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Axion dark matter (DM) may efficiently convert to photons in the magnetospheres of neutron
stars (NSs), producing nearly monochromatic radio emission. This process is resonantly triggered
when the plasma frequency induced by the underlying charge distribution approximately matches
the axion mass. We search for evidence of this process using archival Green Bank Telescope data
collected in a survey of the Galactic Center in the C-Band by the Breakthrough Listen project. While
Breakthrough Listen aims to find signatures of extraterrestrial life in the radio band, we show that
their high-frequency resolution spectral data of the Galactic Center region is ideal for searching for
axion-photon transitions generated by the population of NSs in the inner pc of the Galaxy. We
use data-driven models to capture the distributions and properties of NSs in the inner Galaxy and
compute the expected radio flux from each NS using state-of-the-art ray tracing simulations. We
find no evidence for axion DM and set leading constraints on the axion-photon coupling, excluding
values down to the level gaγγ ∼ 10−11 GeV−1 for DM axions for masses between 15 and 35 µeV.

The quantum chromodynamics (QCD) axion is among
the most well-motivated candidates for physics beyond
the Standard Model, as it is capable of both resolving the
Strong CP Problem and accounting for the observed dark
matter (DM) abundance [9–15]. Axion masses spanning
from 10 − 100 µeV constitute a particularly compelling
range of parameter space, as the DM abundance is ar-
guably achieved most naturally for these candidates [16–
22].

Recent work has shown that QCD axions may effi-
ciently convert into photons in the magnetospheres of
neutron stars (NSs), generating spectral lines that may
be observable using near-future radio telescopes [7, 8, 23–
33]. Axion-like particles (ALPs), arising ubiquitously in
String Theory from the compactification of extra dimen-
sions [34, 35] and having a comparable phenomenology to
the QCD axion, represent a compelling alternative DM
candidate with the potential to be observed by radio tele-
scopes today. In this work we use observations of the
Galactic Center (GC) from the 100-m Robert C. Byrd
Green Bank Telescope (GBT), collected as part of the
Breakthrough Listen (BL) project searching for extrater-
restrial intelligence [36], to search for axion DM across
the mass range ma ∈ (15, 35) µeV.

A majority of the current axion DM experiments at-
tempt to probe the coupling of axions to electromag-
netism, given by L = gaγγ aE ·B, where E (B) is the

∗ jwfoster@mit.edu
† s.j.witte@uva.nl
‡ brsafdi@berkeley.edu

electric (magnetic) field, a is the axion field, and gaγγ
is a coupling constant (with units of inverse energy). In
the presence of a static external magnetic field, this in-
teraction induces a mixing between axions and electro-
magnetic radiation, allowing in some cases for an effi-
cient conversion between the two. Among the most suc-
cessful axion DM experiments are ADMX [4, 37, 38] and
HAYSTAC [2, 3, 39], which attempt to leverage this prin-
ciple using resonant cavities that are tuned to amplify
electromagnetic signals generated from a particular axion
mass. These experiments have set powerful constraints
on the axion-photon coupling in the mass range studied
here; the current limits from these experiments are illus-
trated in Fig. 1 (blue bands) and are shown alongside
the constraints from the CAST experiment [1] (black),
a recast constraint from radio observations from the GC
magnetar (produced by comparing the 95% upper limit
on the flux density used in [7, 8, 33] with Monte Carlo re-
alizations of the GC magnetar obtained using our forward
modeling framework) , and the axion-photon couplings
arising in the DFSZ [40, 41] and KSVZ [42, 43] bench-
mark models of the QCD axion. The two aforementioned
models represent only a subset of a much broader range
of QCD axions, some of which may have significantly
enhanced axion-photon couplings [44, 45]. We also high-
light in Fig. 1 the region of parameter space for which
ALP DM may explain the primordial baryon asymme-
try [6] – this region is labeled ‘ALP Cogenesis’.

