
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Imaginary Gauge Transformation in Momentum Space and
Dirac Exceptional Point

Jose H. D. Rivero, Liang Feng, and Li Ge
Phys. Rev. Lett. 129, 243901 — Published  7 December 2022

DOI: 10.1103/PhysRevLett.129.243901

https://dx.doi.org/10.1103/PhysRevLett.129.243901


Imaginary gauge transformation in momentum space and Dirac exceptional point

Jose H. D. Rivero,1, 2 Liang Feng,3 and Li Ge1, 2, ∗

1Department of Physics and Astronomy, College of Staten Island, CUNY, Staten Island, NY 10314, USA
2The Graduate Center, CUNY, New York, NY 10016, USA

3Department of Materials Science and Engineering,
University of Pennsylvania, Philadelphia, PA 19104, USA

An imaginary gauge transformation is at the core of the non-Hermitian skin effect. Here we show
that such a transformation can be performed in momentum space as well, which reveals that certain
gain and loss modulated systems in their parity-time (PT ) symmetric phases are equivalent to
Hermitian systems with real potentials. Our analysis in momentum space also distinguishes two
types of exceptional points (EPs) in the same system. Besides the conventional type that leads to
a PT transition upon the continuous increase of gain and loss, we find real-valued energy bands
connected at a Dirac EP in hybrid dimensions, consisting of a spatial dimension and a synthetic
dimension for the gain and loss strength.

From nuclear decay [1] to photon lifetime in optical
microcavities [2], a non-Hermitian description of the open-
ness of a physical system has fascinated the physics com-
munity for nearly a century. Different forms of non-
Hermiticity have been introduced to modify an otherwise
Hermitian Hamiltonian, including, for example, a complex
potential and asymmetric hoppings, and the existence of
unique non-Hermitian degeneracies known as exceptional
points (EPs) has led to many intriguing discoveries [3].

Among these different non-Hermitian systems, a par-
ticular interesting family is constructed with a complex
potential that satisfies two of the most fundamental sym-
metries in nature, i.e., parity and time-reversal symme-
tries. When combined, they constitute an approach to
realizing non-Hermitian Hamiltonians with real energies
and hence provide a basis for non-Hermitian extension of
quantum mechanics [4]. In the last decade, this notion
has inspired a plethora of explorations in photonics and
related fields [2, 5–7], studying, for example, the sponta-
neous symmetry breaking of parity-time (PT ) and other
non-Hermitian symmetries [8–13], reflectionless scattering
modes [14–16], generalized conservation relations [16–18],
enhanced sensitivity around an EP [19–21], and unique
roles of non-Hermiticity in topological photonics [22–29].

Another type of non-Hermitian Hamiltonians that have
attracted great interest arise from their off-diagonal non-
Hermiticity, i.e., in the form of asymmetric hoppings or
non-reciprocal couplings [30, 31]. Such systems show
extreme sensitivity to the boundary condition: while a
one-dimensional lattice with real-valued and asymmet-
ric nearest-neighbor (NN) couplings on a ring displays a
complex energy spectrum, opening it up leads to a real
spectrum instead. The latter is understood through an
imaginary gauge transformation, which establishes its
equivalence to a Hermitian system with symmetric NN
couplings. Such an imaginary gauge transformation essen-
tially exponentializes all bulk states in the system, leading
to the so-called non-Hermitian skin effect, which can be
observed in photonic [32], acoustic [33], and condensed
matter systems [34].

While these two forms of non-Hermiticity have been
studied in the system [13], a deeper connection between
them has not been found. One entertaining question
naturally arise in this regard: Can an imaginary gauge
transformation also establish an equivalence between a
non-Hermitian system with a complex potential and a
Hermitian system with a real potential? One may at-
tempt to say no because while a gauge transformation in
position space changes the vector and scalar potentials in
Maxwell’s equations [35], it leaves the potential invariant
in a Schrödinger-like equation [13]. Furthermore, a non-
Hermitian and a Hermitian potential differ fundamentally
in many aspects, including their degeneracies. While all
degenerate states in a Hermitian system have distinct
wave functions, they can coalesce in non-Hermitian sys-
tems at EPs. The intriguing topology of the Riemann
sheets near an EP, including both the real and imaginary
parts of the energy, has enabled state flipping by simply
encircling the EP in the parameter space [36, 37].

While a single EP can be extended to a ring [38] or a
surface [39], it is unclear whether the coalescing energies
around an EP can stay real in a higher-dimensional pa-
rameter space, in a fashion similar to a Dirac or Weyl
point in Hermitian systems. If such an EP exists, then the
absence of a branch cut near it will have a deep impact
on both band topology and encircling topology around it.
Furthermore, the linear “dispersion” or the sensitivity to
a system parameter will also be distinct from known EPs.

