
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Fractal Fluctuations at Mixed-Order Transitions in
Interdependent Networks

Bnaya Gross, Ivan Bonamassa, and Shlomo Havlin
Phys. Rev. Lett. 129, 268301 — Published 22 December 2022

DOI: 10.1103/PhysRevLett.129.268301

https://dx.doi.org/10.1103/PhysRevLett.129.268301


Fractal fluctuations at mixed-order transitions in interdependent networks

Bnaya Gross,1, ∗ Ivan Bonamassa,1, 2 and Shlomo Havlin1

1Department of Physics, Bar Ilan University, Ramat Gan, Israel
2Department of Network and Data Science, CEU, Quellenstrasse 51, A-1100 Vienna, Austria

(Dated: December 1, 2022)

We study the critical features of the order parameter’s fluctuations near the threshold of mixed-
order phase transitions in randomly interdependent spatial networks. Remarkably, we find that
although the structure of the order parameter is not scale-invariant, its fluctuations are fractal up
to a well-defined correlation length, ξ′, that diverges when approaching the mixed-order transition
threshold. We characterize the self-similar nature of these critical fluctuations through their effective
fractal dimension, d′f = 3d/4, and correlation length exponent, ν′ = 2/d, where d is the dimension
of the system. By analyzing percolation and magnetization, we demonstrate that d′f and ν′ are the
same for both, i.e. independent on the symmetry of the process for any d of the underlying networks.

Introduction– Critical phenomena are fundamental fea-
tures of phase transitions, showing universal behaviours
that emerge in the vicinity of the critical point [1, 2]. In
second-order transitions, these phenomena are typically
reflected in the scaling relations between critical expo-
nents [3, 4] as well as in the fractal geometry of the order
parameter’s structure at criticality [5, 6]. In first-order
transitions, instead, the lack of a diverging correlation
length at the transition threshold leaves the structure
of the order parameter to be compact [7], i.e. not scale-
invariant and with the same dimension of the embed-
ding space, further preventing the emergence of scaling
laws [8]. Hybrid or mixed-order transitions [9, 10] lie
in between these two classes, displaying both a discon-
tinuous order parameter with a compact structure and
critical scaling at the transition point (see Fig. 1). Due
to their mixed nature and their appearance in a broad
variety of models [11–14] and real-world systems [15–18],
hybrid transitions have attracted much attention, both
from a theoretical and an experimental perspective, offer-
ing the twofold opportunity of discovering novel universal
features and to analyze catastrophic shifts.

In this regard, interdependent networks serve as suit-
able venues [19, 20] for the theoretical and experimental
study of mixed-order transitions. They, in fact, typically
undergo hybrid structural/functional transitions due to
cascading failures [21], whose properties can depend on
the topological or dynamical features of the interacting
systems [22] as well as on the range and fraction of de-
pendency links [23–25]. Randomly interdependent net-
works, in particular, host mixed-order percolation tran-
sitions when coupling random or spatial graphs [26, 27],
serving then as tailored models to analyze the critical
properties of these transitions in any spatial dimension.

In this Letter, we study the critical fluctuations of the
order parameter, O, at the mixed-order transition of ran-
domly interdependent lattices. We find that, although
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O is compact at the threshold, its fluctuations are self-
similar and are characterized by an effective fractal di-
mension d′f until a correlation length, ξ′, which diverges
close to the mixed-order transition threshold, ac, as

ξ′ ∼ |a− ac|−ν
′
, ν′ = 2/d, (1)

where a is a control parameter. We demonstrate this
in both interdependent percolation and interdependent
magnetization processes in d-dimensional lattices, where
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FIG. 1: Fluctuations at a mixed-order transition ( Color
online) (a) Illustration of the model of randomly interdepen-
dent d-dimensional networks (here d = 2) studied in this Let-
ter, featuring short-range connectivity links (gray links) and
long-range dependency links (orange couplings). (b) Each
realization of a hybrid transition (see (c) for a zoom-in the
bounded region) has its own critical threshold, ac, and criti-
cal mass, Oc ≡ O(ac)—related to each other via the scaling

law [9] O(a) ∼ Oc + |a− ac|1/2—whose distributions follow a
certain profile, as shown in (d) for P (ac) and in (e) for P (Oc).
(f) Illustration of the fluctuating values of the critical mass,
their mean value, 〈Oc〉, and their statistical variation σ2(Oc).
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FIG. 2: Fluctuations correlation length (Color online) (a) Simulations of the scaling of σ(pc) with L have, for all studied
dimensions (d = 2 − 8). We find excellent agreement between simulations and the scaling relation in Eq. (2). (Inset) The
dependence of ν′ on the dimension d of the underlying lattices follows the relation ν′ = 2/d. (b) The distribution of pc (here,
d = 2) fits a skewed Gaussian and follow the scaling in Eq. (5) (black line) with γ1 ' 0.465 and κ ' 0.315.