Despite their astronomical distances from Earth, NSs
provide competitive environments in which to search for
signatures of axion DM because these objects contain
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Figure 1. Upper limit (95% CL) on the axion-photon coupling
derived in this work using the BL radio observations of the
GC. We illustrate the median limit over 100 MC realizations
of the NS population (red line), and the corresponding 68%
and 95% statistical uncertainties on the population model (see
text for details). We compare our upper limit to those from
the CAST [1], HAYSTAC [2, 3] and ADMX [4, 5] experiments,
the prediction from ALP-cogenesis [6], and radio observations
of the GC magnetar [7, 8], which we recast using our modeling
(see text).

enormous magnetic fields (approaching, or even exceed-
ing, field strengths of ∼ 1015 G) and are surrounded by
a dilute, radially decreasing plasma [46]. Collectively
these features induce strong resonant transitions between
axions and photons, a process that is triggered when
the plasma mass induced by the ambient charge density
matches the axion rest mass [23–25, 27, 30, 32, 47].

The axion-photon conversion process in realistic NS
magnetospheres (including photon refraction, photon ab-
sorption, plasma broadening, the anisotropic response of
the medium, General Relativistic effects, etc.) has been
described and simulated with increasing complexity in
recent years [26, 28, 30–32]. The signal appears as a
narrow radio line at the frequency corresponding to the
axion mass. Here, we search for the collective set of ra-
dio lines induced from the conversion of axions in the
population of NSs located near the GC. Since each radio
line will be Doppler-shifted by the relative motion of the
associated NS, the signal appears as a forest of narrow
lines centered at the frequency f = ma/2π [26].

The GC NS population signal as observed by GBT
was previously modelled in [26] using the NS population
models of [48, 49], which have been constructed so as to
reproduce observed pulsar distributions [50]. We improve
upon the population models in this work by incorporat-
ing more recent developments in the understanding of NS
magnetic field evolution and by more carefully modeling
the spatial distribution of NSs in the GC region using
the observed star formation history. A search for axions
from the GC NS population was previously performed

using the Effelsberg 100-m telescope [29] in the L-band
(ma ∈ (5.2, 6.0) µeV) and S-band (ma ∈ (9.8, 11.0) µeV);
relative to [29], our present search covers a broader mass
range (ma ∈ (15, 35) µeV), makes use of more exposure
time (∼280 min as opposed to ∼80 min in [29]), uses im-
proved NS population models, and incorporates state-of-
the-art simulations for the axion-photon conversion pro-
cess at the level of the individual NS [30]. Observations
from the Very Large Array (VLA) of the GC magnetar
SGR J1745-2900 have also been interpreted in the con-
text of axion-photon conversion [7, 8, 33] — a search first
suggested in [25]. Our present search includes the GC
magnetar within the field of view and has a stronger ra-
dio flux sensitivity, thus offering a notable improvement
over the VLA analysis in the mass range studied.

Data selection and reduction.— We use C-Band
data collected by the BL GBT GC survey [36] over four
different observing dates that sampled the region of the
GC using a hexagonal tiling, with a central pointing (A-
region, pointing denoted as A00), as well as an interior
ring (B-region) with six pointings, and an exterior ring
(C-region) with twelve pointings. The A-region is cen-
tered at the GC, while the B-region (C-region) pointings
are centered ∼ 1.8′ (∼ 3.6′) away from the GC. The full
width half max (FWHM) of the GBT beam at the cen-
tral frequency of the C-band is approximately 2.5′. In our
analysis we use the A pointings for our signal analysis and
the C pointings for vetoing putative signal candidates.
We also use measurements of well-characterized flux den-
sity calibrators and strong pulsars performed during the
observations as control measurements that allow us to
identify and veto spurious excesses. A summary of all
measurements used in this work is provided in Supple-
mentary Material (SM) Tab. S1; note that we use the
data collected on MJD 58733 (30 min A00 pointing time)
and 58737 (250 min A00 pointing time) for our signal
analyses, while the data collected on the other two days
are used for radio frequency interference (RFI) vetoes.

