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Active nematics can be modeled using phenomenological continuum theories that account for the
dynamics of the nematic director and fluid velocity through partial differential equations (PDEs).
While these models provide a statistical description of the experiments, the relevant terms in
the PDEs and their parameters are usually identified indirectly. We adapt a recently developed
method to automatically identify optimal continuum models for active nematics directly from spatio-
temporal data, via sparse regression of the coarse-grained fields onto generic low order PDEs. After
extensive benchmarking, we apply the method to experiments with microtubule-based active nemat-
ics, finding a surprisingly minimal description of the system. Our approach can be generalized to
gain insights into active gels, microswimmers, and diverse other experimental active matter systems.

Active nematics demonstrate how energy-consuming
motile constituents can self-organize into diverse non-
equilibrium dynamical states [1–3]. They offer a versa-
tile platform to advance our fundamental understanding
of non-equilibrium physics and develop materials with
properties that are thermodynamically forbidden in equi-
librium. These twin goals require theoretical models that
reveal the mechanisms underlying the emergent dynam-
ics, and guide rational design to elicit desired spatio-
temporal dynamics. Here, we combine data-driven model
discovery with experiments and computational modeling
to identify the most parsimonious model for an exper-
imental realization of active nematics. Using the dis-
covered model, we identify the relationship between key
theoretical parameters, such as the magnitude of activity,
and experimental control variables. The described meth-
ods can be applied to diverse active nematics ranging
from shaken rods to motile cells [4–9], and other forms
of active matter.

Our target is a quantitative description of microtubule-
based active nematics. Being reconstituted from tun-
able and well-characterized components, they afford a
unique opportunity to develop continuum theory mod-
els and connect these to the microscopic dynamics [10–
12]. Hydrodynamic theories, built on purely symmetry
considerations, have provided insight into dynamics of
active nematics in general, and the microtubule-based
system specifically. For example, such models have been
used to describe defect dynamics [13–18], induced flows
in the suspending fluid [19–21], and how confinement in
planar [22–24] and curved geometries [25–27] controls de-
fect proliferation and dynamics. These efforts employed
a range of hydrodynamic models that assumed differ-
ent symmetry-allowed terms, and the parameters of the
model were largely undetermined. Thus, the field lacks
a quantitative model and understanding of magnitudes
and sources of error in existing approximations.

Data-driven approaches and machine learning have
been successfully applied to study active matter [28].
However, previous studies for active nematics were lim-
ited to parameter optimization with a pre-assumed model
[16, 29], or machine learning forecasting [30, 31] which,
while successful, does not provide an analytical equation
for the learned dynamics. To overcome these limitations,
we build on the Sparse Identification of Non-linear Dy-
namics (SINDy) framework [32, 33] that was recently ap-
plied to particle-based simulations of active matter [34]
and computational and experimental data of overdamped
polar particles [35]. This method filters out the best
parsimonious fit to the data from a highly generalized
class of potential models. We adapt key improvements of
this method [36–39] to the microtubule-based active ne-
matics system. We then employ extensive birefringence
and fluorescence measurements of microtubule alignment
and PIV measurements of velocities, to identify equa-
tions governing both the orientational dynamics and the
activity-driven flows. This enables direct inference of the
underlying model that is rigorously supported by exper-
imental data. In contrast to the hard-to-interpret deep
neural nets generated by machine learning approaches,
our method yields an optimal analytical model and esti-
mated parameter values.

With the available alignment and velocity measure-
ments, we seek models describing the active nematic as a
single 2D fluid with nematic symmetry [12, 40]. Hence,
there are two fields: the symmetric-traceless nematic ten-
sor order parameter Q = s[n ⊗ n − (1/2)I] and a flow
field u, with n as the local orientation unit vector and s
the scalar order parameter. We assume constant density
and an incompressible fluid: the former is justified since
the scalar order parameter captures density variations
near the defects (see below); the latter is validated by
numerical measurements of the divergence of the veloc-
ity field [41]. Our model then consists of 4 independent
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scalar fields: Qxx, Qxy, ux, uy, and a latent variable P
(pressure).

