exchanging phases, whose analogy in the
AIM would be simultaneous displacement of pairs of par-
ticles. This non-local interaction couples the alignment
cost to the cost of motion (i.e. advancing the individ-
ual clocks), leading to a higher dissipation in the ordered
phase. These analyses suggest that compared to exchang-
ing position, local alignment of velocity is an energetically
more favorable way of maintaining the order in a system
of active particles.

Another key property of flocks is its sensitivity to ex-
ternal perturbations, which we characterize by the mag-
netic susceptibility χ of the AIM. In AIM, there are many
choices of parameters (ε, E0) to achieve any given flock-
ing speed v as shown in Fig. 3A. For a given v, the total
dissipation achieves its minimum in the limit of E0 →∞
and ε → v/(2D), which unfortunately leads to zero sen-
sitivity (χ = 0). However, sensitivity can be increased
by decreasing E0, which requires increasing ε in order
to maintain a fixed v (Fig. 3A). As a result, Ẇm and
thereby the total dissipation increases. Fig. 3B demon-
strates this trade-off whereby enhancing sensitivity at a
constant flocking speed necessarily increases dissipation.
Similarly, for a given sensitivity, increasing the flocking
speed also requires more dissipation; for a given dissi-
pation, increasing speed necessarily reduces sensitivity
(see SM section II for analytical expressions). These re-
lations constitute an energy-speed-sensitivity trade-off,
which prevents the three properties to be optimized si-
multaneously and places natural flocks at some interme-
diate regime that maximizes the overall fitness.

Discussion and future directions. A heuristic ar-
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gument for the long-range order in the Toner-Tu equation
was the stabilizing effect of the convective term, which
enables particles to change their neighborhoods of inter-
action [7]. Our study suggests that such a stabilizing
mechanism is intrinsically out of equilibrium and must
be sustained by continuous energy dissipation (ẇa). Its
manifestation in the AIM is each local spin system be-
ing driven out of equilibrium by motion, which enables
communication between different sites and creates the
flocking order. On the other hand, it also leads to num-
ber fluctuations which, as shown by Eq. 6, directly causes
energy dissipation. The fluctuation is maximized at the
transition, resulting in the dissipation maximum. There-
fore, the dissipation maximum reported here is deeply
connected to the underlying mechanism that leads to
flocking transition. Given that similar mechanism under-
lies general flocking models, it might be useful to extend
this study to flocking theories with continuous symmetry
and off-lattice models [6–8]. In fact, a recent study on the
Vicsek model also finds dissipation maximum near flock-
ing transition, which suggests that the phenomenon may
be general [39]. It might also be interesting to compare
the energy cost of flocking to other models of nonequilib-
rium phase transitions, some of which also demonstrating
reduced energy dissipation in the ordered phase [40].

The two-site (and three-site) AIM provides a useful ap-
proach for understanding spatially extended nonequilib-
rium systems without completely going to the mean-field
limit, which is an equilibrium limit unable to capture
many nonequilibrium properties such as energy dissipa-
tion. Given that the two-site AIM can be considered
as a coarse-grained version of the full AIM, it will be
interesting to investigate what is the appropriate coarse-
graining procedure that preserves the dissipation char-
acteristics in particular the cusped maximum behavior,
and whether there is scaling law for the dissipation as sug-
gested by recent studies of general reaction networks [28–
30]. Finally, the energy-speed-sensitivity trade-off un-
covered here may provide a useful perspective for under-
standing dynamics of natural flocks and designing opti-
mal control of artificial flocks.
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Appendix A: Energy dissipation in the 2D AIM

The dynamics of the 2D AIM is simulated using the
random-sequential-update algorithm outlined in the orig-
inal model [12]. The steady-state energy dissipation rate
is obtained by computing the average energy dissipation

of a sufficiently long trajectory [33]:

