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Ideally, quantum anomalous Hall systems should display zero longitudinal resistance. Yet in
experimental quantum anomalous Hall systems elevated temperature can make the longitudinal
resistance finite, indicating dissipative flow of electrons. Here, we show that the measured potentials
at multiple locations within a device at elevated temperature are well-described by solution of
Laplace’s equation, assuming spatially-uniform conductivity, suggesting non-equilibrium current
flows through the two-dimensional bulk. Extrapolation suggests that at even lower temperatures
current may still flow primarily through the bulk rather than, as had been assumed, through edge
modes. An argument for bulk current flow previously applied to quantum Hall systems supports
this picture.

The quantum anomalous Hall (QAH) effect ideally fea-
tures longitudinal resistivity ρxx that vanishes as the
Hall resistivity ρxy approaches ±h/e2. Such quantized
Hall resistivity has been confirmed with high precision
in magnetically-doped films of the topological insulator
(Bi, Sb)2Te3 at zero or low magnetic field [1–6]. The on-
set of dissipation, where ρxx becomes finite and ρxy de-
parts from h/e2, may be induced through increasing the
temperature, increasing the source-drain bias, or electro-
static gating. Understanding the dissipative state is cru-
cial for quantifying and improving material quality, with
the goal of engineering materials in which the anomalous
Hall effect is quantized at higher temperatures.

The QAH system has been theoretically shown to host
a chiral edge mode (CEM) [7, 8] associated with the sys-
tem’s nonzero Chern number. Scanning measurements of
local microwave impedance appear to show conducting
edge modes [9]. The general understanding in the field
has been that non-equilibrium current—current flow-
ing in response to applied source-drain bias, as distinct
from the persistent circulating current—flows through
the CEM [1–6, 9–12]. This understanding originates in
early pictures of the quantum Hall (QH) system [13, 14].
Yet a recent study of transport in QAH Hall bar and
Corbino geometries at high bias identified that dissipa-
tion occurs through the two-dimensional bulk, requiring
at least some bulk current flow in dissipative regimes [15].
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That study suggests the need for further inquiry into the
conditions under which current flows in the bulk versus
through the edges, and whether dissipation in the bulk
is spatially uniform or is higher in particular areas of
devices.

In this work, we measure the longitudinal voltage at
various points along the edge of a current-biased Hall bar
in the QAH state at the onset of dissipation. We find that
the longitudinal electric field is not uniform, but rather
varies monotonically along each edge of the Hall bar. We
find that, when dissipation is induced by increased tem-
perature, the spatial profile of the measured potential
in the QAH system nearly perfectly matches numerical
simulations of Laplace’s equation that assume spatially
uniform longitudinal and Hall conductivity within the
device geometry. Mirroring arguments borrowed from
the QH literature [16–19], we deduce that the source-
drain bias manifests primarily as a transverse electric
field that drives current through the two-dimensional
bulk. That this holds down to ρxx ≈ 0.01h/e2 (the lowest
we can probe with small enough uncertainties) raises the
possibility that even in the dissipationless regime, non-
equilibrium current in the QAH system may flow through
the bulk of the material and not, as has been generally
assumed, through chiral edge modes.

METHODS

Here we study low-frequency electronic transport in a
Hall bar fabricated from a 6 nm film of (Bix Sb1–x )2Te3,
with layers near the top and bottom heavily doped with
Cr. The fabrication process, described in Ref. [15], in-
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FIG. 1. (a) Optical micrograph of the Hall bar prior to top
gate metal deposition. Current injection at the source ter-
minal (left) and current measurement at the drain terminal
(right) are indicated, along with the eight longitudinal voltage
measurements V αixx enabled by the ten voltage taps. Coordi-
nate axes are indicated. Scale bar, 100 µm. (b) The apparent
resistivities as a function of temperature at the optimum gate
voltage. (c) Apparent resistivity shown as a function of posi-
tion on the top and bottom edges of the Hall bar at 898 mK.

