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The modular commutator is a recently discovered entanglement quantity that quantifies the chi-
rality of the underlying many-body quantum state. In this Letter, we derive a universal expression
for the modular commutator in conformal field theories in 1 + 1 dimensions and discuss its salient
features. We show that the modular commutator depends only on the chiral central charge and the
conformal cross ratio. We test this formula for a gapped (2 + 1)-dimensional system with a chiral
edge, i.e., the quantum Hall state, and observe excellent agreement with numerical simulations.
Furthermore, we propose a geometric dual for the modular commutator in certain preferred states
of the AdS/CFT correspondence. For these states, we argue that the modular commutator can be
obtained from a set of crossing angles between intersecting Ryu-Takayanagi surfaces.

One of the overarching themes of research in theoreti-
cal physics over the past few decades has been the study
of entanglement in interacting quantum many-body sys-
tems. Calculation of the canonical measure of entangle-
ment — entanglement entropy — has played a crucial
role in elucidating the physics of topological order [1, 2],
conformal field theory [3], and holographic duality [4].

Recently, a new entanglement quantity known as
the modular commutator [5, 6] was introduced [7].
The modular commutator is defined as J(A,B,C)ρ :=
iTr(ρABC [ln ρAB , ln ρBC ]) for a generic tripartite quan-
tum state ρABC [8], and unlike other known entangle-
ment measures, it is odd under time reversal. In the
context of topologically ordered systems in 2 + 1D, the
modular commutator was used to extract the chiral cen-
tral charge of the edge theory [5, 6].

In this Letter, we derive a universal expression for the
modular commutator in conformal field theories in 1+1D
and discuss its physical implications. Let A,B, and C be
three contiguous spacetime intervals; see Fig. 1(a). In
this setup, we derive a general expression for J(A,B,C)
in the vacuum. If the subsystems lie in a single time-slice,
the expression simplifies to

J(A,B,C)|Ω〉 =
πc−

6
(2η − 1), (1)

where η = (x2−x1)(x4−x3)
(x3−x1)(x4−x2) is the cross ratio, c− = cL− cR

is the chiral central charge of the CFT, and |Ω〉 is the vac-
uum state. Using a standard conformal mapping from
the complex plane to the cylinder, expressions for the
modular commutator for finite systems in the vacuum
and infinite systems at finite temperature are also de-
rived.

We primarily discuss two applications. First, we argue
that Eq. (1) can be a useful tool to study the entangle-
ment structure of 2+1D chiral gapped systems at their
edges. Specifically, consider three contiguous intervals
A,B, and C at the edge of a disk; see Fig. 3(a). We

propose the following formula — based on an argument
utilizing Eq. (1) — for the modular commutator:

J(A,B,C)|ψ2D〉 =
πc−

3
η, (2)

where c− is the chiral central charge of the 2+1D system
(defined as a coefficient appearing in the edge energy cur-
rent [9–11]) and |ψ2D〉 is the ground state. We test Eq. (2)
numerically for the Chern insulator and p+ip topological
superconductor, demonstrating excellent agreement.

When A,B and C cover the entire edge (see Fig. 3(b)),
i.e., η = 1, we provide an independent information-
theoretic argument for a stronger result:

J(A,B,C)|ψ̃2D〉 =
π

3
c−, (3)

where |ψ̃2D〉 is any state which is indistinguishable from
|ψ2D〉 in the bulk region. We emphasize the generality of
Eq. (3) in two directions. First, this equation holds even
if there is an excitation localized at the edge. Second,
the argument continues to hold even if the shape of the
edge is deformed continuously. The underlying argument
— based on the properties of modular commutator [5, 6]
and techniques from the entanglement bootstrap [12] —
reveals that the robustness of this result originates from
the entanglement area law of the bulk.

Second, we propose a holographic interpretation of
Eq. (1). Our interpretation rests on an observation that
Eq. (1) can be recast as

J(A,B,C)|Ω〉 =
πc−

6
cos θ, (4)

where θ is the crossing angle of the two geodesics (i.e.,
two Ryu-Takayanagi surfaces [4]) in AdS3, each anchored
at the boundaries of AB and BC, respectively. We verify
this correspondence at both zero and finite temperature
and propose a generalization to any state whose bulk
geometry has a “moment of time symmetry” [13] [14].
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FIG. 1. (a) Three contiguous intervals A,B, and C, on a
single-time slice. (b) Contiguous intervals on a circle S1 with
circumference L.

