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Triply degenerate points (TDPs), which correspond to new types of topological semimetals, can
support novel quasiparticles possessing effective integer spins while preserving Fermi statistics. Here
by mapping the momentum space to the parameter space of a three-level system in a trapped ion,
we experimentally explore the transitions between different types of TDPs driven by spin-tensor—
momentum couplings. We observe the phase transitions between TDPs with different topological
charges by measuring the Berry flux on a loop surrounding the gap-closing lines, and the jump of
the Berry flux gives the jump of the topological charge (up to a 27 factor) across the transitions.
For the Berry flux measurement, we employ a new method by examining the geometric rotations of
both spin vectors and tensors, which lead to a generalized solid angle equal to the Berry flux. The
controllability of multi-level ion offers a versatile platform to study high-spin physics and our work
paves the way to explore novel topological phenomena therein.

Introduction.—Topological states of matter, including
topological insulators, superconductors and semimetals,
have attracted increasing interest in the past decades [1-
3]. Recent studies on topological semimetal had led to
the observation of Weyl [4-8] and Dirac [9, 10] Fermions
in solid-state materials, which possess two- or four-fold
degenerate points and support relativistic spin-1/2 quasi-
particles. The recent remarkable discovery of triply de-
generate points (TDPs) [11-23] in Fermionic systems pro-
vides an avenue for exploring new types of quasiparticles
possessing integer spins while preserving Fermi statis-
tics that have no counterparts in quantum field theory.
The TDPs (i.e., three-fold band degeneracies in spin-1
systems) behave like magnetic monopoles in momentum
space whose topological charges C are determined by the
Berry flux emanating from the degenerate points. Unlike
the spin-1/2 particles, a full characterization of higher
spins (> 1) naturally involves both the spin vectors F and
high-rank spin tensors such as N;; = {F}, F;}/2—6;;¥2/3
with {7, j} = {x,y, z}. These spin vectors and tensors are
equivalent to the so-called Gell-Mann matrices, forming
a basis of the SU(3) algebra. Therefore, an important
question is to explore the roles played by spin tensors
in driving the phase transition and characterizing the
topologies of the TDPs.

Previous studies have predicted that spin-tensor mo-
mentum couplings can induce transitions between TDPs
with different monopole charges C [17-20]. On the other
hand, the Berry flux and monopole charge cannot be
solely determined by the solid angle of spin vector and its
covering number on the Bloch sphere as in spin-1/2 case.

In fact, the spin-1 vector can go inside the Bloch sphere
and the spin tensors must also be taken into account to
obtain the Berry flux [24-27].

Experimentally, TDPs with topological charge C = 2
has been observed in various systems, including solid-
state topological semimetal molybdenum phosphide [21],
phononic crystal [22], as well as in the synthetic param-
eter space of a superconducting qutrit [23]. In contrast
to condensed matter systems where the realization of re-
quired spin-momentum coupling and the measurement
of topological properties would be challenging, synthetic
quantum systems (e.g., cold atom [28, 29], supercon-
ducting qubit [30-33], nitrogen-vacancy center [34-37],
trapped ion [38] systems, etc.) with versatile control of-
fer powerful tools for quantum simulation of topological
phenomena in parameter space. To date, the topolog-
ical transitions between TDPs with different monopole
charges and the crucial roles played by the spin tensors
have not been demonstrated experimentally.

In this paper, by mapping the momentum space to
the parameter space of a trapped ion, we experimen-
tally explore the topological transitions between differ-
ent types of TDPs and demonstrate the important roles
played by the spin tensors, where the Berry flux is mea-
sured through the generalized solid angle traced out by
the trajectories of both spin vectors and tensors. We
simulate a momentum space Hamiltonian

H:k'F+ak2N22+5kmeZa (1)

which describes the pseudospin-1 particles with a TDP at
k = 0 carrying topological charges depending on the spin-



tensor—-momentum coupling strengths (a, 3) [39]. We ef-
fectively tune (a, ) and observe the transitions of the
TDPs from C = 2 to C = 1,0 by measuring the spin vec-
tors and tensors. At the transitions, we observe sudden
jumps of both the spin vectors (represented by arrows)
and tensors (represented by ellipsoids) at the correspond-
ing gap-closing momenta. For the transition from C = 2
to C = 0, the jump of topological charge is observed by
measuring the Berry flux on a small loop surrounding
gap-closing momenta. We adiabatically drive the sys-
tem along the small loop and detect the generalized solid
angle traced out by both the spin vector arrow and ten-
sor ellipsoid, leading to a geometric phase equal to the
Berry flux. Crucially, the Berry flux contains contribu-
tions from both spin vectors and tensors.