In this Letter, we address both intriguing questions
raised above regarding the connections between non-
Hermitian PT -symmetric systems with complex poten-
tials and Hermitian systems. We first show, through
an imaginary gauge transformation in momentum space,
that certain periodic complex potentials in their PT -
symmetric phases are equivalent to real (and Hermitian)
potentials. We further show that a Dirac EP can be
achieved in hybrid dimensions, consisting of one spatial
dimension and one synthetic dimension for the gain and
loss strength. This conical band structure stays real in the
vicinity of this embedded EP at the center of the Brillouin
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zone (BZ), which coexists with conventional EPs at the
edge of the BZ. Surprisingly, they can be swapped when
an additional term is introduced to this potential.

Let us consider the Schrödinger equation

i
d

dt
ψ(x, t) = [−∂2x + V (x)]ψ(x, t), (1)

where we have used dimensionless time, position, and
potential. Optical waves propagating in coupled waveg-
uides satisfy essentially the same equation, i.e., the parax-
ial equation where t is replaced by the propagation dis-
tance z, and they are used routinely to demonstrate
various non-Hermitian photonic effects [40, 41]. We de-
fine Vm(x) = V0(cos mx+ iτ sin mx) (τ ≥ 0) and choose
V (x) = V1(x), which is periodic with the period a = 2π
and PT -symmetric, satisfying V (x) = V ∗(−x) [2]. The
asterisk denotes complex conjugation and represents time
reversal, and the imaginary part of the potential repre-
sents optical gain and loss.

In order to perform the imaginary gauge transformation
in momentum space, we first expand the Bloch wave
function in the plane-wave basis, i.e.,

ψnk(x, t) = eikx−iωt
∑
m∈Z

ame
imx, (2)

which leads to the following equation that determines its
band structure ωnk:

HkΨnk(m) = ωnkΨnk(m). (3)

Here n = 1, 2, . . . is the band index, Ψnk(m) =
[. . . , a−1, a0, a1, . . .]

T , and the Bloch Hamiltonian Hk is
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FIG. 1. Equivalence of a non-Hermitian system in its PT -
symmetric phase (a) and a Hermitian system (b) related by
an imaginary gauge transformation in momentum space. (c)
Their identical band structure showing the first three bands.
V0 = 1, a = 2π, and τ = 0.8. (d) Thin line and dots show
|Ψ1k| and |GΨ1k| at k = 0 in the non-Hermitian system,
respectively. Arrows mark the scaling of the wave function
due to the imaginary gauge transformation. Thick line shows
|Ψ̃1k| in the Hermitian system, coinciding with the dots.

a tri-diagonal matrix given by

Hk =
∑
m∈Z

(m+ k)2|m〉〈m| + t−|m〉〈m+ 1|

+ t+|m〉〈m− 1|, (4)

where t± = V0(1 ± τ)/2 ∈ R. Hk resembles a tight-
binding Hamiltonian in position space with NN couplings,
which are asymmetric when τ 6= 0. If we perform a gauge
transformation by multiplying the mth element of the
wave function Ψnk(m) by eimθ, Hk is then transformed
to H̃k = GHkG

−1 without changing its diagonal elements
[13], where G = Diag[. . . , e−2iθ, e−iθ, 1, eiθ, e2iθ, . . .] is a
diagonal matrix. Now if we let θ equal

θ = i
1

2
ln
t+
t−
, (5)

it is straightfoward to see that the resulting H̃k features
symmetric NN coupling t =

√
t−t+.

We note that θ is imaginary when τ < 1, and hence
G represents an imaginary gauge transformation [30–32],
which performs an m-dependent scaling of the momentum-
space wave function. In contrast, t− is negative when
τ > 1, and θ becomes complex with a real part equal
to π/2. As a result, the gauge transformation is now a
complex one instead of an imaginary one. In both cases,
t can be written as t = V0

√
1− τ2/2, and by comparing

H̃k with τ 6= 0 and Hk with τ = 0, we know immediately
that H̃k is the Bloch Hamiltonian of a system with the
potential

Ṽ (x) = V0
√

1− τ2 cosx. (6)

This finding is quite unusual: Our system with V (x) =
V0(cosx + i sinx) is in its PT -symmetric phase when
τ < 1 [Fig. 1(c)], and it has the same band structure
as the Hermitian system with the real potential Ṽ (x) =
V0
√

1− τ2 cosx [Fig. 1(b)]. This observation holds not
only for a one-dimensional “crystal” of infinite length but
also for a finite-sized ring of length L = 2π, which is just
a special case of our discussions above with k = 0 [44].