Our search attempts to identify quasi-monochromatic
lines (δf/f <∼ 10−5), motivating the use of the medium
resolution BL data product [36], which provides a native
frequency resolution of δfnat. ≈ 2.8 kHz. The data collec-
tion was performed with the dedicated dual polarization,
wide-band receiver at the GBT for the BL project [36, 51]
and spans 3.5 GHz to 8.2 GHz. However, we consider
only the 4-8 GHz range, beyond which the data quality is
notably degraded. The data are characterized by regular
structures at 3 MHz intervals, which we call coarse chan-
nels, induced by the BL polyphase filter bank. There
is an exponential loss in the gain at the coarse chan-
nel edges and a single-bin DC spike, which renders the
central frequency channel unsuitable for inclusion in our
analysis [52]. (See [53] for a related analysis.)

For each observing date, the power spectral density
(PSD) data for each target are recorded in 1.07 second
intervals; we further filter these time intervals for time-
varying RFI through a procedure described in the SM.
Next, we mask out the DC bin and perform a 32-fold
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down-binning such that the coarse channel spectra are
resolved by 32 sub-bins, which we refer to as the fine
bins, at δf ≈ 91.6 kHz width. This provides a rela-
tive frequency resolution δf/f > 10−5 over the full fre-
quency range that matches the width of the expected
signal. We do not combine data across different observ-
ing dates; these are combined later through a joint like-
lihood. We also perform seven shifted downbinnings in
order to search for signals that may be misaligned with
our fiducial binning.

Analysis.— We analyze the uncalibrated A00 data in
a given coarse channel for spectral excesses that appear
within a single fine bin using a combination of paramet-
ric and Gaussian Process (GP) modeling. Our paramet-
ric model that describes the exponential cut-off of the
data at the coarse bin edges has four model parameters
(see the SM for the explicit form). The covariance ma-
trix K for our GP model is the sum of an exponential-
squared kernel, with two hyperparameters for the nor-
malization and the correlation scale, and an exponential
sine squared kernel, with three hyperparameters describ-
ing the normalization, correlation length, and oscillation
period. The exponential sine squared kernel is motivated
by the clear, periodic structure that is instrumental in
nature and observed in every coarse channel. The expo-
nential kernel accounts for additional instrumental and
astrophysical background variations. We also include
an additional hyperparameter rescaling the diagonal con-
tribution of the statistical error to address instances in
which our error estimation may not be robust. A fit of
the background model to the data in an example coarse
channel is illustrated in Fig. 2.

We follow the statistical approach for searching for
narrow spectral excesses with hybrid GP and parametric
models developed in [54, 55]. In particular, we construct
a likelihood ratio Λ between the model with and with-
out a signal component, which is simply a spectral line
confined to a single fine channel. We use the marginal
likelihood from the GP analysis in the construction of
the likelihood ratio [54]. In searching for a single fine-
channel excess, we perform the fit to the combined sig-
nal and background model over the full coarse channel
that contains the fine channel of interest. The discov-
ery significance is quantified by the test statistic (TS)
t = −2 ln Λ. Lastly, the 95% upper limits on the sig-
nal strength are determined from the profile likelihood
evaluated as a function of the signal amplitude.

An example of the analysis as applied to a single coarse
channel is depicted in Fig. 2. In the middle panel we show
the 95% upper limit on the fine-channel lines while the
bottom panel illustrates the detection significance, mul-
tiplied by the sign of the best-fit line amplitude. For
consistency we allow the best-fit line amplitude to be
both positive and negative. We power-constrain the up-
per limit [56], which means that we do not allow the 95%
upper limit to be stronger than the lower 1σ expected
limit under the null hypothesis. We derive the 1/2σ ex-
pected upper limits, illustrated in Fig. 2 in green and
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Figure 2. (Top) An illustration of the data and the fitted
components of our model for a single coarse channel. (Mid-
dle) The 95% CL upper limits on a flux density excess with
bandwidth δf = 91.6 kHz. (Bottom) The corresponding sig-
nificances of the flux density excesses and deficits.

gold, respectively, through the Asimov procedure [57].

We calibrate the data following the procedure in [58]
(see the SM). We then join the calibrated results of the
two observing sessions using a joint likelihood to obtain
flux density limits and detection significances. Our flux
density limits are presented in Fig. 3 versus the optimal
sensitivity expected from the radiometer equation.

