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Quantum computers are expected to offer advantages over classical computers for combinato-
rial optimization. Here, we introduce a feedback-based strategy for quantum optimization, where
the results of qubit measurements are used to constructively assign values to quantum circuit pa-
rameters. We show that this procedure results in an estimate of the combinatorial optimization
problem solution that improves monotonically with the depth of the quantum circuit. Importantly,
the measurement-based feedback enables approximate solutions to the combinatorial optimization
problem without the need for any classical optimization effort, as would be required for the quantum
approximate optimization algorithm (QAOA). We experimentally demonstrate this feedback-based
protocol on a superconducting quantum processor for the graph-partitioning problem MaxCut, and
present a series of numerical analyses that further investigate the protocol’s performance.

Introduction.— Combinatorial  optimization has
broad and high-value applications in many sectors of
industry and science, including for optimization of logis-
tics and supply chain, and drug discovery [l]. Solving
general combinatorial optimization problems is NP hard
and most practical strategies involve developing good
quality approximate solutions. Recently, there has been
much interest in approximate solution of combinatorial
optimziation problems through mapping to quantum
systems, whereby the problem is encoded into an Ising
Hamiltonian Hj, [2], such that the solution of problem
is encoded in the ground state of H,. Then methods
such as quantum annealing [3], or within the quantum
circuit model, the quantum approximate optimization
algorithm (QAOA) [4], are used to approximately
prepare the ground state of H,. Although there is no
rigorous proof of an advantage to using such quantum
techniques over classical approximation algorithms, it is
widely believed that at some scale of problem such an
advantage should exist.

We introduce a new approach to solving combinatorial
optimization problems using quantum computers that
operates through the use of parameterized quantum cir-
cuits and feedback, that is conditioned on qubit measure-
ments at every quantum circuit layer, in order to deter-
mine the circuit parameter values at subsequent layers.
This Feedback-based ALgorithm for Quantum Optimiza-
tioN (FALQON) makes a direct connection to quantum
Lyapunov control (QLC), a control strategy that uses
feedback to identify the controls to drive the dynamics
of a quantum system in a desired manner [5-13]. Our
approach works within the framework of circuit-model
quantum computing, but avoids a critical challenge fac-
ing the scaling of QAOA, which is the difficulty of opti-
mizing a large number of variational parameters. In fact,
it was recently shown that under certain assumptions,
this classical optimization problem is itself NP-hard for

QAOA [14]. Our feedback-based approach circumvents
the need for optimization of variational parameters by
using information from iterative measurements.

In the following, we show that FALQON produces
a monotonically improving estimate of the combinato-
rial optimization problem solution, with respect to the
depth of the circuit. We then consider the application
of FALQON towards solving the MaxCut problem, and
present the results of an experimental demonstration on
quantum hardware. This is followed by a series of numer-
ical analyses that explore the performance of FALQON
for MaxCut on 3-regular graphs. Finally, we examine the
required number of repeated circuit evaluations and com-
pare this to the requirements of QAOA in this context.
We conclude with a discussion of the tradeoffs between
FALQON and QAOA, outline the additional content in
our companion paper [15], and look to the future.

Feedback-based algorithm for quantum optimization.—
We begin by considering a quantum system whose dy-
namics are governed by i |v(t)) = (H,+ HaB(t))[¥(t)),
where [1)(t)) is the system state vector, we have set h = 1,
and Hj, and Hy denote the (unitless) “drift” and “con-
trol” Hamiltonians, where the latter couples a scalar,
time-dependent control function S(t) to the system. We
seek to minimize (Hp) = (¢ (t)|Hp|¥(t)) [16], and accom-
plish this by designing 3(¢) such that

d
2 WOIH[p(0)(t) <0, Vt>0. (1)

Evaluating the left-hand-side of Eq. (1), we see
that L(O(O[Hl0(1) — A@)AE), where Alt) =
((t)|i[Ha, Hp]|®(t)). There is significant flexibility in
choosing 3(t) in order to satisfy Eq. (1), i.e., we may take
B(t) = —w f(t, A(t)), for w > 0, where f(¢, A(t)) is any
continuous function with f(¢,0) = 0 and A(¢) f(¢, A(t)) >
0 for all A(t) # 0 [17]. Here, we present results for w =1
and f(t, A(t)) = A(t), such that 8(t) = —A(¢). In prac-
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Figure 1. (a) The procedure for implementing FALQON. The initial step is to seed the procedure by setting 51 = 0. The
qubits are then initialized in the state |1o), and a single FALQON layer is implemented to prepare [¢1) = Ua(81)Up|tpo). The
qubits are then measured to estimate A;, whose result is fed back to set 82 = — A1, up to sampling error. For subsequent steps
k=2,---,¢, the same procedure is repeated, as shown in (b): the qubits are initialized as |to), after which k layers are applied
to obtain |¢k) = Ua(Bk)Up - - - Ua(B1)Up|tho), and then the qubits are measured to estimate Ay, and the result is fed back to set
the value of Bgy1. This procedure causes (Hp) to decrease layer-by-layer as per (1|Hp|t1) > (2| Hpltp2) > -+ > (e|Hplthe),