Model and experimental setup.—We consider a three-
band spin-1 system with Hamiltonian given by Eq. (1).
The momentum space can be parameterized by the spher-
ical coordinates k = kq(sin 0 cos ¢, sin 0 sin ¢, cos §), and
the TDP appears at ky = 0 where all three bands
degenerate at zero energy. The bands open gaps for
ko > 0 with monopole charge C = % § Q - dS given
by the total Berry flux on the sphere S surrounding
the TDP (see Fig. la), where Qx = Vi x Ax and
Ay = (U(k)|iVk|¥(k)) are the Berry curvature and con-
nection respectively, and |¥(k)) is the eigenstate for the
lowest band. The bandgaps close along certain lines
(i.e., gap-closing points k. are {0., ¢., Vko}) as we change
(a, B) across the phase transitions where the topological
charge of the TDP changes.

A spin-1 quantum state is determined by the mean
values of both spin vectors (F;) and tensors (N;;), which
are geometrically represented by an arrow and an ellip-
soid [24-27], respectively. The ellipsoid’s orientation and
size (see Fig. 1b) are determined by the eigenvectors and
cigenvalues of the tensor matrix Tj; = (Ni;) — () (F}) +
2055/3 [39]. The Berry flux v = [ Qy - dS; = ¢, Ay - dk
through an area S, surrounded by a loop £ (red lines in
Fig. 1a) can be measured by the geometric rotations of
both the arrow and ellipsoid for the lowest band, where

F = % FcosOpdop and yp = 7{ Fdor (2)
r c

the generalized solid angles for the spin vector and ten-
sor [27, 39], respectively. The monopole charge (i.e., total
Berry flux through S) can be obtained by sampling S,
that covers §. Topological phase transition is character-
ized by an abrupt change of the total Berry flux. Here
F and (0p,dF) are the length and spherical angles of
spin vector (F), ¢r is the relative rotation angle of the
spin-tensor ellipsoid with respect to the spin vector (see
Fig. 1b). Therefore, the monopole charges and topolog-
ical phase transitions can be characterized by the rota-
tions of the spin-vector arrows and spin-tensor ellipsoids
which can be directly detected in experiments. Notice
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FIG. 1. Berry flux distribution, state geometric presentation
and experimental setup. (a) Berry flux distribution on mo-
mentum sphere with a« = 0, § = —1. Green dots are the
gap-closing points k. surrounded by red loops. (b) Spin ten-
sor ellipsoid at momentum represented by the blue cross on
one of the loops in (a). The longitudinal (transverse) direc-
tion of the ellipsoid is given by the spin-vector arrow in blue
(short-axis arrow in green). Azimuthal angle ¢7 of the tensor
ellipsoid is given by the relative angle between green arrow
and axis —a’, where 2’ is the rotated axis z with Euler an-
gles (0,0r,¢r). (c) Ilustration of the experimental setup,
energy levels and transitions. A three-level trapped °Be™ ion
is driven by radio frequency and microwave fields.

that the Euler angles (¢r,0p, ¢r) depend on the refer-
ence spin axis which is set as z direction here.

To simulate such a spin-1 system we map the mo-
mentum space to the parameter space of a trapped ion,
whose three coupled internal states form a pseudospin-
1 system. We trap a single Be™ ion in a linear Paul
trap [40] with ambient magnetic field of 13.46 mT (see
Fig. 1c). Three states, denoted as [11), |1)2), [t3) respec-
tively, in the ground manifold 2s 2.5, /2 are utilized (see
[39] for detailed definitions), which form the eigenstates
of F, in a spin-1 system, as shown in Fig. lc. Reso-
nant transition frequencies between states |¢;) and |¢;)
are denoted as wj;, where wis = 27 x 118.966 MHz
and weg = 27 x 991.570 MHz. To drive these transi-
tions, we apply impedance matched antennas [40] con-
nected to power-amplified signal sources to induce radio-
frequency (RF) and microwave fields to the ion, respec-
tively, where the former is sourced by an arbitrary-wave-
generator (AWG) and the latter is sourced by a separate
AWG, frequency-mixed with a high frequency microwave
source of approximately 1 GHz. Such a configuration
combining the RF and microwave transitions enables us
to directly drive each transition within the ground state
manifold satisfying the selection rules, and thus would
be readily scalable to include more levels, particularly for
demonstrations where tailored connectivity are required
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FIG. 2. Phase transition characterized by the jump of spin
vector and tensor. Errorbars correspond to one standard de-
viation. The insets describe tensor ellipsoids and their pro-
jection on z, y and z plane at a = 0.95 (left with C = 2) and
a = 1.05 (right with C = 1), with 8 = 0. The red circles and
lines are the projections of the theoretical tensor ellipsoids.
The experimental imperfection leads to a finite axis length of
the ellipsoid along z direction ~ 0.3, corresponding to a bias
of 0.3% ~ 10% in measuring N,J