We begin by postulating the generalized form of the
model. The Q-tensor dynamics takes the form common
to all continuum theories of active nematics:

∂tQij =
∑
k

akijFk(Q,u,∇Q,∇u, . . .) (1)

where the Fk’s are combinations (potentially non-linear)
of Q, u, and their spatial derivatives up to a maximum
order, and the akij ’s are the corresponding phenomenolog-
ical coefficients. For instance, in 2D, a well-known model
for the Q-equation is [12]:

∂tQ + u · ∇Q− S = DrH (2)

where S = −(Ω ·Q−Q ·Ω) + λE− 2λQ(Q : ∇u) is the
co-rotation term and H = a2Q + a4 Tr

(
Q2
)
Q + K∇2Q

is the negative gradient of the liquid crystal free energy.
Here, Eij = (∂iuj + ∂jui)/2 and Ωij = (∂iuj − ∂jui)/2
are the strain rate and vorticity tensors respectively, λ
is the flow alignment parameter, Dr is the rotational dif-
fusion coefficient, K is the elastic constant, and a2 > 0,
a4 < 0 are phenomenological coefficients corresponding
to the isotropic-nematic transition. (See Supplemental
Material [42], which includes Refs.[30, 43–47], for further
discussion.) We build a library of the terms Fk (n = 246)
that can capture models well beyond Eq. (2). Further,
we make no physics-based simplifying assumptions, e.g.
translational, rotational, and Galilean invariance, for the
alignment equation (Eq. 1). Hence, discovery of a model
which satisfies these conditions is a test of the algorithm
(see Supplemental Material [42]).

For the flow equation, the usual form assumed for
model-discovery is Navier-Stokes-like, with the time-
derivative on the left side and rest of the terms on the
right side [33, 37–39]. However, because the active ne-
matic is in the low Reynolds number regime [15, 20],
the significance of the time-derivative term itself needs
investigation. Indeed, active nematic flows have been
modeled using pure Stokes [30, 48, 49], unsteady Stokes
[20, 50], and full Navier-Stokes [12–14, 19, 22, 51–55] for-
mulations. While these approaches have been compared
numerically [56], there has yet to be a definitive indi-
cation of the contributions of the inertial terms for this
system. Since the viscous forcing is guaranteed to exist
in this regime, we assume a form

∇2u = c0∂tu +
∑
i

ciHi(Q,u,∇Q,∇u, . . .) (3)

with ∇·u = 0, and the time-derivative on the right hand
side so that its contribution can be evaluated. For in-
stance, the lowest order symmetry-allowed ‘active stress’
in the flow equation is the well-known −αQ, with α > 0
being the extensile ‘activity’ [12, 57]. In our model form,
this gives a general flow equation:

∇2u = c0∂tu + c1u · ∇u + c2∇P + c3∇ ·Q + . . .

with the coefficient c3 as the ratio of the activity to the
viscosity, α/η.

We perform model discovery from the data as follows
[58]. Setting Nx, Ny, and Nt as the number of mea-
surements in the two spatial dimensions and time re-
spectively, we randomly select m of the total NxNyNt

space-time points. At each selected space-time point,
we evaluate a linear system, e.g. for the Qxx equation,
(∂tQxx)m×1 = Fm×n · ~an×1. The derivatives are com-
puted numerically, which amplifies noise in the data. To
mitigate noise, we use two different approaches. In the
integral formulation, for each of the m selected space-
time points and n terms, we compute a local average
in space and time in a small window (e.g. 5x5x5 pix-
els) [36]. This approach is effective for model discovery,
but leads to inaccurate parameter estimates for the flow
equation — since pressure is not an observable in the
experiments, we must perform the operation ẑ · ∇× on
the flow equation [33, 37], which adds one more order of
derivatives, amplifying the noise. To obtain more pow-
erful noise mitigation at the cost of additional analytical
effort, we adapt a weak formulation of the PDE regres-
sion problem [38, 39]. Briefly, we fit the data to the weak
form of Eq. (3):∫

Ωk

w ·
[
∇2u = c0∂tu + c1u · ∇u + . . .

]
(4)

By choosing an appropriate test function w (s.t. the
boundary terms vanish after integration-by-parts), we
can move the derivatives from the noisy experimental
data to the exact test functions, and also integrate out
latent variables using integration-by-parts (in this case
by making w divergence-free, see Supplemental Material
[42]). The terms included in the library are in Table S1.