as shown in (c), such that the quality of the solution to the combinatorial optimization problem monotonically improves with
circuit depth. The protocol can be terminated when the value of (Hp) converges or a threshold number of layers £ is reached.
Then, after the final step, Z basis measurements on |¢¢) can be used to determine a best candidate solution to the combinatorial
optimization problem of interest, by repeatedly sampling from the probability distribution over bit strings induced by |1)¢) and

selecting the outcome associated with the best solution.

tice, we assign values to §(t) as a feedback loop, where
B(t) = —A(t — 1), and 7 is a feedback loop time delay.

We now consider alternating, rather than concurrent,
applications of H,, and Hg, leading to a time evolu-
tion of the form U = Uq(Be)Up---Ua(B1)Up, where
Uy, = e A U4(By,) = e PeHadt and gy, = B(kT—At)
for k=1,2,---,¢ and 7 = 2At, such that after each pe-
riod of At the applied Hamiltonian alternates between
H, and Hyq. We note that for small At, this yields a
Trotterized approximation to the continuous time evolu-
tion of the system. In this Trotterized framework, we
again aim to satisfy Eq. (1) by suitably choosing each
value of ;. We note that during the time intervals when
H, is applied, %(prt) = 0; although its value doesn’t
change, the eigenstates of H, do accumulate phases dur-
ing this time, which impact the ensuing dynamics. Mean-
while, during the time intervals when H, is applied, we
recover the same result that %<Hp> = A(t)5(t). Conse-
quently, we can ensure that Eq. (1) is satisfied by utiliz-
ing the same feedback law, given by Br11 = — Ay, where
Ay = (Yrli[Ha, Hp|Yk) [18]. In this setting, it is always
possible to select At small enough such that Eq. (1) is
satisfied [15]. However, if At is chosen to be too large,
Eq. (1) will be violated. Based on this framework, the
FALQON algorithm is presented in Fig. 1. The key fea-
ture of FALQON is that it is a constructive, optimization-

free procedure for assigning values to each [ accord-
ing to a feedback law. And by design, the enforcement
of Eq. (1) ensures that the quality of the solution to
the combinatorial optimization problem under consider-
ation (quantified by (H,)) improves monotonically with
respect to the depth of the circuit, k.

The circuits used in QAOA have the same alternat-
ing structure as those in FALQON, albeit with addi-
tional parameters 7yq,---,7, that enter into U,, such
that Ugaoa = Ua(Be)Up(ve) -+ - Ua(B1)Up(71). Then,
the solution to the original combinatorial optimization
problem is sought by minimizing (1 (¥, E)|Hp\¢(7y’, B))
over the set of 2¢ circuit parameters ¥ = (y1, - ,7)
and 3 = (B1,- -+ ,Be¢) using a classical processor, where
[ (7, E)) = Ugaoaltho). However, we emphasize that
FALQON is conceptually distinct from QAOA. Namely,
QAOA seeks to minimize (H,) by classically optimizing
over all parameters 7, 5 simultaneously, while FALQON
seeks to minimize (H,) over a sequence of quantum cir-
cuit layers, guided by qubit measurement-based feed-
back, without classical optimization.

Applications to MaxCut.— We now consider the ap-
plication of FALQON towards a quintessential combi-
natorial optimization problem: MaxCut, which aims to
identify a graph partition that maximizes the number of
edges in a graph that are cut. For an unweighted graph G,



with n nodes and edge set £, the MaxCut problem Hamil-
tonian is defined on n qubits as Hy, = =37, ;¢ (11—
7;7;) , while Hq has the standard form Hq = Z?=1 X,
such that i[Ha, Hy] = 3, ;ce YiZ; + Z;Y;, where Xj,
Y;, and Z; denote the Pauli operators acting on qubit
j. As such, evaluating the feedback law S11 = —A; =
—(¢x|i[Ha, Hp)|tx) in this setting involves measurements
of maximally n(n — 1) two-qubit Pauli strings.