we show that: 1) the exponents ν′ and d′f are independent

on the underlying process, 2) their values are valid for any
dimension d ≥ 2 (i.e. the upper and lower critical dimen-
sion is dc = 2) and any number of interdependent layers
M ≥ 2, and 3) they satisfy hyperscaling [28]. Building
on the above, we put forward the hypothesis that frac-
tal fluctuations are a universal property of mixed-order
transitions and we support this claim by developing and
testing a unifying scaling theory for the order parameter’s
fluctuations in the vicinity of the critical point.

Model and main results– To present our model, let us
consider M = 2 randomly interdependent d-dimensional
lattices of size N = Ld. We insert the dependency links
between the layers by randomly pairing the functional
states of the two lattices’ sites [29], thus generating a mul-
tilayer system with short-range connectivity and long-
range dependency (Fig. 1a). We consider the networks
to be fully interdependent i.e. each node in one layer de-
pends on the state (in what follows, percolation and mag-
netization) of a randomly chosen node in the other layer.
By collecting a large sample [30] of independent realiza-
tions of the hybrid phase transitions reported in both
models (Fig. 1b,c), we study the fluctuations of their
critical thresholds, σ2(ac) = 〈a2

c〉 − 〈ac〉2, and of their
order parameter’s critical mass, σ2(Oc) = 〈O2

c 〉 − 〈Oc〉2.
Both quantities are obtained respectively from the dis-
tributions P (ac) (Fig. 1d) and P (Oc) (Fig. 1e).

Following a method introduced by Levishtein et al. [31]
and later discussed by Stauffer [4] (see also [3]), we deter-
mine the correlation length critical exponent introduced
in Eq. (1) by finite-size scaling as

σ(ac) ∼ L−1/ν′
, ν′ = 2/d. (2)

A fundamental question then arises: What is the physical
role played by a diverging correlation length of fluctua-
tions, Eq. (1), at a mixed-order phase transition?

In analogy with continuous transitions, where the or-
der parameter (near criticality) is fractal below the cor-
relation length, we show in what follows that at mixed-

order transitions the critical fluctuations of the order pa-
rameter’s mass (Fig. 1f) themselves are self-similar up to
ξ′, with a well-defined fractal dimension, d′f , given by

σ(Oc) ∼ Ld
′
f , d′f = 3d/4, (3)

which we support by extensive simulations and hyperscal-
ing arguments (see Discussion). In light of the above, we
advance a scaling theory for the fluctuations of the or-
der parameters’ mass close to criticality as follows. At
short scales, L < ξ′, σ(O) follows Eq. (3), while at long
scales, L > ξ′, the fluctuations are non-critical and sat-
isfy the scaling law σ(O) ∼

√
N = Ld/2 [see Fig.S1 in the

Supplementary Material (SM)]. Combining the above ob-
servation, we obtain the scaling function

σ(O)

Ld/2ξ′d/4
= G(L/ξ′) (4)

where G(x) is constant for x � 1 and G(x) ∼ xd/4 for
x� 1. Remarkably, we find that Eq. (4) is valid for both
randomly interdependent percolation (Fig. 2, Fig. 3) and
magnetization processes (Fig. 4), both on spatial and on
random networks (SM, Fig.S5), and it is satisfied for any
dimension d ≥ 2 and any number of layers M ≥ 2 (SM,
Fig.S6), hinting at its universal nature.

Interdependent percolation–To percolate our system of
randomly interdependent lattices, we remove at random
a fraction 1 − p of the nodes belonging to one layer and
let the cascading of failures to propagate back-and-forth
between the layers. In finite systems, each realization is
characterized by a distinct percolation threshold, pc, and
a critical mass of the mutual giant connected component
(MGCC), Mc = Sc∞L

d, where Sc∞ ≡ S∞(pc) is the rel-
ative fraction of nodes within the MGCC at criticality
(Fig. 1b). We find that their best-fitting distribution is
a skewed Gaussian (Fig.1d,e and Fig.S4) with non-zero
skewness [32] γ1 = 〈x3〉 and kurtosis κ = 〈x4〉 (see Fig. 2b
and Fig. 3b). Here, x = (y−〈y〉)/σ(y) is the normalized
parameter of the distribution and y is the observable of
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FIG. 3: Fractal fluctuations (Color online) (a) Simulations of the scaling of σ(Mc) with L show excellent agreement with
Eq. (3) where d′f = 3d/4 (see inset). (b) Data collapse of P (Mc) at d = 2 under the scaling P (Mc)L