Our approach to derive Eq. (1) will be geometric in
nature. The main advantage of this derivation is that it
makes the generalization of Eq. (1) to arbitrary spacetime
intervals straightforward. Alternative derivations shall
be discussed in the Supplementary Material (SM) [15] as
well.

Geometric derivation— Our derivation of Eq. (1) is
based on the following two observations. First, the mod-
ular commutator J(A,B,C) can be viewed as the lin-
ear response of the BC entanglement entropy under the
AB modular flow [6, 16, 17]. Second, for a 1+1D CFT,
the modular flow for a finite interval generates a spe-
cial conformal transformation that keeps the two ends
of the interval fixed [18–20]. Thus, we will compute the
modular commutator J(A,B,C) by the change of the
entropy SBC from the infinitesimal conformal transfor-
mation generated by the modular flow corresponding to
AB.

The modular flow of an operator O with respect to a
state ρ and a subsystem A is defined as O(s) := ρisAOρ

−is
A

for s ∈ R, where ρisA := eis log ρA is the unitary operator
generated by the modular Hamiltonian. We consider the
action of the modular flow associated with the interval
AB in the vacuum. Define the following one-parameter
family of density matrices: ρABC(s) := ρisABρABCρ

−is
AB .

The response of the von Neumann entropy of ρBC(s) =
TrA(ρABC(s)) under this flow is related to the modular
commutator by [6]:

dS(ρBC(s))

ds

∣∣∣∣
s=0

= −J(A,B,C)ρ, (5)

with S(ρ) := −Tr(ρ ln ρ).
In quantum field theory, the observables restricted to

the interval AB completely determine the observables in
the full causal diamond D(AB), i.e., the domain of de-
pendence of AB. In 1+1D CFT, the modular flow as-
sociated to a spacelike interval in the vacuum is a local
transformation of observables lying within its causal di-
amond [18]. The relevant vector fields are illustrated in
Fig. 2.

Now we can use the following regulated form of the
single-interval entanglement entropy for chiral CFTs in
1+1D [21] [22]:

SBC =
cL
12

ln
(v4 − v2)2

εv2εv4
+
cR
12

ln
(u4 − u2)2

εu2εu4
, (6)

Within the causal diamond:(
du
ds

dv
ds

)
= 2π

( (u−u1)(u3−u)
u1−u3

(v−v1)(v3−v)
v3−v1

)

FIG. 2. Modular flow in the interior of the causal diamond
D(AB) and the associated vector field. Under an infinitesimal
flow by a parameter ds, interval AB becomes A′B′ and a
boost angle dχ develops at the left end of B′.

where u = t−x and v = t+x are light-cone coordinates,
u2 = t2 − x2, v2 = t2 + x2, u4 = t4 − x4, v4 = t4 + x4,
and εu2, εu4, εv2, εv4 denote the UV cutoffs in the u and
v directions at the endpoints x2 and x4. Details of the
cutoff prescription are discussed in the supplementary
material.

Note that the point x4 is unaffected by the modular
flow with respect to AB, because it is outside D(AB).
Thus, u4, v4 and εu4, εv4 remain unchanged; the change
only occurs at x2. Importantly, the cutoffs εu(v)2(4) trans-
form nontrivially under local diffeomorphisms. They are
rescaled by the local boost angle (see Fig. 2),

d ln εv2 = −d ln εu2 = dχ, (7)

where dχ = 2π(x23−x12)
x13

ds is the boost angle at x2. Here
we use the convention xij = xj − xi. Differentiating
Eq. (6) and using Eq. (7) we obtain

J(A,B,C)|Ω〉 =
πc−

6
(2η − 1), (8)

where the chiral central charge is c− = cL − cR and the
cross ratio is η = x12x34

x13x24
. Generalization of Eq. (8) to

general Cauchy surfaces is straightforward, and can be
used to determine cL and cR individually in terms of the
modular commutator; see the SM for details.