As a proof-of-principle, in Fig. 2 we present the re-
sults of an experimental demonstration of FALQON on
a superconducting quantum processor for a simple in-
stance of the MaxCut problem. In particular, we con-
sidered an instance of MaxCut on an unweighted graph
composed of n = 3 nodes connected by two edges, such
that Hp = —%(2 - leg - Z2Z3) and i[Hd,Hp] =
Y1725 4+ Z5Y1 + YoZ3 + Z3Y,. The experiment was per-
formed on the publicly accessible ibmg manila processor
and utilized three qubits with nearest-neighbor connec-
tivity matching that of the graph under consideration.
In this setting, £ = 10 steps of FALQON were performed
according to the procedure outlined in Fig. 1, selecting
At = 0.2. At each step, one circuit was implemented
in order to estimate (H,); natively in the computational
basis. Two additional circuits were implemented in order
to estimate the terms in A. For each circuit, the qubits
were initialized in the ground state of Hq, and m = 1024
shots were taken.

As shown in Fig. 2(a), FALQON was successful in
achieving a monotonic decrease of (H,) in this experi-
ment up to layer five (orange point markers). FALQON
also achieves a monotonic increase in the success prob-
ability of measuring the two degenerate ground states,
denoted by ¢, as shown in Fig. 2(b). The error bars
in Fig. 2(a) and (b) present the standard error of the
mean, which estimates how much the reported (H,)x and
¢ may deviate from their true values due to finite sam-
pling. Finally, the associated values of 3, determined
according to the feedback law 1 = — Ay, are plotted
in Fig. 2(b).

Past layer 5, it is evident that FALQON is no longer
able to decrement (H,) using this hardware platform, de-
spite exhibiting a continued monotonic decrease in associ-
ated noise-free numerical simulations (blue point mark-
ers). This reveals the limitations that hardware noise
presents for this problem instance. Looking ahead, we
are optimistic that continuous improvements to quan-
tum hardware will pave the way towards applications
of FALQON to increasingly complex combinatorial op-
timization problems.

In the interim, we explore how FALQON performs on
larger instances of MaxCut through a series of noise-
free numerical illustrations. These illustrations con-
sider unweighted, connected 3-regular graphs with n €
{8,10,---,20} vertices. For n € {8,10} we consider all
nonisomorphic graphs; for n € {12,14,--- ,20} we con-
sider 50 randomly-generated, nonisomorphic graphs. In
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Figure 2. Results from experimental implementation of £ = 10
layers of FALQON on a superconducting quantum processor.
For this demonstration, FALQON is applied to an n = 3 qubit
instance of MaxCut on an unweighted graph. Panel (a) shows
that FALQON is successful in achieving a monotonic decrease
of (Hp) over layers k = 1,---,5 in this experiment (orange
point markers), noting that the global minimum value for this
problem instance is (Hp)min = —2 (dashed black line). In ad-
dition, in panel (b) a monotonic increase of the probability,
¢, of measuring the two degenerate ground states is also ob-
served up to layer k = 5 (orange point markers). The error
bars in (a) and (b) indicate the standard error. The values
of B are plotted in (¢). In (a)-(c), the blue point markers
correspond to ideal results computed numerically.

our simulations, the qubits are initialized in the ground
state of Hy, and the performance of FALQON is quan-
tified using the mean and standard deviations (over the
problem instances) of two figures of merit: the approxi-
mation ratio, ra = (Hp)/(Hp)min and the success prob-
ability of measuring the (potentially degenerate) ground
state(s) {|q0,i)}, @ = >_; [(¥|qo.i)|>. We relate the perfor-
mance to two reference values: ry = 0.932, correspond-
ing to the highest approximation ratio that can currently
be guaranteed using a classical approximation algorithm
(i-e., the algorithm of Goemans and Williamson [19]), and
¢ = 0.25, which implies that on average, four repetitions
will be needed in order to obtain a sample correspond-
ing to the ground state. Our only free parameter is the
time step At, which is tuned to be as large as possible,
a value we call the critical At and denote by At., as
long as the condition in Eq. (1) is met for all problem
instances considered. Our results are collected in Fig. 3.
In Fig. 3(b), the mean values of 1,2, -+ are plotted
as a function of layer for different values of n, according
to the legend in Fig. 3(c), with the shading representing
the standard deviation. We find that with increasing n,
the shape of the resultant 5 curves follows a clear trend,
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Figure 3. (a) Pictorial representation of MaxCut on a 3-regular graph with 8 vertices. (b) Mean 8 values are plotted as a
function of layer for different n values, with shading showing the standard deviations. (c) The performance of FALQON, as
quantified by the approximation ratio (dashed curves) and the success probability of measuring the degenerate ground state
(solid curves) is shown for different values of n. (d) The mean number of layers needed to achieve the reference values of
ra = 0.932 (dashed curve) and ¢ = 0.25 (solid curve) is shown; error bars report the associated standard deviation. (e) The

critical At values for different problem sizes are plotted.