cludes an electrostatic top gate with an alumina dielec-
tric to control the Fermi level. The Hall bar features
five voltage taps spaced evenly along the top edge and
five more along the bottom edge, so that the longitudi-
nal voltage drop can be measured across four consecutive
segments along each edge (Fig. 1(a)). We define the ap-
parent differential resistivities

ραixx =
W

L

dV αi

dI
, (1)

where α = T,B indexes the top and bottom edges of the
Hall bar, i = 1, 2, 3, 4 indexes the four measurement seg-
ments across the Hall bar from left to right, W = 100 µm
is the width of the Hall bar, and L = 40 µm is the length
between voltage taps for each measurement segment. A
5 nA ac current bias is applied to the source terminal
at the left edge of the device, and a dc current bias is
added in measurements where indicated. The differen-
tial longitudinal voltages dV αi and the ac bias current
dI are amplified and measured simultaneously with sep-
arate lock-in amplifiers [20].

Measurements are made in a dilution refrigerator with
a base temperature of 28 mK at zero external field after
magnetizing the film with an out-of-plane field of 0.4 T.
Dissipation is induced in three ways: (1) by increasing
the temperature of the system, (2) by applying nonzero
dc bias, and (3) by tuning the gate voltage away from
its optimal value. The temperature is increased using a
heater on the mixing chamber stage of the refrigerator,
and is measured by a thermometer also on the mixing
chamber stage. Electronic wiring is thermalized to the
mixing chamber temperature through filters attached to
the mixing chamber stage so that when the mixing cham-
ber stage is heated, the sample’s electron temperature
and lattice temperature should both track the mixing
chamber temperature. In the Supplemental Material, we
discuss additional data taken while heating in a manner
designed to preferentially heat the electronic system or
the lattice.

RESULTS

At base temperature and with magnetization directed
vertically upward (henceforth referred to as positive mag-
netization), the Hall resistance is quantized (zero longi-
tudinal resistance and Hall resistance −h/e2), within the
precision of the measurement over a wide range of gate
voltages Vg. The optimum gate voltage, that which mini-
mizes the longitudinal resistivity at an elevated tempera-
ture, is −1.18 V. Here, the conductivity of the device ver-
sus temperature is well-fit by Arrhenius activation with a
temperature scale of 1.40 K [20]. All measurements, aside
from those where the gate voltage is explicitly varied, are
taken at Vg = −1 V.

Fig. 1(b) shows ραixx as a function of temperature. At
a given temperature, the apparent resistivity is not con-
stant throughout the device, but follows a pattern that
is clarified in Fig. 1(c) by plotting the resistivities as a
function of position. The apparent resistivity decreases
(increases) monotonically moving rightwards across the
top (bottom) edge of the device. The apparent resistivi-
ties on opposite ends of opposite edges are approximately
equal, so that the largest are ρT1,B4

xx .
This pattern is reminiscent of the classical Hall effect,

where the electric potential φ satisfies Laplace’s equation
∇2φ = 0 subject to Dirichlet boundary conditions at the
source and drain contacts and the condition

dφ

dy
=
σxy
σxx

dφ

dx
(2)

at edges of the device without contacts (the top and bot-
tom edges of the Hall bar) [21]. The latter conditions are
a statement of current continuity at the device edges. To
compare our measurements with solutions of Laplace’s
equation, we numerically solve Laplace’s equation in the
specific geometry of our Hall bar for a variety of values
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FIG. 2. (a) Contour plot of equipotentials, normalized to the
source potential φs, in the Hall bar simulated at σxx/σxy =
0.05, with positive magnetization. The electric field is con-
centrated near the top left and bottom right corners. Scale
bar, 40 µm. (b) Simulated apparent resistivities ραixx as a
function of the spatially-homogeneous microscopic resistivity
of the material. The dotted line with a slope of 1 is included
for reference. (c) The ratio of simulated resistivities ραixx/ρ

T3
xx .

of the parameter σxx/σxy. An example result is shown
in Fig. 2(a), demonstrating concentration of the electric
field E = ∇φ in the top left and bottom right corners.