Next, we seek optimal fits to these equations with the
minimum number of non-zero terms, thus yielding an in-
terpretable model that accurately describes the data but
avoids overfitting. To this end, we perform Ridge regres-
sion (least-squares gives similar results), starting with
all the terms in the library, and then eliminating the
least important terms one-by-one to obtain a hierarchy
of models [36]. Obtaining the R2 value at each step, we
plot the optimality curve as the logarithm of (1−R2) as
a function of the number of non-zero terms left in the
model. We define the optimal number of terms n∗ as
the n-value at which the second derivative of the curve
is highest, indicating the largest drop in log

(
1−R2

)
.

To demonstrate the validity of our approach, we first
benchmark it against data generated by numerical simu-
lations (Fig. S1, Table S2, which includes Refs.[59, 60]).
We consider two qualitatively different models for flow:
one is purely Stokesian with substrate friction, and the
other is unsteady Stokes flow [20, 50]. After adding syn-
thetic noise to the simulation data, we apply the integral
formulation to the alignment equation and the weak for-
mulation to the flow equation. The framework returns



3

the correct equations with very small errors in the iden-
tified coefficients (Fig. S1, S2 and S3 [42]). Thus, we es-
timate important phenomenological parameters directly
from the data, including the activity level α, bending
modulus K, flow alignment coupling λ, and bulk free
energy coefficients a2 and a4. Further benchmarking
against varying window sizes and noise levels (see Supple-
mental Material [42]) indicates that the integral formula-
tion benefits from high resolution, low noise data whereas
the weak formulation benefits from a large amount (in
space and time) of data.

Next, we perform model discovery on experimental
microtubule-based active nematics (Fig. 1a, Supplemen-
tal Material [42] which includes Refs.[61–66]). Coarse-
graining the director, we obtain a Q-tensor field that
contains the spatially varying scalar order parameter and
orientation (Fig. 1b). The low-fluorescence-intensity re-
gions, corresponding to low microtubule density near the
defect cores, are correlated with the low-scalar-order-
parameter regions, thus capturing the density variation
near the defects (Movie S1 [42]). This justifies the con-
stant density assumption. The velocity is obtained from
PIV analysis (Fig. 1c). We varied the ATP concentration,
which determines the motor stepping speed and thus de-
termines the structure and dynamics of active nematics.
We collected the data on a field of view several vortex
diameters wide (Fig. 1c) for long times (> 20 velocity
autocorrelation times, defined below). In addition, we
acquired one more data set with higher resolution but a
smaller field of view, denoted as the ‘HR-SF’ data [67]
(see Fig. S4 [42]). Optimality curves for the alignment
and flow equations respectively (Figs. 1d,e) lead to the
following optimal model:

∂tQ = − u · ∇Q− (Ω ·Q−Q ·Ω)

+ E− 2(Q : ∇u)Q +K∇2Q

η∇2u = + α∇ ·Q +∇P. (5)

Note that we added the term K∇2Q because this or an
analogous term with higher order derivatives must be
present for stability, discussed further below.

We arrived at this model as follows. For the align-
ment equation, the HR-SF data set (purple triangles in
Fig. 1d) has a low error (R2 = 0.97) and an abrupt shoul-
der that clearly defines a threshold for the optimal model.
In comparison, the lower resolution data sets have larger
error (see Table S3 [42]) and less distinct thresholds.
Consistent with the benchmarking of numerical data de-
scribed above and in Supplemental Material [42], these
results show that high resolution is more important than
a large field-of-view for determining the alignment equa-
tion. The threshold chosen for each data set is indicated
by the tail of the corresponding arrow in Fig. 1d, and the
resulting model for each data set is given in Table S3 [42].
Table S4 [42] gives the lowest-order terms beyond the
threshold. For all data sets, the optimal model is domi-
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FIG. 1. Discovering active nematic hydrodynamics from ex-
perimental data. (a) A representative fluorescence image of
the microtubule-kinesin active nematic at an ATP concen-
tration of 100 µM (scale bar is 200 µm). (b) The computed
director field and scalar order parameter S, and (c) the flow
field and vorticity ω for the data in (a). (d) Optimality curves,
log