and the standard deviation decreases. In Fig. 3(c), the
associated ra and ¢ results are shown (dashed and solid
curves, respectively), and the associated reference values
are plotted in black. For the cases considered here, we
find that FALQON consistently leads to monotonic con-
vergence towards very high ro and ¢ values as a function
of layer. To determine how the requisite circuit depths
scale with the problem size, in Fig. 3(d) we plot the av-
erage number of layers required to achieve the reference
values of o and ¢ as a function of n. Finally, in Fig. 3(e)
we plot At. for each value of n under consideration. The
scaling of the required number of layers and At. seems
nearly linear, even up to n = 20, indicating a favorable
runtime scaling of the FALQON algorithm, at least for
this class of MaxCut problems. We remark that in ad-
dition to the analyses presented here, we also tested the
performance of FALQON on weighted 3-regular graphs,
and identified instances where the 5 and ¢ convergence
is enhanced by introducing one of three possible heuristic
modifications to the FALQON algorithm. Details can be
found in Appendix A.

In our companion paper [15], we present a sampling
complexity comparison between FALQON and QAOA in
the context of MaxCut, as quantified by the total number
of samples (i.e., circuit repetitions) that are required, de-
noted Ns. When a gradient algorithm is used for QAOA,
NEAOA — O(mgq(£)f), where m denotes the number of
samples needed to estimate the expectation value of a
two-qubit Pauli string P;, and for simplicity, m is as-
sumed to be independent of P; and ¢ denotes the num-
ber of classical optimization iterations. For gradient-free
methods, NY494 = O(mq(¢)). Meanwhile, in FALQON

we find NFALQON — O(mdl), where d denotes the de-
gree of the graph. This suggests that FALQON has
a more favorable sampling complexity than QAOA for
cases where the number of QAOA optimization iterations
q(¢) exceeds df in general, or d when a gradient algorithm
is utilized. Further details can be found in [15].

Discusston and outlook.— We have introduced
FALQON as a constructive, feedback-based algorithm
for solving combinatorial optimization problems using
quantum computers. Importantly, FALQON performs
optimization without the need for an expensive classical
optimization loop. We have demonstrated its perfor-
mance on current quantum hardware and provided
numerical analyses of its performance towards finding
the maximum cut of regular graphs. By studying the
performance with respect to layer and the problem
size m, our numerical analyses show that FALQON
converges to very high approximation ratios and success
probabilities with a favorable scaling of resources with
respect to n, suggesting that FALQON may be a useful
heuristic algorithm for this class of problems.

Our findings also suggest that FALQON can require
relatively deep circuits in order to achieve this conver-
gence, relative to the shallow circuits typically considered
in QAOA. In our companion article [15], we provide an in-
depth analysis of the tradeoffs in the performance and re-
source requirements of FALQON and QAOA, and discuss
the resource regimes where each of these methods can be
expected to offer advantages. In short, we expect QAOA
to be favorable in settings where suitable classical opti-
mization resources are available and quantum resources
are restricted to the regime of shallow circuits. Mean-



while, FALQON performs well for deep circuits and does
not require any classical optimization resources, mean-
ing that there is no rising classical cost as the quantum
circuit depth is increased. This indicates that in set-
tings where deep circuits are feasible, FALQON is a new
heuristic that could offer a considerable advantage.

In addition, our companion paper [15] also includes
the following other important elements. (1) We present
an analysis of convergence criteria for the algorithm. (2)
For the analysis presented here we have assumed ideal,
noiseless access to the expectation values Ay that dictate
the feedback signal, i, however, in [15] we show that
FALQON is robust to noise in this quantity stemming
from finite sample estimates of these expectations. This
robustness ultimately stems from the flexibility in choos-
ing f to satisfy Eq. (1). (3) We compare the performance
of FALQON and QAOA for a fixed number of circuit rep-
etitions, and we also explore how FALQON can also be
used to seed QAOA by identifying a set of initial QAOA
parameters that can serve as the starting point for subse-
quent iterative optimization. We show that this seeding
procedure is useful in settings with limited circuit depth,
in cases where FALQON fails to converge on its own, and
in cases where QAOA fails to converge on its own due to
difficulty with effective initialization of the optimization
procedure. (4) We numerically demonstrate FALQON on
weighted MaxCut, detail some possible extensions to the
protocol, and analyze the relationship between FALQON
and quantum annealing protocols.