Ẇ = lim
τ→+∞

1

τ
ln
P
PR = lim

τ→+∞

1

τ

M−1∑
i=0

ln
k̃i

k̃Ri
, (A1)

where P and PR are the probabilities of observing the
forward and backward trajectories [41]. The trajectory
contains M transitions (flipping or hopping), with k̃i and
k̃Ri being the forward and backward rates of the i-th tran-
sition (for a single spin). Thus, the rate ratios for flipping
and hopping reactions can be summed separately, which
leads to the partition between alignment and motion de-

composition. For hopping, the log rate ratio ln
(
k̃i/k̃

R
i

)
is simply s∆x ln 1+ε

1−ε , where ∆x = ±1 is the displace-
ment in the x direction. Hopping is along the bias when
s and ∆x have the same sign, which leads to positive
dissipation. Conversely, hopping against the bias leads
to negative dissipation. Hopping in the y direction does
not contribute to dissipation since forward and backward
rates are equal. Therefore, the motion dissipation rate is:

Ẇm = lim
τ→+∞

1

τ

∑
0<t<τ

∆xs ln
1 + ε

1− ε = Nv0 ln
1 + ε

1− ε ,

(A2)

where v0 = 2Dε is the average speed along the bias.
Similarly, the forward and backward flipping rates are
k̃i = ωe−E0sm/ρ and k̃Ri = ωeE0s(m−2s)/ρ. The alignment
dissipation is computed by summing the log ratios of the
rates (Eq. 1). A more detailed discussion can be found
in the SM.

The generality of the alignment dissipation maximum
at flocking transition shown in Fig. 1B is confirmed by
simulation using different values of ε (Fig. A1A) and ω
(Fig. A1B). The red lines indicate the flocking transition
Ec measured by the flocking velocity v, and the align-
ment dissipation density ẇa/(LxLy) is quantified by the
heatmaps. In all cases studied, the dissipation maximum
coincides with the flocking transition Ec, demonstrating
generality of the result.

Appendix B: Analytical results in the two-site and
three-site AIM

We start by computing ẇa for the two-site AIM. To ob-
tain the steady-state distribution P s, we decompose the
linear operator L into L = DL1 + ωL2, where L1 cap-
tures hopping transitions and L2 captures flipping [42].
The steady-state condition becomes (L1 + ω

DL2)P = 0,
where the second term is treated as a perturbation for
small ω/D. To the leading order in ω/D, P can be writ-
ten as:

P = Q0(a0)
(
p0 +

ω

D
p1

)
+O

( ω
D

)2

, (B1)
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FIG. A1. Generality of the alignment dissipation maximum at
flocking transition. The heatmaps show the alignment dissi-
pation density ẇa/(LxLy) for different combinations of (E0, ε)
(A) and (E0, ω) (B). The red lines indicate the flocking transi-
tion as measured by the flocking velocity v. D = 1, Lx = 300,
Ly = 100, ρ̄ = N/(LxLy) = 5. ω = 1 for (A); ε = 0.3 for (B).
The black dashed line in (A) shows the parameter values for
Fig. 1B.

where p0 = 2−N
(
a0
a1

)(
N−a0
b1

)
is the solution to the hopping

operator (i.e. L1p0 = 0), and Q0(a0) captures the dis-
tribution of the total magnetization due to flipping. Q0

and p1 are determined by expanding LP = 0 to O( ωD ):

L2(Q0p0) + L1(Q0p1) = 0. (B2)

First, we eliminate L1 by summing over a1 and b1, which
leads to the steady-state condition for Q0:∑

a1,b1

L2(p0Q0) = 0, ∀a0. (B3)

In the infinite N limit, the solution is Q0(z) = e−F ,
where z = a0/N is the fraction of spin up and F is the
effective free energy given by Eq. 3. p1 is determined by
substituting the Q0 solution into Eq. B2:

p1 = p0 ·
E0

4
ψ1

(
z(1− z)N(x− y)

2 − 1
)
, (B4)

where x = 2a1/a0 − 1 and y = 2b1/(N − a0)− 1, and

ψ1 = zeE0(1−2z) + (1− z)e−E0(1−2z). (B5)