(
1−R2

)
vs. number of non-zero terms, for the Qxx equa-

tion from the indicated data sets. The beginning of each arrow
corresponds to the threshold corresponding to the highest-
order term included in the optimal model. (e) Optimality
curves for the weak-form flow equation. In the cases high-
lighted with the dashed oval, the optimal model contains only
the activity term, ∇ ·Q, consistent with Stokesian dynamics.
In (d,e) the purple triangles correspond to the high-resolution,
small field-of-view (HR-SF) data set, while the blue, orange,
green, and red circles correspond to 25 µM, 50 µM, 100 µM,
and 500 µM ATP respectively. (f) Values of the coefficients
of key flow-coupling terms appearing in the optimal models
for various ATP concentrations. The colors are the same as
in (d,e). (g) The fit coefficient of the activity term, α/η, as
a function of the ATP concentration (green circles). This
quantity closely matches the inverse of the velocity correla-
tion time (blue triangles), suggesting that α/η corresponds to
a relevant timescale in the system.

nated by flow-coupling terms, such as the convective and
rotational derivatives and flow alignment. Eq. (5) cor-
responds to the optimal model for the HR-SF data set,
and with the exception of the higher-order flow-alignment
term 2(Q : ∇u)Q, two of the low-resolution data sets.
For other data sets, there is some variability in the terms
near the threshold (Tables S3 and S4), but the terms in
Eq. (5) are all present near the threshold, and other near-
threshold terms can be eliminated because they violate
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known symmetry or conservation criteria for the system.
We include the higher-order flow coupling term because
the HR-SF data set has the highest statistical accuracy
and because it is expected theoretically for stability of the
nematic order parameter. We attribute the variability in
the near-threshold terms for the low-resolution data sets
to statistical inaccuracies arising from the limited exper-
imental data and the small contributions of these terms,
rather than different physics being present at different
ATP concentrations. These results highlight the impor-
tance of the amount and resolution of data for accurately
determining the alignment equation.

The alignment equation recovers Galilean invariance
from the data: the convective and co-rotational deriva-
tives have coefficients of ∼ 1 (Fig. 1f). Furthermore, the
flow alignment parameter, λ ∼ 1 (Fig. 1f), is consistent
with the theoretical result for the high aspect ratio a� 1
of the microtubules, λ = (a2 − 1)/(a2 + 1) → 1 [68].
Importantly, the bulk liquid crystal free energy terms
that stabilize nematic order (with coefficients a2 > 0 and
a4 < 0, see Eq. (2)) are not present in the discovered
model for any data set [69]. This finding supports a pre-
vious model [54] which argued that active flow alignment
acts as an effective free energy that drives nematic order.
These results indicate that the alignment dynamics are
dominated by flow-coupling. In comparison, contribu-
tions from the free energy dissipation to the dynamics are
negligible. Elastic distortion energy terms [70, 71] only
appear above the threshold (see Table S4 [42]). However,
a term of the form K∇2Q, which contains the elastic
terms in the single constant approximation, is required
for numerical stability. Moreover, the elastic terms play a
key role in determining the structure of a nematic in the
vicinity of defects. To understand this apparent contra-
diction, we compare the contributions of the distortion
energy with flow coupling terms as a function of space
(Movie S2 [42]). This shows that the elastic terms are
small everywhere except near defects. When combined
with the fact that the majority of the experimental data
is far from defects due to their small core size and finite
density, this is the likely reason for the absence of elastic
terms in the discovered model (Fig S5).

The optimality curves for the flow equation are almost
flat (Fig. 1e), showing that the active force α/η∇ · Q
alone balances the viscous force. Noting that this is a
fit to the weak form of the equation, we test the strong
form of the discovered equation by comparing the spa-
tial dependence of ∇×∇2u with α/η∇×∇ ·Q and find
good agreement (Movies S3 and S4 [42]). The inertial
terms are absent (not appearing until n ∼ 5), indicating
that the Stokes flow approximation accurately describes
the experimental active nematic. Finally, the absence of
the substrate friction term Γu indicates that the screen-
ing length