The simulated apparent resistivities, shown in Fig. 2(b)
as a function of the spatially-homogeneous microscopic
resistivity [20], reproduce several key features of our mea-
surements. For nonzero σxx and σxy, resistivities mea-
sured at different locations are unequal. The apparent
resistivity along the top (bottom) edge increases mono-
tonically nearer to the left (right) corner. Centrosymme-
try is intact: the apparent resistivities on opposite sides
of opposite edges are equal.

We next quantitatively compare the simulations to the
measurements. The microscopic resistivity cannot be di-
rectly determined from the measurements. We therefore
parametrically plot ραixx versus its value at one arbitrarily-
chosen location ρT3

xx , providing a parameter-free measure
of the spatial variation of the electric field. The data
from Fig. 1(b) are shown in this manner in Fig. 3(a).
The concurrence between simulations and measurements
is striking, and, as emphasized in Fig. 3(b), holds in the
low-dissipation limit to ρxx ∼ 200 Ω ≈ 0.01h/e2, below
which measurement errors become so large as to prevent
meaningful comparison to our model.

When the magnetization of the film is reversed, switch-
ing the sign of the Hall conductance, the aforementioned
pattern reverses, so that ρT4, B1

xx are highest. Measure-
ments for negative magnetization are shown in the Sup-
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FIG. 3. (a) The apparent resistivity at multiple locations and
multiple temperatures (data from Fig. 1(b)), plotted para-
metrically versus measurement T3 at the same temperature.
The simulated behavior (Fig. 2(b)) is shown by the dashed
violet lines. (b) The ratio of measured apparent resistivities
ραixx/ρ

T3
xx , shown as a function of measured ρT3

xx . Simulated
behavior (Fig. 2(c)) is shown by the dashed violet lines. Data
in (b) are corrected for finite input impedance of our voltage
preamplifiers. The corrections and error budget are described
in the Supplemental Material.

plemental Material, and are also in good agreement with
simulations.

DISCUSSION

Voltage contacts measure the local electrochemical po-
tential, which in this experiment is the sum of the chem-
ical potential of the CEM and the electrostatic potential.
Our experiment shows that the electrochemical potential
along the edge of a dissipative-regime quantum anoma-
lous Hall system satisfies Laplace’s equation in two di-
mensions. From this, we will next deduce that there is a
transverse electric field Ey across the device and, in turn,
that current flows through the bulk.

Just as voltage contacts measure local electrochemi-
cal potential, applied voltage imposes an electrochemi-
cal potential difference between source and drain. The
way the electrochemical potential falls across the sample
may in general be split between electrostatic and chem-
ical potential gradients, the latter of which drives cur-
rent through the CEM [13]. Let us consider whether
one of those components is dominant in our measure-
ments, or if both play roles. The electrostatic portion
should satisfy Laplace’s equation (the electrostatic po-
tential should always satisfy Poisson’s equation; that it
should satisfy Laplace’s equation follows from the asser-
tion that Ohm’s law j = σE and conservation of charge
∇j = 0 hold [20]). In contrast, absent elaborate fine-
tuning, models for dissipative-regime edge mode trans-
port yield chemical potential profiles that do not satisfy
Laplace’s equation in two dimensions, as we demonstrate
in the Supplemental Material. As Laplace’s equation is
linear, the sum of electrostatic and electrochemical po-
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tentials thus should not be expected to satisfy Laplace’s
equation unless the electrochemical component is negli-
gible. Our experimental finding that electrochemical po-
tential does satisfy Laplace’s equation along the sample
edge then strongly suggests that the source-drain bias
primarily drives an electrostatic potential gradient Ey
throughout the bulk, not a chemical potential gradient
across the CEM. That the potential profile is electro-
static could not have been concluded simply based on
measuring current from source to drain: net current can
flow from source to drain through the CEM in response
to a chemical potential difference, even with no electric
field anywhere in the sample [13].