We note that the band structures shown in Fig. 1(c)
are found numerically using the finite difference method
in position space [42], which has no knowledge of the
gauge transformation G we performed in momentum
space. Nevertheless, the Fourier transform of the obtained
Hermitian Bloch wave functions [denoted by Ψ̃nk(m)] are
indeed given by those of the non-Hermitian system af-
ter the gauge transformation [Fig. 1(d)], which further
elucidates their equivalence besides their identical band
structure. We also note that the inverse participation ra-
tio IPR = (

∑
m |am|2)2/

∑
m |am|4, which measures the

localization length here in momentum space, reduced
from 1.99 in Ψnk(m) to 1.29 in Ψ̃nk(m), similar to the
non-Hermitian skin effect in position space albeit not as
drastic [44].
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FIG. 2. Equivalence of a non-Hermitian system in its PT -
broken phase (a) and another with an imaginary potential
(b) related by a complex gauge transformation in momentum
space. (c,d) Reak and imaginary parts of their identical band
structure, showing the first three bands. V0 = 1, a = 2π, and
τ = 1.1.

This imaginary gauge transformation also provides a
different perspective on the transition of the original non-
Hermitian system to its PT -broken phase when τ > 1:
The equivalent system with the Bloch Hamiltonian H̃k

no longer has a real potential Ṽ (x) when τ > 1; instead,
it has an imaginary potential Ṽ (x) = iV0

√
τ2 − 1 cosx

[Fig. 2(b)], leading to a partially complex band structure
[Figs. 2(c) and 2(d)]. In momentum space, this change
is reflected by the change of the coupling t from real to
imaginary in the equivalent Bloch Hamiltonian H̃k. Right
at τ = 1, the angle θ is undefined, and so is the gauge
transformation.

Next, we address the other question raised in the intro-
duction, i.e., whether a non-Hermitian degeneracy (i.e.,
an EP) can be embeded as a point singularity in higher-
dimensional parameter space, similar to Dirac and Weyl
poins in Hermitian systems. To this end, we first note
that in the system discussed above, all neighboring bands
of Hk with τ = 1 touch either at the center or the edge of
the BZ [black solid lines in Fig. 3(a)]. While the ones at
the edge of the BZ are known to be EPs [2], the ones at
the center have not been studied in this regard. They may
seem to resemble accidental diabolic points [38] or care-
fully engineered non-Hermitian diabolic points [43], both
featuring distinct wave functions, but these degeneracies
at k = 0 in Fig. 3(a) are EPs instead, as we exemplify
in Fig. 3(b): The second and third bands have identical
wave function at their touching point at k = 0, and so do
the fourth and fifth bands [44]. However, unlike the ones
at the edge of the BZ that undergo a PT transition when
τ becomes greater than unity [Fig. 3(c)], the EPs at k = 0
do not and the energies stay real in its vicinity. We refer
to the one shown in Fig. 3(a) as a Dirac EP, because the

energy difference between the second and third band near
it is a linear function of both τ and k (see also Ref. [44]).
Note that it is fundamentally different from previously
studied Dirac points in non-Hermitian (and Hermitian)
systems, which are still diabolic points and not EPs.

To gain some analytical insights on the contrasting
properties of these EPs occurring at τ = 1, we truncate
the momentum-space Hamiltonian Hk given by Eq. (4)
at k = 0 and 0.5, respectively. Note that the diagonal
elements of Hk, given by (m+k)2, are symmetric at both
these k values: the ones with m = −m0 and m0(≥ 0) are
the same when k = 0, and the ones with m = −(m0 + 1)
and m0 are the same when k = 0.5. We maintain these
symmetries when truncating Hk, and we aim to show
that the truncated Hamiltonian indeed has an EP at
τ = 1, and more importantly, that this EP evolves to
two energies that behave differently across τ = 1, with
the ones at k = 0 being real and the ones at k = 0.5
experiencing a PT transition.

At k = 0.5, the simplest truncation retaining the afore-
mentioned symmetry keeps the m = −1 and 0 block of
the full Hk:

H(2) =

(
ω t−
t+ ω

)
, (7)

where ω = 0.52. Indeed, this truncated Hamiltonian fea-
tures a conventional EP at τ = 1: its two eigenvalues
are real (i.e., ω± = ω ± |t|) when τ < 1 and complex
conjugates (i.e., ω± = ω ± i|t|) when τ > 1, hence experi-
encing a PT transition. Here t =

√
t−t+ = V0

√
1− τ2/2

as before, and these two eigenvalues correspond to the
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FIG. 3. Two types of EPs in the same system with V (x) =
V1(x). (a) Its band structure plotted in the hybrid dimensions
of k and τ . Black solid lines show the band structure at
τ = 1. Black and colored dots show conventional EPs and
the Dirac EP, respectively. (b) Coalesced wave functions at
the conventional EP (dashed) and the Dirac EP (solid). (c,d)
Changes of the band structure as a function of τ at k = 0.5
and 0, respectively.
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first and second bands that host the conventional EP in
the full Hamiltonian.