Eq. (8) for J(A,B,C)|Ω〉 possesses a set of important
properties, summarized below. Firstly, J is odd under
time reversal, which exchanges cL and cR. This is in
contrast with other entanglement measures such as the
entanglement entropy, which are even under time rever-
sal. Secondly, J is odd under the map η → 1 − η. In
particular, J = 0 at η = 1/2 where the modular commu-
tator changes sign. Thirdly, as the length of one interval
gets small, J does not vanish but takes on universal val-
ues. As x1 → x2 or x3 → x4, η → 0 and J → −πc−/6,
and similarly, as x2 → x3, η → 1 and J → πc−/6.
In fact, we shall later see that the universal difference
J(η = 1) − J(η = 0) = πc−/3 is exactly the modular
commutator for 2D chiral topological order. Lastly, if
c− 6= 0, we have J = πc−/6 6= 0 when ABC is the entire
circle. This distinguishes |Ω〉 from any pure state on a
Hilbert space factorized into a tensor product on spatial
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regions, as the latter necessarily has J = 0. Thus, c− 6= 0
is incompatible with any lattice regularization (see also
[23] for an alternative argument) [24].

More generally, one can consider a thermal state at
inverse temperature β on a circle of circumference L, de-
noted as ρ(β;L). Through standard conformal mappings
from planes to cylinders [25], one can show that the mod-
ular commutator J(A,B,C) remains to be in the form in
Eq. (1) in two limits β/L→ 0,∞, with the cross ratio η

replaced by η
(β;L)
eff :

η
(β;L)
eff =


sin(πx12/L) sin(πx34/L)
sin(πx13/L) sin(πx24/L) , β/L→∞,

sinh(πx12/β) sinh(πx34/β)
sinh(πx13/β) sinh(πx24/β) , L/β →∞.

(9)

Chiral thermal state— The modular commutator can
be nonzero even for non-chiral CFTs, provided that the
temperatures for the left- and the right-moving modes
are unequal. We refer to such states as chiral thermal
states [26–28]:

ρ(βL,βR;L) =
1

Z
e−βLHL−βRHR . (10)

Here HL and HR are the Hamiltonians of the left- and
right-moving sectors, respectively. Similarly, (βL, βR)
represent inverse temperatures for the respective modes.

There are a few reasons to study chiral thermal states.
First, a chiral thermal state can be obtained by apply-
ing the Lorentzian boost to a thermal state. Second,
there are concrete lattice models whose underlying state
at low temperature can be well-described by a chiral ther-
mal state. For instance, it was noted that the reduced
density matrix near the edge of a chiral topological or-
der in 2 + 1D can be represented by a chiral thermal
state with (βL, βR) = (∞,finite) [27]. Third, as we show
in the SM, one can sometimes explicitly construct chiral
thermal states in lattice models, making the numerical
verification tractable.

From Eq. (9), for a general chiral thermal state
ρ(βL,βR;L) we have

J(A,B,C)ρ(βL,βR;L) =
π

3
c(η

(βL;L)
eff − η(βR;L)

eff ), (11)

where c = cR = cL. We construct chiral thermal states
for the free fermion CFT on the lattice and compute the
modular commutators for various choices of parameters.
The numerical result agrees excellently with Eq. (11) (see
SM for details).

Edge of 2+1D chiral topological order — The chiral
thermal state can provide insights into the edges of 2+1D
gapped systems with non-zero chiral central charge, de-
noted as c− [9–11, 27]. (We choose a different font to
distinguish two concepts: the chiral central charge c− of
a 2+1D gapped phase versus c− for a 1+1D chiral CFT.)