[41]. By programming the AWGs with desired waveform,
we apply time-dependent drives with Rabi rate €2;;, de-
tuning d;;, and phase ¢;;, as depicted in Fig. 1. Thus
in a rotating wave approximation, we obtain the desired
Hamiltonian Eq. 1 with 012 = (a+1)k, = ko(a+1) cos¥,
523 = (Oé — l)kz = k‘o(a — 1) COS@7 912€i¢12 = (1 +
B/2)ky =ik, = FoZpEe™10 1 BELTRE cos ¢ and (gge’? =
(1-8/2)ky — ik, = ’“057\/‘2906*“’) - ﬂk(’;’i&%e cos ¢. Here, kg
only modifies the magnitudes of the energy bands with-
out affecting the eigenstates, therefore, we focus our dis-

cussions on a sphere with fixed kq.

The experiment begins with a series of controlled 313
nm laser beam pulses (Fig. 1c) to Doppler cool the ion
motion and initialize it to |¢)2) to further couple to the
other states. We then apply a sequence of resonant RF
and microwave pulses to prepare the ion to the ground
state of the Hamiltonian for given parameters {«, 3,0, ¢},
where the amplitudes and durations of the control pulses
can be calculated via diagonalizing the Hamiltonian. To
measure the Berry flux within a loop, we subsequently
apply an adiabatic ramp of the parameters (6, ¢) along
the loop of interest on the sphere with fixed o and g.
We stop the evolution at various points on the loop, and
measure the observables (F}), (Ni;) [39].

Observation of the topological phase transitions.—We
first set 8 = 0 and consider the transition from C = 2 to
C =1 by increasing «. The first (second) bandgap closes
at the north (south) pole 6. = 0 (0. = m) on the momen-
tum sphere respectively, as « changes across a, = 1. We

T/T

FIG. 3. Measured spin tensors at different position 7 along the
loop £ with a = 0, 8 = —1.9. Blue circles and red triangles
are (N, ) and (IV..) respectively (more data can be found in
[39]). In the inset, green squares, yellow circles and purple
triangles show the populations Pj—{1 2 3} respectively for the

eigenstates of sz. Errorbars correspond to one standard
deviation. Solid lines represent the corresponding numerical
simulations.

measure the corresponding spin vectors (F;) and tensors

(N;j) of the ground state at § = 0 for different o. As
depicted in Fig. 2, the measured value of (FZ> fora <1
is approximately equal to —1 but dramatically jumps to
approximately 0 when a > 1 ((F,) and (F,) are always
approximately equal to 0), indicating a phase transition.
As also depicted in Fig. 2, we observe a dramatic change
of ellipsoid around the phase transition o = 1. Moreover,
we observe the spin vortex at the north pole for @ > 1
[39], which also signals the transition of the monopole
charge [18]. To illustrate the jump of monopole charge,
we examine latitude loops on the momentum sphere since
the Hamiltonian has cylindrical symmetry with respect
to z axis, leading to yr = —2 - (F.) [39]. The tensor has
no contribution to the Berry flux where ¢ is always 0
in the case = 0. From Fig. 2, we observe (]3'2> approx-
imately changes by 1 at the north pole § = 0, matching
with the expected 27 change of the Berry flux, and thus
the monopole charge C = (F,) |9=r changes by 1.

In general, both the vectors and tensors should con-
tribute to the Berry flux for a spin-1 model. To show this,
we examine the topological phase transition from C = 2
to C = 0 and set o« = 0, § # 0 for a different spin-tensor—
momentum coupling. We notice that at the vicinity of
the phase transition, the sudden change of the monopole
charge must be given by the sudden change of the Berry
flux near the non-analytical point (i.e., the gap closing
point). Therefore, measuring the Berry flux near the gap
closing point can be used to probe the topological phase
transition directly. The first (second) bandgap closes at
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FIG. 4. Berry flux and trajectory of corresponding ellipsoids.
(a) Berry flux v through the loop £ versus 8. Blue circles,
red triangles and yellow squares are the experimental data
of v, v and ~r respectively with r = 0.2, the solid lines
are the corresponding numerical simulations in the adiabatic
limit. Purple and green dashed lines are the numerical sim-
ulations of v and yr with » = 0.01 respectively. Errorbars
correspond to one standard deviation. (b) Measurements of
the tensor ellipsoids along the adiabatic loop at f = —2.2,
with = = {0,0.19,0.48,0.95,1.05,1.71,1.81,1.90}7 starting
from the top left along the direction indicated by black ar-
rows. The red solid (green dashed) lines represent the direc-
tion of the short axis of the ellipsoid from experimental data
(numerical simulations), showing the evolution of ¢ and the
rotation with respect to (F).