d′f ∼ F [(Mc − 〈Mc〉)/Ld′f ]
(black line), where F is a skewed Gaussian as in Eq. (5), now with γ1 ' −0.607 and κ ' 0.449. (c) Close to the hybrid percolation
threshold, the MGCC’s fluctuations are fractal up to scales below ξ′ (Eq. (1)) and non-fractal otherwise, as described by the
universal scaling function in Eq. (4). Results are shown for d = 2 and for d = 3 in the inset.

interest (pc and Mc in our case). The normal form of
the two distributions indicate that the thermodynamic
exponents β′, γ′, δ′, . . . characterizing the critical fluc-
tuations of the order parameter can be cast within the
standard φ4-field theory [33] and, as such, they belong to
the mean-field Ising universality class (see Discussions).
Exponents and scaling relations related to the system’s
dimensionality d, such as ν′ or d′f , on the other hand,
are more delicate since they can be strongly influenced
by the presence of dangerous irrelevant variables alter-
ing the singular part of the system’s free-energy [34]. To
determine ν′ and d′f at hybrid percolation transitions in
randomly interdependent lattices, we follow the method
proposed in the above and analyze the finite-size scaling
of σ2(pc) and σ2(Mc). As shown in Fig. 2a, the scaling
of the width of the distribution P (pc) results in a correla-
tion length exponent, ν′, whose value explicitly depends
on the network’s dimension and nicely agrees with the
relation ν′ = 2/d (Fig. 2a inset). To further corrobo-
rate the expression ν′ = 2/d, we perform a data collapse
of the distributions P (pc) obtained for different system’s
sizes which, in light of Eq. (1), can be rescaled [3] as

P (pc)L
−1/ν′

∼ F
[
(pc − 〈pc〉)/L−1/ν′]

, (5)

where F(x) fits the profile of a skewed Gaussian. As
shown in Fig. 2b for d = 2, the data gathered over dif-
ferent system’s sizes nicely collapse.

As anticipated in the above, the diverging correlation
length ξ′ manifests physically the self-similar character
of critical fluctuations on the order parameters’ mass,
Mc, at the hybrid percolation threshold. Indeed, as dis-
played in Fig. 3a, the scaling advanced in Eq. (3) is
nicely corroborated by means of extensive simulations
and the fractal fluctuation dimension d′f = 3d/4 is ob-
served over several decades in randomly interdependent
lattices of dimensions ranging from d = 2 up to d = 7.
Notice that interdependent chains do not undergo any
phase transitions due to the absence of ordering already

in the isolated d = 1 layers themselves. The inset of
Fig. 3a, in particular, highlights the validity of the ex-
pression d′f = 3d/4 which we corroborate by performing

a data collapse of the distribution P (Mc) (see Fig. 3b
and details in caption) and further justify by means of
hyperscaling arguments in the Discussion. An interest-
ing implication of the above results is that one of the
classical properties of continuous phase transitions, i.e.
a ratio 〈Mc〉/σ(Mc) independent on the system size [35],
breaks down at mixed-order transitions. In fact, since the
MGCC itself is compact at criticality, then 〈Mc〉 ∼ Ld

and the ratio scales with the fluctuations co-dimension
∆′ = d− d′f = d/4 as 〈Mc〉/σ(Mc) ∼ L∆′

.

To complete the picture, we analyze the structure of
fluctuations near the mixed-order percolation threshold.
In light of Eq. (4), we expect that when taking a small
displacement ∆p = p−pc from the abrupt threshold, the
critical fluctuations of the MGCC’s mass will be fractal
with dimension d′f up to ξ′ and non-critical (i.e. white

noise, see Fig. S1 in the SI) otherwise. We support this
picture in Fig. 3c with simulations in d = 2 and d = 3
(Fig. 3c, inset) lattices. By rescaling the critical width
∆p via Eq. (1), the crossover between the (critical) frac-
tal fluctuations regime and the (non-critical) Gaussian
regime is nicely seen. We further verify the presence
of this crossover at the hybrid percolation transition in
interdependent random graphs (SM, Fig. S5a) and in
M = 3 interdependent lattices (SM, Fig. S6a,b).