Similarly, at k = 0 where the Dirac EP exists, the
simplest yet nontrivial truncation retaining the aforemen-
tioned symmetry keeps the m = −1, 0 and 1 block of the
full Hk:

H(3) =

ω t− 0
t+ 0 t−
0 t+ ω

 , (8)

where ω = 1. The three eigenvalues of H(3) are given by
ω, (ω ±

√
ω2 + 8t2)/2. At τ = 1, they are ω, ω, and 0.

The last one gives the energy of the first band at k = 0
in the full Hk, and the first two are at the Dirac EP.
Note that these two eigenvalues of H(3) are real on both
sides of τ = 1 in its vicinity (defined by |t| < ω/2

√
2),

which is a prominent property of the Dirac EP as we have
mentioned.

Intriguingly, the conventional and Dirac EPs are
switched when we choose V (x) = V1(x) + V2(x) and
set V0 = 1, where Vm(x) was introduced below Eq. (1).
As Fig. 4(a) shows, its band structure at τ = 1 is identical
to that with V (x) = V1(x) shown in Fig. 3(a). However,
as τ becomes greater than unity, the bands undergo a
PT transition at the center of the BZ instead of at its
edge, i.e., with the conventional and Dirac EPs switched
[Figs. 4(c) and (d)]. This switching can again be under-
stood using our analysis in momentum space, where V2(x)
adds asymmetric next-nearest-neighbor (NNN) couplings
to Hk [44].

For this more complicated potential, it cannot be
transformed to a real (and Hermitian) potential using
a gauge transformation in momentum space. However,
there are special cases where such equivalence can be
established, despite that their Bloch Hamiltonians have
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FIG. 5. Same as Fig. 1 but with a PT -symmetric potential
V (x) = V1(x) + V0[(1 + τ2) cos 2x + 2τi sin 2x] in (a) and a

real potential Ṽ (x) = V0[
√

1− τ2 cos x + (1 − τ2) cos 2x] in
(b).

both asymmetric NN and NNN couplings [44]. V (x) =
V1(x) + V0[(1 + τ2) cos 2x+ 2τi sin 2x] (0 < τ < 1) is one
example. This potential is PT -symmetric and its Bloch
Hamiltonian is given by

Hk =
∑
m∈Z

(m+ k)2|m〉〈m|+ t−|m〉〈m+ 1|+ t+|m〉〈m− 1|

+ t′−|m〉〈m+ 2|+ t′+|m〉〈m− 2|,

where t′± = V0(1 ± τ)2/2. The same imaginary gauge

transformation we have used turns it into an H̃k with
symmetric NN coupling t =

√
t−t+ and symmetric

NNN coupling t′ =
√
t′−t
′
+ = V0(1 − τ2)/2, which cor-

responds to a Hermitian system with a real potential
Ṽ (x) = V0[

√
1− τ2 cos x+ (1− τ2) cos 2x] (Fig. 5).

In summary, we have first shown that two well-studied
forms of non-Hermiticity, i.e., a complex potential and
asymmetric hoppings, can be rigorously related in one-
dimensional periodic systems by analyzing the former
in momentum space. This relation is not limited to the
examples we have chosen above [44], which however do
allow us to apply the imaginary gauge transformation
in momentum space and find their equivalent Hermitian
potentials. This transformation should be distinguished
from the change to the canonical momentum after a gauge
transformation in position space [45]. We have also re-
ported the finding of a Dirac EP in hybrid dimensions,
consisting of one spatial dimension and a synthetic di-
mension for the gain and loss strength. Its implication on
topological photonics will be studied in a future work.

This project is supported by NSF under Grant No.
PHY-1847240 and and ECCS-1846766.



5

∗ li.ge@csi.cuny.edu
[1] G. Gamow, Z. Phys. 51, 204 (1928).
[2] L. Feng, R. El-Ganainy, and L. Ge, Non-Hermitian pho-

tonics based on parity-time symmetry, Nat. Photon. 11,
752–762 (2017).

[3] M.-A. Miri and A. Alù, Science 363, (2019).
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