(0c, de) = (37/4,0) and (3w /4, 7) [(0.., ¢.) = (7/4,0) and
(m/4,7)] on the momentum sphere across the phase tran-
sition point 5. = —2. We observe jumps of both spin
vectors and tensors at the transition [39].

To measure the change of monople charge, we con-
sider small loops (solid lines in Fig. 1a) on the momen-
tum sphere surrounding the gap-closing point. After the
ground state preparation of the initial Hamiltonian, we
evolve the state by subsequently applying an adiabatic

3 3

ramp of the parameters along the loop £: 0 = = —3rcost

and ¢ = ™ — v/3rsinT with a nearly uniform gap, where
we ramp 7 from 0 to 27 with a constant rate. By
programming separate channels of the AWG and set-
ting 7 = 2nt/T, we generate the desired time-dependent

4

Hamiltonian along the loop [39], with 7' the maximum
ramp time of 1 ms. We choose » = 0.2 and the ramp rate
is separately checked via a numerical simulation to ensure
a required level of adiabaticity and coherence [39]. We
observe a number of (F}), (N;;) at various 7 (see Fig. 3
for 8 = —1.9 as an example) by measuring the eigenstate
populations of these observables, from which we obtain
the spin-vector length F', the Euler angles ¢r,0p, ¢p.
Finally, we arrive to the Berry phase v = vr + vr. By
repeatedly measuring the Berry flux over a selection of 3,
we observe the Berry flux changes from 0 at |3+ 2| >0
to approximately +m at |3 + 2| = 0, with a sharp tran-
sition by 27 at § = —2 (see Fig. 4a). Similarly, one
could apply measurement of the Berry flux on the loop
around . = 37/4, ¢. = 0, and the Berry flux should also
change by 27. Thus, the monople charge must change by
2 across the phase transition at 5. = —2, i.e., C changes
from 2 to 0.

Ideally, we should consider an infinitely small loop
r =~ 0 to obtain a sharp transition exactly at § = —2,
however such an evolution requires infinitely slow ramp
rate and measurement resolution, thus not feasible in
practice. Nevertheless, a finite size loop with » = 0.2
is good enough to show the phase transition. For a finite
but small loop, the Berry flux is also small unless there
is a nonanalytical gap-closing point within the loop, so
we can restrict the Berry flux to [—m,«], and the jump
between +7m gives the critical point. Such a jump for
r = 0.2 can be seen around f = —1.98 in the numeri-
cal simulation, away from which, the Berry flux changes
smoothly, as shown in Fig. 4a.

We plot and observe relative rotations of the tensor
ellipsoid with respect to the spin vector along the loop
L with f = —2.2, as illustrated in Fig. 4b, and the di-
rection of tensor ellipsoids are more sensitive to exper-
imental noises when the two transverse axes have simi-
lar length. We find ¢ undergoes a sine-like oscillation
along the loop while F' undergoes a cosine-like oscillation.
Such rotation gives non-trivial spin-tensor contribution
5€£ Fdpp ~ 0.187 for the Berry flux around the phase
transition. For the phase transition with 8 # 0, both
the spin vectors and tensors contribute to the Berry flux,
independent from the choice of reference axis defining
the Euler angles. Though different choices (with quan-
tum states related by gauge transformations) will modify
(¢7,0F, dr) and thereby v and v, v remains invariant.
For systems with certain symmetries (e.g., the cylindrical
symmetry), it is possible to eliminate 47 by proper choice
of the reference axis [39]. By now we have demonstrated
the topological phase transition by measuring the sudden
change of the Berry flux. To visualize the monopole at
ko = 0, we can measure the total Berry flux on the sphere
S based on generalized solid angles. Alternatively, a dis-
tribution of spin polarization (f‘> on the sphere can also
be used to visualize a monopole, as demonstrated in [39].

Conclusion.—In summary, we experimentally explore



the momentum-space spin-1 Hamiltonian and observe the
tensor-driven transitions between different types of TDPs
with a trapped ion. By examining the vector arrow and
tensor ellipsoid properties around the gap-closing points,
we experimentally observe the transitions between dif-
ferent monopole charges of the TDP. Our work demon-
strates the feasibility to measure Berry flux of high-spin
systems based on the generalized solid angle traced out
by the spin moments (vectors and tensors) which can ap-
ply to general three-band systems, paving the way for ex-
ploring topological phenomena directly from the geomet-
ric rotations of the spin moments in such systems. More-
over, our study can be generalized to explore topologi-
cal phenomena for higher monopole charges with higher-
order dispersion [19, 20, 42] and even higher spins (e.g.,
higher-fold degenerate points [43]), since we have full con-
trol of the detunings, couplings of the three levels and our
setup may be readily scaled to more levels based on our
experimental techniques for “Be™ ion, which can be ex-
tended to more ions with multiple levels therein [44-46].
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