Interdependent magnetization– To scrutinize the uni-
versality of the fractal fluctuations phenomenon at
mixed-order transitions, we consider a model of inter-
dependent Ising-spin networks where dependency cou-
plings between layers are realized as thermal interac-
tions [36]. We consider here the particular case of d-
dimensional lattices modeled as in Fig. 1a, where each
node is endowed with an Ising spin σi = ±1. Depen-
dency couplings between the layers are inserted as local
thermal feedback on the level of the flipping probabil-
ity of spins (see Fig. S2 in SI and discussions therein
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FIG. 4: Fractal fluctuations in interdependent magnetization (Color online) (a) Mixed-order transition in randomly
interdependent Ising d-dimensional lattices (here d = 2, 3, 4) measured via the magnetic density, M/N , as function of temper-
ature, T . (Inset) The critical temperature Tc scales linearly with the lattices’ dimension d. (b) Simulations of the scaling of
σ(Tc) with L show excellent agreement with Eq. (2) where ν′ = 2/d as shown in the inset. (c) At criticality ξ′ diverges and
the fluctuations of the MGCC are fractal in all length scales and follow Eq. (3) with d′f = 3d/4 as shown in the inset. (d)
Fluctuations are fractal up to ξ′ (Eq. (1)) and non-fractal above it, confirming the scaling in Eq. (4), here shown with d = 2.

for details), which intertwine adaptively the stochastic
(Metropolis) dynamics of the two layers. In randomly
interdependent spins lattices, the average magnetization,
M =

∑
i〈σi〉β (where 〈( · · · )〉β is a thermal average)

undergoes a spontaneous mixed-order ferromagnetic-to-
paramagnetic transition (Fig. 4a) at a finite critical tem-
perature Tc ∝ 1.25d (see Fig. 4a, inset) and for any di-
mension d ≥ 2, analogously to the abrupt collapse of the
MGCC at pc in interdependent percolation.

We perform an analysis analogous to the one put for-
ward in the above for interdependent percolation and de-
termine the fluctuation correlation length exponent, ν′,
and its fractal dimension, d′f , respectively from the scal-

ing of σ(Tc) and of σ(Mc). Fig. 4b shows the finite-size
scaling of σ(Tc), whose behavior nicely follows Eq. (2)
with ν′ = 2/d (see Fig. 4b, inset) and supports the exis-
tence of a diverging correlation length, Eq. (1). Moving
to the self-similar properties, we display in Fig. 4c the
scaling of σ(Mc) and confirm the validity of the fractal
fluctuation dimension d′f = 3d/4 (Fig. 4c inset) in agree-

ment with Eq. (3). Both our measurements of ν′ and of
d′f are further validated via their corresponding distribu-

tional collapse (SM, Fig. S3a,b and Fig. S4b). To close
the picture, we show in Fig. 4d the behavior of critical
fluctuations near the mixed-order magnetization transi-
tion in d = 2. We find also here excellent agreement
with the scaling relation proposed in Eq. (4), support-

ing further the universality of the crossover at hybrid
transitions from the fractal (L � ξ′) to the non-fractal
(L � ξ′) fluctuation regime. Finally, as with percola-
tion, we support the existence of fractal fluctuations also
at the hybrid magnetization transition in interdependent
random graphs (SM, Fig. S5b) and in M = 3 randomly
interdependent lattices (SM, Fig. S6c,d).

Discussion– In this Letter, we have unveiled the pres-
ence of self-similarity and of a diverging length scale,
Eq. (1), in the finite-size scaling of critical fluctuations at
mixed-order transitions. These critical phenomena are all
the more surprising as the order parameter at the transi-
tion threshold is always compact, and they suggest that
critical fluctuations have a fractal geometry in some ap-
propriate metric space. We characterize these phenom-
ena via an effective fractal dimension, d′f = 3d/4, and a

correlation length exponent, ν′ = 2/d, which we verify
numerically for percolation and magnetization processes
both at, Eqs. (2), (3), and close to, Eq. (4), the transi-
tion’s threshold. Since the fluctuations are normal-like
distributed, a hyperscaling hypothesis can be put for-
ward to justify the exponents (ν′, d′f ) in terms of the

thermodynamic ones β′ = 1/2, γ′ = 1, etc. characteriz-
ing the mean-field Ising universality class [37]. Indeed,
one can readily verify that the hyperscaling relations
dν′ = 2β′ + γ′ and d′f = d − β′/ν′ are identically sat-
isfied. In this light, our results hold a universal character
and we expect the phenomenon of fractal fluctuations to



5

be experimentally observable in other models undergoing
mixed-order transitions [38], e.g. in colloidal crystals [16],
networks of active gels [15] or interdependent supercon-
ductors [39].
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