Next, we consider the relationship between the electro-
static potential and the chemical potential throughout
the bulk, noting that whereas electrostatic potential is
uniquely defined (up to a constant) at every location in
space, the chemical potential of the bulk does not neces-
sarily equilibrate with that of the CEM. When the elec-
trostatic potential in a small area of the bulk changes,
charge enters the region according to its geometric ca-
pacitance, in turn proportionally modifying the chemical
potential. This relationship may be represented as

∆µ(x, y)

e
=
Cg
Cq

∆φ(x, y), (3)

where ∆µ and ∆φ are the changes to the chemical and
electrostatic potentials from the source-drain bias, re-
spectively, Cg is the 2D bulk’s geometric capacitance
per unit area, and Cq is the 2D bulk’s quantum capac-
itance per unit area, which here is determined by the
density of localized states within the gap between the
conducting surface state bands. In our device, Cg is
dominated by the gate capacitance. We place an up-
per bound on Cg/Cq as follows: at base temperature,
we observe a well-quantized QAH effect in this device
across a gate voltage range of 6 V. Since the bulk con-
duction is small in this range, this gate voltage swing
cannot change the chemical potential by more than the
intrinsic gap, which has been measured in similar mate-
rials to be roughly 30 meV [22, 23] (this is a conservative
upper bound; note that the aforementioned transport gap
kB × 1.40 K = 121 µeV is orders of magnitude smaller).
We thus bound Cg/Cq ≤ 1/200. This calculation estab-
lishes that the electrochemical potential difference across
the bulk of the device is almost entirely manifested as an
electrostatic potential gradient∇φ, not a chemical poten-
tial gradient ∇µ. We conclude that a source-drain bias is
mostly manifested as an electrostatic potential difference,
creating a transverse electric field within the device’s 2D
bulk.

Since there is a transverse electric field Ey, and we
have σxx � |σxy| ≈ e2/h, it follows from Ohm’s law
j = σE that the non-equilibrium current flows primar-
ily through the two-dimensional bulk of the device. The
ideal QAH system at zero temperature should have quan-

tized conductivity σxx = 0, σxy = ±e2/h (a consequence
of the system’s Chern number C = ±1, and derived via
the Kubo formula [8]). The analysis technique presented
in our present work requires measurable resistance. We
have observed that the electrochemical potential contin-
ues to satisfy Laplace’s equation as dissipation is reduced
down to σxx ∼ 0.01h/e2 (Fig. 3(b)), the lowest we can
access with acceptable resolution. Though we cannot
make direct claims about the regime of even lower dissi-
pation, this observation suggests that source-drain bias
continues to manifest as a transverse electric field, and
therefore that non-equilibrium current flows through the
bulk, even in the limit σxx → 0, where this current flows
without dissipation and Hall resistance is precisely quan-
tized.

We emphasize that we are here discussing the non-
equilibrium portion of the the current, that is, the differ-
ence in total current with versus without a source-drain
bias; even without bias a persistent current (from oc-
cupied states of the CEM) should also circulate around
the edge of the device without contributing to a net
source-drain current. Our experiment cannot discern
through which two-dimensional states bulk currents
flow—surface states or quantum well states derived from
three-dimensional states—although we would predict the
former. We also note that when σxx = 0, σxy 6= 0, in
contrast to the dissipative regime we directly probe, re-
sistances predicted by the Landauer-Büttiker formalism,
based on the edge-current picture, are identical to those
derived from Laplace’s equation, even in nonlocal geome-
tries [20].

Though our findings depart from the extant QAH lit-
erature, which generally presents dissipationless current
flow as a circulating edge current, a strand of the QH
literature has long recognized that the amount of non-
equilibrium current flowing through the bulk versus the
edge depends on the extent to which the source-drain
bias manifests as an electrostatic or a chemical poten-
tial difference, respectively, and that the drop is often
primarily electrostatic, implying bulk current flow [16–
19, 24–29]. We present further comparison of the QAH
and QH systems in the Supplemental Material.