√
η/Γ is larger than the typical vortex size of

the flows. This result likely depends on the active ne-
matic system and experimental conditions; for example,
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FIG. 2. Comparisons of results from simulations using the dis-
covered optimal model against the experimental data. (a) In-
verse lifetime of +1/2 defects plotted as a function of α/η for
experiments at different ATP concentrations (green circles)
and simulations using the optimal model performed with dif-
ferent values of α/η (blue squares). For the experiments, the
value of α/η is obtained from the discovered optimal model
at each ATP concentration. The height of the errorbars is
twice the standard error of mean. (b) Defect density plotted
against α/η from experiments (green circles) and simulations
using the optimal model (blue squares). The density in the
simulations is scaled by a constant. The height of the error-
bars is twice the standard deviation.

changing the substrate depth affects the effective friction
coefficient [72]. However, the framework presented here
can be applied directly to other conditions or materials.

The discovered flow equation provides a direct esti-
mate of the scaled activity parameter α/η, an intrin-
sic ‘active time scale’ [73], as a function of the ATP
concentration (Fig. 1g) [74]. Determining the relation-
ship between activity and experimental control parame-
ters has been a significant challenge [21]. The molec-
ular motors that generate activity also act as passive
cross-linkers between steps [75], and in a dense ac-
tive nematic, forces generated by different motors are
largely non-cooperative [76]. To test the estimate of α
against an independent observable, we compare the ac-
tive time scale to the velocity autocorrelation time τ , de-
fined as C̄v(τ) = 1/e, with the autocorrelation function
C̄v(t) = 〈〈u(r, t′ + t) · u(r, t′)〉t′ / 〈u(r, t′) · u(r, t′)〉t′〉r.
These observables closely agree at all ATP concentra-
tions (Fig. 1g).

Finally, we test the optimal model by performing sim-
ulations of Eq. (5). For numerical stability, we include
the K∇2Q term in the Q equation with K = 1 in di-
mensionless simulation units. We compare the mean de-
fect lifetime and defect density [77, 78] as a function of
α/η (Fig. 2). Remarkably, the defect lifetimes for experi-
ments and simulations align well without any fit parame-
ters (Fig. 2a). The defect densities from experiment and
simulation also match, up to a constant scaling factor
[79] (Fig. 2b). The latter cannot be specified — because
the terms in the discovered alignment equation all have
dimensionless coefficients, we cannot directly estimate a
length scale [80].
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In summary, we have applied a data-driven method
to identify equations governing both the orientational
dynamics and the activity-driven flows of microtubule-
based active liquid crystals. The optimal model is sur-
prisingly minimal. It demonstrates that: (1) flow cou-
pling dominates the orientational dynamics, and (2) the
lowest-order active stress, proportional to the local ori-
entational order, together with the vanishing Reynolds
number limit describe the flow. This model is not only
consistent with previous theoretical arguments [54], but
is also less complex than most models considered in the
literature. Our results also show that statistical uncer-
tainty arising from limited experimental data impedes
unequivocal identification of near-threshold terms, but
suggest strategies to mitigate these effects. For example,
acquiring a combination of high-resolution small field-
of-view and low-resolution large field-of-view data sets
would enable more accurate discovery of the alignment
and flow equations respectively. Further, acquiring more
data in the vicinity of defects and/or additional analysis
that preferentially weights data in the vicinity of defects
may identify elastic energy terms.

The identified equations enable mapping between key
model parameters and experimental control variables, in-
cluding the elusive relationship between the magnitude
of activity and ATP concentration. Thus, our results
are the first to assess the quantitative variation of phe-
nomenological theory parameters as a function of ex-
perimental control knobs in active nematics, while also
providing evidence for the validity of the underlying
model. Through comparison of several noise reduction
approaches and extensive benchmarking, we have iden-
tified an approach to model discovery which is highly
robust against experimental noise. This approach can be
extended to study recently developed 3D active nematic
materials [49, 81, 82], complementing existing theoretical
and numerical efforts [48, 52, 83–87]. It can be applied to
a wide variety of active matter systems, or more broadly,
to any system for which observations of dynamics can be
projected onto continuous fields. This process can shed
light on relationships between physical quantities or even
identify new physical mechanisms.

In the final stages of this project, we learned of a com-
plementary, concurrent work that uses symbolic regres-
sion, whose findings are generally consistent with those
of our work [88].
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