In the process of joining the results, we make use of
the auxiliary data collected during the observing sessions
to veto signal candidates coincident with RFI or astro-
physical lines. We then implement a spurious signal nui-
sance parameter, similar to that in [55, 59], to account
for mismodeling and instrumental effects by incorporat-
ing information about the distribution of TSs of nearby
test masses when assigning the TS to a mass point of
interest. The nuisance parameter is degenerate with the
signal parameter, but for a Gaussian prior with a vari-
ance determined by the distribution of nearby TS values
(see the SM for details). The effect of the spurious sig-
nal nuisance parameter is illustrated in Fig. 3, with the
curve labeled “No Spur. Sig.” being the stronger limit
obtained without the spurious signal analysis. In total,
there remain 17 excesses at t > 25 including the results of
both our fiducial binning and our seven additional shifted
binning analyses. Three excesses appear within the ex-
pected frequency range of formaldehyde (4813.6 - 4834.5
MHz) and methanol (6661.8 - 6675.2 MHz) masers [60],
while several others may be vetoed as transients or RFI
after further scrutiny. Eleven excesses remain at t > 25
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Figure 3. A comparison of the derived flux density sensitiv-
ities (with and without the inclusion of the spurious signal
nuisance parameter correction) compared with the radiome-
ter equation expected sensitivity. For presentation, the limits
have been smoothed with a median filter.

as signal candidates, but none exceed our predetermined
discovery threshold of t = 100. (see the SM for details.)

Results and Discussion.— The expected flux den-
sity at a given frequency generated from axion conversion
near a NS depends on gaγγ , the NS dipole magnetic field
strength, the NS rotational period, the misalignment an-
gle of the dipole axis with respect to the axis of rotation,
the relative orientation of the NS with respect to Earth,
the DM density near the NS, the NS velocity with respect
to the Galactic frame, the DM velocity dispersion near
the NS, and the NS mass and radius (which we fix to
to be 1M� and 10 km, respectively, as these parameters
have a minimal impact on the signal). We assume that
the recent NS birth rate ΨNS as a function of distance r
from the GC is

ΨNS = 9.4×10−6
(

r

1pc

)−1.93
exp

[
− r

0.5 pc

]
pc−3 yr−1 .

(1)
We generate NSs from this distribution over the past 30
Myr, though the dominant NSs for our signal typically
have ages <∼ 1 Myr. The exponential cut-off at ∼0.5 pc
encodes the fact that there is no active star-formation
(though there is potentially proto-star formation) within
the circumnuclear ring from 1 pc to 3 pc [61]. The slope
of the density profile near the GC is set to match that
observed for young stars [62]. The normalization in (1)
is set by a combination of the recent star formation rate
in the inner pc, estimated as ∼4×10−3 M� yr−1 with
a top-heavy initial mass function of dN/dM ∝ M−1.7

observed in the inner pc [63], for stellar mass M , cal-
culated over the range 1—150 M�, and the assumption
that stars born with initial masses between 8M� and
20M� form NSs [64]. Intriguingly, we note that this star-
formation rate predicts the existence of ∼0.25 magnetars
in the GC [65], roughly consistent with the observation of
one such object at a projected distance of ∼0.17 pc from
the central black hole [66]. We condition our randomly-
generated NS population models on the existence of this
magnetar; we require the existence of a NS with a mag-
netic field today above 5 × 1013 G and with a projected

angular distance of 2.4 ± 0.6 arcseconds from the GC
(consistent with observations at ± 2σ) [67].

The dipole magnetic field strength B evolves from its
initial value at birth through Ohmic dissipation and Hall
diffusion [26, 68–70]. We evolve the NS period and mis-
alignment angle according to the equations for coupled
magneto-rotational evolution, following [71]. As in [26]
the initial period distribution is taken to be normally dis-
tributed, for positive periods only, and the initial mag-
netic field distribution is log-normally distributed; the
parameters of these distributions are taken from model
1 in [26] and model B1 in [70], which performed pop-
ulation synthesis studies comparing the predicted pul-
sar populations in these models to the ATNF pulsar
catalog [50]. We describe the NS magnetosphere using
the charge-separated Goldreich-Julian (GJ) model [46],
which is expected to be a good description of the closed-
field regions of active pulsars [72, 73]. We assume that
the plasma frequency in the negatively charged regions
of the plasma is set by the charge-separated electrons,
while in the positive region it is determined by positrons
(in active pulsars) and ions (in dead NSs).