Having so far focused on linear conductance, we now
consider the QAH device subjected to a large current
bias. The resulting large transverse electric field across
the device induces dissipation and eventually breakdown
of the QAH state [3, 4, 15]. Because the electric field
is highest in two corners of the device (called the “hot
spots” in this context) [27], we expect that the longi-
tudinal conductivity becomes nonuniform, taking higher
values near the hot spots. Solutions to Laplace’s equa-
tion assuming uniform conductivity should thus no longer
describe the potential throughout the device. In the Sup-
plemental Material the apparent resistivities shown as a
function of current bias (Fig. 4(a) of the main text) are
compared to simulations of Laplace’s equation. Indeed,
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FIG. 4. (a) Resistivity as a function of applied dc bias at
optimum gate voltage and T ≈ 28 mK. (b) The electric field
normalized to the source-drain bias, simulated using Laplace’s
equation with appropriate boundary conditions at edges of
the device. For this simulation, conductivity is assumed to
be uniform over the entire device. In fact, we know the con-
ductivity is a strong function of electric field at high electric
field, and since the simulation shows that electric field is non-
uniform within the device, our model should be inaccurate at
high current bias.

the data no longer match uniform-conductivity solutions
to Laplace’s equation. Near the hot spots (measurements
T1 and B4), breakdown occurs at a lower bias and the
resistivity increases more rapidly after breakdown. This
effect is invariant to the sign of dc bias, but reverses, so
that ρT4, B1

xx become highest, when the magnetization of
the film is switched (thus switching which corners host
the hot spots) [20].

CONCLUSION

We have here shown that the resistivity in Hall-
geometry QAH devices in the dissipative regime varies
as a function of where in the device the resistivity is
measured. When the dissipation is induced by increased
temperature, the spatial dependence of resistivity quan-
titatively matches solutions to Laplace’s equation with
finite and spatially-uniform longitudinal and Hall con-
ductivities. This result is consistent with flow of non-
equilibrium current primarily through the bulk, rather
than the edges, of devices, which, we argue, should be
expected in QAH devices. Our analysis extends that of
Ref. [15], which showed that dissipative currents mostly
flow through the bulk, but did not establish that the non-
equilibrium current mostly flows through the bulk even
in the limit of low dissipation.

The analysis presented in this work is limited to
regimes with finite longitudinal conductivity, and we have
discussed the dissipationless regime only by extrapola-
tion from the low-dissipation limit. Using high-precision,
high-input-impedance voltmeters [3] could allow similar
analysis at even lower levels of dissipation, ρxx ∼ 10 mΩ.
Other measurements, such as scanning probe measure-

ments of current flow or local potential, would enable
study of the system’s electronic behavior in the regime of
vanishing longitudinal conductivity. Scanning impedance
measurements under large current bias should also be
able to detect local variation in the conductivity near
the hot spots.

A recent study claimed the observation of chiral cur-
rent flow in a modified Corbino device [30]. In the Sup-
plemental Material, we reproduce with no free parame-
ters the main features of the data using our simulations of
Laplace’s equation, which feature bulk-only current flow.

While preparing this manuscript, we became aware of
work with similar conclusions being prepared by G. M.
Ferguson et al. [31].
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[14] M. Büttiker, Phys. Rev. B 38, 9375 (1988).
[15] L. K. Rodenbach, I. T. Rosen, E. J. Fox, P. Zhang,

L. Pan, K. L. Wang, M. A. Kastner, and D. Goldhaber-
Gordon, APL Mater. 9, 081116 (2021).

[16] A. H. MacDonald, T. M. Rice, and W. F. Brinkman,
Phys. Rev. B 28, 3648 (1983).

[17] H. Hirai and S. Komiyama, Physical Review B 49, 14012
(1994).

[18] S. Komiyama and H. Hirai, Physical Review B 54, 2067
(1996).

[19] J. Weis and K. Von Klitzing, Philos. Trans. R. Soc. Lond.
A 369, 3954 (2011).

[20] See Supplemental Material, which includes Refs. [32-42].

[21] M. J. Moelter, J. Evans, G. Elliott, and M. Jackson, Am.
J. Phys. 66, 668 (1998).