Finally, we note that FALQON can be applied to com-
binatorial optimization problems beyond MaxCut, e.g.,
[20], and could have broader implications for quantum
variational algorithms. That is, it is possible to develop
feedback-based alternatives of variational ansatzé for
other applications such as electronic structure or machine
learning [21], and these would have the benefit of needing
no classical optimization resources, at the cost of requir-
ing measurements whose results condition the feedback.
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APPENDIX A: HEURISTIC IMPROVEMENTS

Our numerical illustrations involving MaxCut on un-
weighted 3-regular graphs show that FALQON converges
to very high approximation ratios and success proba-
bilities. However, we also tested the performance of
FALQON on weighted graphs, and were able to iden-
tify problem instances where ra appears to converge to
very high values, while the convergence of ¢ is less favor-
able, i.e., B — 0 prior to ¢ — 1, indicating that 3 tends
to zero prematurely. Like behavior has been found in
numerical studies of QAOA, where the inclusion of edge
weights leads to the appearance of many poor-quality lo-
cal minima in the optimization landscape [22]. To cope
with these situations, we introduce three heuristic modi-
fications that can be used to enhance the performance of
FALQON.

The first modification is to incorporate random “kicks”
into 8. For some S, of our choosing, for all 8 < ., with
probability P, we set By = 0.. We choose S, = 1 and

7k s

Py = (1—Br)ow, where oy, = 0.1sin®(ZF — Z) is designed

to decrease to zero as a function of circuit depth.

We also consider a second heuristic inspired by QLC,
where the use of a reference perturbation A(¢) in the con-
trol 5(t), such that H(t) = Hp+(A(t)+5(t))Hq , has been
considered in order to improve convergence [17, 23, 24].
In this setting, we may define System (a) as a system with
drift Hamiltonian H,, and control Hamiltonian Hg, and
System (b) as the perturbed system with drift Hamilto-
nian H,, ) (t) = Hp + A(t)Ha and control Hamiltonian
Hy. Then, the time-derivative of (¢(t)|Hp2(t)|¥(t)),
allows us to define B(t) = —A(t) as usual to ensure
4 (h(t)|Hp,2()[(t)) < 0. Within this framework, if Sys-
tem (b) converges asymptotically to the ground state of
H, 2(t), and if A(t) = 0 when this occurs, then System
(b) becomes System (a), such that the ground state of
Hy, () is also the ground state of H},, and the method
has converged successfully to the desired state. In prac-
tice, A(t) can be chosen to be a slowly-varying reference
function that tends to 0 as ¢ — oo. This framework
can be translated into a modified version of FALQON by
discretizing as before; for our numerical illustrations, we
chose A\, = a,.

Then, using this second heuristic as a baseline, we can
define a third heuristic that uses an iterative QLC pro-
cedure to successively refine 5 in a manner that is free
of any classical optimization [12]. The procedure begins
by implementing the standard FALQON framework and
obtaining a set of 8 values for ¢ layers. Then, these ini-
tial 3 = B values are set as a reference perturbation
A1 and a new set of (1) values are obtained using the
second heuristic approach described above. Then, a new
reference perturbation is defined as A = A1) 4 g1,
and the process is repeated. If £ is selected to be large
enough such that 8, = 0, this iterative procedure guar-
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antees a monotonic improvement of (H,) with respect to
iteration. For further details, we refer the reader to our
companion paper [15].

To illustrate these heuristic modifications, in Fig. 4 we
present the performance of FALQON with and without
these modifications when solving a MaxCut problem on
a weighted, 4-regular graph with n = 8 nodes using At =
0.08, where the edge weights are drawn from a uniform
distribution between 0 and 1.

Heuristic 2 Heuristic 3

Heuristic 1

Reference ‘

400 ]

0 500 1000 1500 2000
Layer

Figure 4. Standard FALQON (black) is compared against
the three heuristic modifications, which incorporate random
kicks (red), a reference perturbation (blue), and three itera-
tions of the iterative QLC procedure (green), for MaxCut on
a weighted, 4-regular graph with n = 8 vertices. The ra and
¢ results are shown in (a) and (b), respectively; associated
values of 8 are plotted for the first 400 layers in the inset.
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