We describe the DM distribution using a Navarro-
Frenk-White (NFW) [74, 75] profile, fixing the scale ra-
dius to 20 kpc and normalizing the distribution such that
the local DM density is 0.346 GeV/cm3. Note that re-
cent simulations [76–80] suggest that the DM profile may
be contracted beyond the NFW profile in the inner kpc
because of baryonic feedback, which would further en-
hance our signal (though a cored profile, which could
eliminate our sensitivity to new parameter space , is also
possible [81]), though we do not consider such a possibil-
ity here.

In order to compute the flux density from each NS
in the population, we use an updated version of the
ray tracer developed in [30]. For each NS, this proce-
dure amounts to Monte Carlo (MC) sampling the axion
phase space density at the axion-photon conversion sur-
face, computing the local axion-specific conversion prob-
ability, propagating photons to the light cylinder using a
highly magnetized cold plasma dispersion relation, and
retroactively re-weighting samples to include resonant cy-
clotron absorption and refraction induced axion-photon
de-phasing. Photons are plasma broadened as described
in [28, 30, 31] and Doppler shifted according to the pro-
jected line of sight velocity of the NS (see the SM). We
extract the observable time-averaged differential power
at each frequency and apply to each NS in the popula-
tion the GBT efficiency function, which accounts for the
suppression in sensitivity for objects off of the beam axis.

It is crucial to work beyond leading order in the axion-
photon conversion probability, which has not been done
in previous radio searches (e.g., [7, 8, 29, 33]). Those
analyses naively applied the leading-order perturbative
results for the conversion probabilities in the NS mag-
netospheres such that at their upper limit values for
gaγγ the conversion probabilities evaluate to well be-
yond unity. We address this issue by exponentiating the
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leading-order perturbative conversion probabilities fol-
lowing the Landau-Zener formalism (see, e.g., [28] and
the SM). At large gaγγ axion-photon conversion becomes
adiabatic, leading to conversion probabilities Pa→γ ∼
Pγ→a ∼ 1; since each axion-photon trajectory invari-
ably crosses an even number of conversion surfaces, the
probability of an in-falling axion state transitioning to an
outgoing photon becomes exponentially suppressed.

The collective flux density from all NSs in a popu-
lation is then compared with the flux density limit in
Fig. 3. The ensemble of NSs from the population pro-
duce signals across multiple coarse bins, because of the
relative Doppler shifts, such that the brightest single fine
bin typically arises from a single NS. The 95% upper limit
on |gaγγ | that we determine from this work is shown in
Fig. 1. The solid red curve denotes the 95% statistical
upper limit, but the median limit over all MC realiza-
tions of the NS population (conditioned on the existence
of the GC magnetar). The dark and light shaded red
regions show the 68% and 95% containment intervals for
the limit over the full ensemble of realizations. These
curves have been smoothed for clarity; the sensitivity is
only moderately degraded if the brightest NS falls near a
course-bin edge because the next-brightest NS typically
provides a comparable sensitivity (see SM Fig. S7). Our
upper limit probes unexplored axion parameter space be-
low the existing CAST limit and constrains the ALP Co-
genesis scenario [6] shaded in yellow, where ALPs can
explain the primordial baryon asymmetry.

A qualitative improvement in sensitivity to an ax-
ion signal may be obtained in the future with the pro-
posed Square Kilometer Array (SKA). As we show in
Supp. Fig. S8, the SKA Phase 2 array [26, 82], assumed
to have 5600 15-m telescopes and 100 hours of observ-
ing time, could achieve a 10σ discovery sensitivity for
|gaγγ | >∼ few × 10−13 GeV−1. Given that QCD axion
DM may naturally explain the DM abundance in this
mass range, the possibility of such a result serves as mo-
tivation for continuing to construct large telescope arrays
capable of deep searches of the GC region.
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