[22] I. Lee, C. K. Kim, J. Lee, S. J. Billinge, R. Zhong, J. A.
Schneeloch, T. Liu, T. Valla, J. M. Tranquada, G. Gu,
et al., Proceedings of the National Academy of Sciences
112, 1316 (2015).

[23] Y. X. Chong, X. Liu, R. Sharma, A. Kostin, G. Gu,
K. Fujita, J. S. Davis, and P. O. Sprau, Nano Letters
20, 8001 (2020).

[24] P. Fontein, J. Kleinen, P. Hendriks, F. Blom, J. Wolter,

H. Lochs, F. Driessen, L. Giling, and C. Beenakker, Phys-
ical Review B 43, 12090 (1991).

[25] T. Ando, Physica B: Condensed Matter 201, 331 (1994).
[26] S. Wiegers, J. Lok, M. Jeuken, U. Zeitler, J. Maan, and

M. Henini, Physical Review B 59, 7323 (1999).
[27] E. Ahlswede, P. Weitz, J. Weis, K. von Klitzing, and

K. Eberl, Phys. B: Condens. Matter 298, 562 (2001).
[28] M. E. Suddards, A. Baumgartner, M. Henini, and C. J.

Mellor, New J. Phys. 14, 083015 (2012).
[29] K. Panos, R. Gerhardts, J. Weis, and K. Von Klitzing,

New Journal of Physics 16, 113071 (2014).
[30] K. M. Fijalkowski, N. Liu, P. Mandal, S. Schreyeck,

K. Brunner, C. Gould, and L. W. Molenkamp, Nat. Com-
mun. 12, 5599 (2021).

[31] G. Ferguson, R. Xiao, A. R. Richardella, D. Low,
N. Samarth, and K. C. Nowack, arXiv preprint
arXiv:2112.13122 (2021).

[32] W. Van Der Wel, C. Harmans, and J. Mooij, J. Phys. C:
Solid State Phys 21, L171 (1988).

[33] U. Klaß, W. Dietsche, K. von Klitzing, and K. Ploog,
Zeitschrift für Physik B Condensed Matter 82, 351
(1991).

[34] S. Komiyama, Y. Kawaguchi, T. Osada, and Y. Shiraki,
Phys. Rev. Lett. 77, 558 (1996).

[35] B. P. Dolan, Nuc. Phys. B 554, 487 (1999).
[36] F. Delahaye and B. Jeckelmann, Metrologia 40, 217

(2003).
[37] J.-H. Chen, C. Jang S. Adam M. S. Fuhrer E.

D. Williams, and M. Ishigami, Nat. Phys. 4, 377-381
(2008).

[38] G. Granger, J. Eisenstein, and J. Reno, Phys. Rev. Lett.
102, 086803 (2009).

[39] J. Checkelsky, R. Yoshimi, A. Tsukazaki, K. Takahashi,
Y. Kozuka, J. Falson, M. Kawasaki, and Y. Tokura, Nat.
Phys. 10, 731 (2014).

[40] E. O. Lachman, A. F. Young, A. Richardella, J. Cup-
pens, H. Naren, Y. Anahory, A. Y. Meltzer, A. Kandala,
S. Kempinger, Y. Myasoedov, et al., Science advances 1,
e1500740 (2015).

[41] I. T. Rosen, E. J. Fox, X. Kou, L. Pan, K. L. Wang,
and D. Goldhaber-Gordon, npj Quantum Materials 2, 1
(2017).

[42] W. Wang, Y. Ou, C. Liu, Y. Wang, K. He, Q.-K. Xue,
and W. Wu, Nature Physics 14, 791 (2018).

https://doi.org/doi:10.1038/s41567-021-01424-8
https://doi.org/10.1103/PhysRevB.25.2185
https://doi.org/10.1103/PhysRevB.28.3648

	Measured potential profile in a quantum anomalous Hall system suggests bulk-dominated current flow
	Abstract
	Methods
	Results
	Discussion
	Conclusion
	Acknowledgements
	References