The total steady-state energy dissipation (entropy pro-
duction) rate is

Ẇtot =
∑
i<j

(Ji→j − Jj→i) ln
ki→j
kj→i

, (B6)

where the summation goes over all pairs of transitions
(i, j), which enables partition into Ẇm and Ẇa by sum-
ming flipping and hopping transitions separately. For the
motion dissipation, the calculation recovers Eq. A2. The
alignment dissipation is given by the expectation value
of the dissipation rate density σ (defined in Eq. 5):

σ =
1

2ωE0

∑
flip

(J+ − J−) ln
k+

k−
= 2E0z(1− z)2eE0(2z−1)

(
4z(1− z)− ω

D

ψ1

2

)
N(x− y)2 +O(x4, y4), (B7)

where the higher-order terms in x and y are omitted
since their expectation value vanishes in the infinite N
limit. Importantly, σ vanishes exactly at the saddle point
(x, y, z) = (0, 0, z?). Therefore, ẇa comes from the sec-
ond order term N(x − y)2. This expansion directly re-
lates ẇa to the particle number fluctuations since x and
y are the continuum versions of a1 and b1. The saddle-

point integral in the (x, y) directions is done by averaging
N(x− y)2 over

(
p0 + ω

Dp1

)
:

〈
N(x− y)2

〉
=

1

z(1− z)

(
1 +

ωE0

2D
ψ1

)
. (B8)

The integral in the z direction is trivial since z can simply
take its saddle-point value. The result is

ẇa =


E0

(
1 + ω

2D (E0 − 1) +O
(
ω
D

)2)
, E0 < 1.

8E0(z?)3/2(1− z?)3/2

(
1 + ω

2D

(
2E0

√
z?(1− z?)− 1

2
√
z?(1−z?)

)
+O

(
ω
D

)2)
, E0 > 1.

(B9)

These expressions explicitly demonstrate how the align-
ment dissipation depend on both E0 and the relative time

scale ω/D. They are in good agreement with results ob-
tained from the numerical solution of the master equa-
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tion (see Fig. S5 in SM). ẇa exhibits a cusped maximum
at Ec = 1 regardless of ω/D because both the leading
order term and the correction term have discontinuous
first derivatives there. The ( ωD ) term is not included in
the comparison with the 2D AIM (Fig. 2B) since the
time needed to diffuse through the whole system is much
longer than the time scale for flipping in the full model.

The three-site AIM can be solved by using the same
method. The main difference is that the hopping op-
erator L1 explicitly depend on the bias ε, which en-
ables us to capture the ε-dependence of ẇa. Two new

variables a2 and b2 are introduced for the number of
+ and − spins on site 2. To the first order in ω/D,
the steady-state distribution is P s = Q0(a0)

(
p0 + ω

Dp1

)
,

where p0 = 3−N
(
a0
a1

)(
a0−a1
a2

)(
b0
b1

)(
b0−b1
b2

)
is the solution to

the hopping operator (i.e. L1p0 = 0). Q0 = e−F is the
same as that of the two-site model, and so is the saddle
point z?. The correction p1 depends on both E0 and ε
with its full expression is given in the SM. The alignment
dissipation is calculated using the saddle-point method,
which involves expanding to the second order in particle
numbers. The result is

ẇa =


2E0

(
1 + ω

D
6+ε2

3(3+ε2) (E0 − 1) +O
(
ω
D

)2)
, E0 < 1,

16E0(z?)3/2(1− z?)3/2

(
1 + ω

D
6+ε2(2−4z?(1−z?))

3(3+ε2)

(
2E0

√
z?(1− z?)− 1

2
√
z?(1−z?)

)
+O

(
ω
D

)2)
, E0 > 1.

(B10)

In addition to capturing the cusped maximum at the
transition, the three-site result also reveals how ẇa de-
pends on ε. It is in good agreement with numerical re-
sults obtained using the Gillespie algorithm (see Fig. S6
in SM).
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