Consider a ground state |ψ2D〉 on a disk for concrete-
ness; see Fig. 3. For an annulus which covers the entire

FIG. 3. A 2+1D gapped chiral system on a disk and vari-
ous choices of subsystems. The sizes (width) for subsystems
within the bulk (adjacent to the edge) are large compared to
the bulk correlation length.
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FIG. 4. J(A,B,C) versus η for the Chern insulator, which
is realized by filling the lowest band of the Hofstadter model
with flux π/2. We use a square lattice on a cylinder with
circumference L = 144 and height W = 32. A,B,C are
rectangular strips on the boundary with length LA, LB , LC

and width w. Left: We fix w = 10 and vary the lengths
LA, LB , LC . Blue dots represent numerical data and orange
line represents the analytical prediction Eq. (12). Right:
We choose several (LA, LB , LC) and vary w. The three
choices (LA, LB , LC) = (48, 48, 48), (36, 36, 36), (24, 48, 24)
correspond to η = 1, 1/2, 1/4, respectively.

edge, e.g., the annulus in Fig. 3(a), the reduced density
matrix of |ψ2D〉, can be viewed as a 1+1D system. If
the edge is completely chiral (that is when, e.g., it only
has left-moving modes but not right-moving modes), it is
expected to be described by a chiral thermal state whose
c equals c− [27].

Then by applying Eq. (11) to the interval choice in
Fig. 3(a) and taking βL = ∞, βR � LA, LB , LC (the
lengths of the regions), we arrive at a prediction

J(A,B,C)|ψ2D〉 =
π

3
c−η. (12)

We have tested this formula numerically for a Chern in-
sulator and observed excellent agreement; see Fig. 4. We
propose this formula to hold for general translation in-
variant topologically ordered systems in 2+1D.

Topological argument— When the union of intervals
A, B, and C is the entire annulus, as shown in Fig. 3(b),
Eq. (12) becomes J = π

3 c−. Here we present an entirely
different argument for this formula, based on the entan-
glement area law of the 2+1D bulk [1, 2]. Our argument
reveals an extra degree of robustness of this expression:

J(A,B,C)|ψ̃2D〉 =
π

3
c− for Fig. 3(b). (13)
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We show that Eq. (13) holds for any state |ψ̃2D〉 locally
indistinguishable from the ground state within the bulk.
Note that we need not assume |ψ̃2D〉 to be the ground
state; our argument applies even if there are edge excita-
tions, as long as the global state is pure.

The key observation that leads to Eq. (13) is an equiv-
alence we will establish between the edge and the bulk
modular commutator for the set of subsystems shown in
Fig. 3(b):

J(A,B,C)|ψ̃2D〉 = −J(X,Y, Z)|ψ̃2D〉. (14)

Note that the regions A,B, and C lie at the edge while
the regions X,Y, and Z lie entirely in the bulk. Once
this relation is established, one can use the formula for
the bulk modular commutator [5], i.e., J(X,Y, Z)|ψ̃2D〉 =

−π3 c− to complete the derivation.
The equivalence of the two modular commutators di-

rectly follows from Section VI of Ref. [6], as we ex-
plain below. (See SM for a more detailed explana-

tion.) First of all, the state |ψ̃2D〉, being indistinguish-
able from the ground state in the bulk, satisfies the ax-
ioms of entanglement bootstrap [12]. Of particular im-
portance to us is the axiom A1 in Ref. [12], which holds
for local disk-like regions away from the edge; it says
(SBC + SCD − SB − SD)|ψ2D〉 = 0 for the green disk
BCD shown in Fig. 3(b), where |ψ2D〉 is the ground
state. This axiom, applied to the bulk disk XY ZW of
Fig. 3(c), gives I(A′ : Y |X) = I(C ′ : Y |Z) = 0, where
I(X : Z|Y ) ≡ SXY +SY Z−SXY Z−SY is the conditional

mutual information. It then follows that, for state |ψ̃2D〉:

J(X,Y, Z) = J(A′X,Y,C ′Z) = −J(A′X,WB′, C ′Z).

Letting A = A′X, B = B′W , and C = C ′Z, we conclude
Eq. (14).

Let us emphasize the generality of the argument above.
Note that nowhere in the derivation did we use any sym-
metry (e.g., translation or rotation symmetry) nor did
we use any condition of the state in the vicinity of the
edge. For instance, even in the presence of strong disor-
der, even though the conformal symmetry does not hold
— not even approximately — formula (13) still holds; this
is numerically verified for integer quantum Hall states,
see the SM. Moreover, the argument holds as long as
|ψ̃2D〉 = Uedge|ψ2D〉, where Uedge is any unitary operator
along the edge which is thin compared to the width of
the subsystems; specifically, Uedge should be supported
within the annulus A′B′C ′ for the choice of ABC in
Fig. 3(c). (Under a plausible assumption, the unitarity
assumption can be dropped. See SM for the detail.)

Holographic interpretation— In the AdS/CFT corre-
spondence [29], entanglement quantities of the bound-
ary CFT are mapped to geometric quantities in the
bulk of an asymptotic AdS space. For example, the
Ryu-Takayanagi (RT) formula [4] implies that in ordi-
nary non-chiral AdS/CFT, the entanglement entropy of

a boundary regionA in a time-symmetric state is given by
the minimal length of the bulk geodesic γA (also known
as the RT surface) homologous to the region. Some ex-
amples are shown in Fig. 5.

FIG. 5. Verified cases of the holographic conjecture: (a) At
zero temperature. Each disk is a Poincaré disk and the two
are related by an isometry. (b) At a finite (high) temperature
such that β � L.

Here we propose to extend the holographic dictionary
to the modular commutator for chiral realizations of
AdS/CFT, e.g. [30]. In states whose bulk geometries
are locally AdS3 [31] with a moment of time symmetry,
we propose:

J(A,B,C) =
πc−

6

∑
i

cos θi, (15)

where {θi} is the set of crossing angles of the RT surfaces,
i.e., geodesics γAB and γBC . Each θi is chosen such that
γAB , seen inwardly, lies at the right side of the angle; see
Fig. 5 for examples. In general, AB and BC may have
multiple connected components; see SM for the relevant
discussion.

We can verify the conjecture for a few simple cases
shown in Fig. 5. The vacuum state of chiral AdS3/CFT2

is described by the ordinary vacuum AdS3 spacetime [30].
On the t = 0 slice of this spacetime, we can apply a
bulk isometry to place the intersection point of any two
geodesics at the center of the Poincaré disk. Then the two
geodesics become straight lines with a crossing angle θ.
Since the cross ratio η — given by η = (x12x34)/(x13x24)
— is preserved under this isometry, the identity 2η−1 =
cos θ follows from simple trigonometry. Thus, we arrive
at

J(A,B,C)|Ω〉 =
πc−

6
cos θ. (16)

At high temperatures β � L, thermal states in CFT are
dual to BTZ black holes [32] in the bulk; see Fig. 5(b).
An analogous derivation applies because the BTZ black
hole can be viewed as a quotient of global AdS3. The
result confirms our conjecture. (See SM for details.)

In the semiclassical limit of AdS/CFT, a boundary
modular Hamiltonian K is dual to a bulk geometric op-
erator which, in non-chiral AdS/CFT, is proportional to
the area of the RT surface [33, 34]. In chiral AdS/CFT,
the operator has additional terms [35]; we will call the full
operator F. The modular commutator of contiguous in-
tervals can be written in terms of commutators of F oper-
ators. This commutator is zero in the vacuum for a single
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time-slice if the chiral central charge is zero [36], which
matches Eq. (1). However, for chiral theories, Eq. (15)
implies the uncertainty relation

∆F (AB) ·∆F (BC) ≥ πc−
12
| cos θ|. (17)

Thus, the uncertainty in the geometric operator F grows
parametrically with the chiral central charge.

Discussion— In this Letter, we computed the mod-
ular commutator [5, 6] in 1+1D CFTs, arriving at a
simple formula Eq. (1) and discussing its applications
in condensed matter systems and holography. For fu-
ture work, it will be interesting to verify our conjecture
in AdS/CFT to more general setups, e.g., disconnected
intervals, states whose bulk geometries have no moment
of time symmetry, and states with bulk quantum mat-
ter. Another interesting open problem is how our conjec-
ture generalizes to higher dimensions. On the condensed
matter side, it would be interesting to understand how
Eqs. (12) and (13) generalize when the sector of the chiral
edge is modified by an anyon in the bulk.

Note added— After posting this manuscript, we no-
tice a related work [37] which has some overlap with this
work.
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