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We provide the optimal measurement strategy for a class of noisy channels that reduce to the identity channel
for a specific value of a parameter (spreading channels). We provide an example that is physically relevant: the
estimation of the absolute value of the displacement in the presence of phase randomizing noise. Surprisingly,
this noise does not affect the effectiveness of the optimal measurement. We show that, for small displacement,
a squeezed vacuum probe field is optimal among strategies with same average energy. A squeezer followed
by photodetection is the optimal detection strategy that attains the quantum Fisher information, whereas the
customarily used homodyne detection becomes useless in the limit of small displacements, due to the same
effect that gives Rayleigh’s curse in optical superresolution. There is a quantum advantage: a squeezed or a
Fock state with N average photons allow to asymptotically estimate the parameter with a

√
N better precision

than classical states with same energy.

The goal of quantum metrology [1, 2] is twofold: (1) esti-
mate the ultimate limits in the estimation of a parameter α that
is encoded into a physical probe by some transformation or
channel Λα, and (2) find the optimal strategies that attain this
limit, namely the ones that achieve the quantum Fisher infor-
mation on the optimal probe. In the noiseless case, where Λα
is a unitary transformation, the ultimate limits (the Heisenberg
bound) and the optimal estimation strategies are known, and
a quantum advantage exists either through entanglement [3]
or squeezing [4], typically a quadratic enhancement of

√
N

in precision, where N is the number of entangled probes or
is the average number of photons (or energy) employed in the
estimation. In the noisy case [5, 6], the situation becomes
very complicated and noise-dependent: there are many trans-
formations for which all quantum advantage is lost [7] and
the optimal detection strategy is known only for a handful
of them [2]. In this paper we obtain a local optimal detec-
tion strategy for a large class of noisy channels, and we show
that a physically relevant one of this class retains the usual√
N quantum advantage. These are channels parametrized

by non-negative parameter α ≥ 0 that morph into the iden-
tity channel for α = 0. We call them “spreading channels”,
since the noise is increased as the parameter increases. More
rigorously, a spreading channel Λα is defined as having the
property limα→0 Λα[ρ] = ρ, with Λα differentiable in α = 0.
Our strategies are optimal in the proximity of α = 0.

The spreading channels may be seen as the ones obtained
by the action of a unitary Uα,ϕ = U†ϕe

iαGUϕ with ran-
dom, rapidly varying directions ϕ, distributed according to a
distribution p(ϕ), which for specific cases was discussed in
[8, 9]. A related, but different, problem refers to the “nuisance
parameters”[10, 11], where one works under the assumption
that the uninteresting (nuisance) parameter ϕ has values close
to some known value. We drop this assumption here. Note
that our analysis is also different from the problem of quan-
tum estimation in the absence of a reference frame [12–14],
which can be seen as the action of a rotation Uϕ on the fi-
nal state (we, in contrast, consider a random rotation of the
channel itself). For the class of the channels discussed in this
paper we show that the averaging over the parameter ϕ does
not affect the efficiency of extracting the information about
the parameter α from the output state.

A physically relevant example of discussed class channels
is the estimation of a small value of a displacementD(α,ϕ) =

eα(eiϕa†−e−iϕa) of a mode a of the electromagnetic field in
the presence of complete randomization over ϕ [9, 15]. This
is relevant for many estimation procedures, such as for ax-
ion dark matter searches [16–19], in communication channels
with OOK modulation with dephasing, in magnetic field esti-
mation either at high temperature [8] or in the presence of a
trapped ion with unknown phase [9], in gravitational wave de-
tection with resonant cavities, e.g. [20]. Similar issues appear
in many optical imaging procedures [21–24].

We show that an optimal probe state among strategies em-
ploying the same average energy is the squeezed vacuum. It
was previously shown [9, 25] that an optimal probe state is
also a highly excited Fock state (which is much more com-
plicated to create, impossible with current technologies). We
also show the optimal detection strategy: an anti-squeezing
transformation (i.e. a squeezing in the orthogonal direction),
followed by a photodetection. Current experiments and pro-
posals use homodyne detection, e.g. [19, 26]. We show that,
surprisingly, homodyne detection is not only suboptimal, but
even useless in the relevant limit α → 0: a result that corre-
sponds to Rayleigh’s curse [21–24], which, after proper for-
mulation, can be seen as a special case of our theorem. A
classical state (coherent or thermal) with N average photons
can only attain at most the same sensitivity of the vacuum |0〉,
whereas employing a squeezed or a Fock state we find a quan-
tum Fisher information proportional to N asymptotically for
small α, which proves a

√
N enhancement.

We start by providing the precision limits of all spreading
channels and showing a simple strategy that attains those lim-
its: a simple yes-no projection onto the initial state of the
probe. For the channels coming from averaging of unitary
transformations rotated over additional parameter, we show
that the Fisher information of the averaged output state is
equal to averaged Fisher information calculated for the pure
states, so no information is lost. Finally, we study in detail
the example of the estimation of a displacement in a channel
where the displacement phase is completely randomized.
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I. OPTIMALITY OF SELF-PROJECTION
MEASUREMENT

Consider the family of channels depending on the unknown
positive parameter α ≥ 0 satisfying limα→0 Λα[ρ] = ρ
(i.e. they become the identity when α = 0).

The aim is to estimate the exact value of α by using a probe
system in the input state ρ (which may itself be composed
of N entangled sub-probes) and performing the measurement
{Πi} on the output state ρα = Λα[ρ]. This results in a prob-
ability distribution p(i|α) = Tr(Πiρα). After M repetitions
we assign the estimator to the sequence of the measurement
results – α̃(i1, i2, ..., iM ). From the Cramer-Rao bound (CR),
for any unbiased estimator, the RMSE is bounded from below
as

∆α̃ ≥ 1√
M
√
FC(ρα, {Πi})

, (1)

where FC(ρα, {Πi}) is the classical Fisher information (CFI)
(which may depend on number of entangled probesN used in
each repetition). The CR inequality is known to be asymptot-
ically saturable in the limit M → ∞; in practice the amount
of necessary repetitions M depends on the specific model.

For a given output state ρα, the maximal value of the clas-
sical Fisher information is equal to the quantum Fisher infor-
mation (QFI)

max
{Πi}

FC(ρα, {Πi}) = FQ(ρα) := Tr(ραL
2), (2)

where L is symmetric logarithm derivative dρα
dα = 1

2 (Lρα +
ραL).

Since the channel is a linear map and the QFI is a convex
function, the optimal state for estimating α is a pure state ρ =
|ψ〉 〈ψ|. Below we show, that for any spreading channel, the
simple projection measurement on the initial state, i.e.

Π0 = |ψ〉 〈ψ| ,Π1 = 11−Π0 (3)

saturates (2) for small values of α. More precisely, we assume
that limα→0+ FQ(ρα) converges to a fixed value F+

Q (ρ0) (see
App. A and [27] for a broader technical discussion, which
shows that this assumption is inconsequential as long as the
value α is guaranteed to be non-negative). Then we show that

FC(ρα, {Πi}) = F+
Q (ρ0) +O(α). (4)

Proof: the probability of successful projection of the final state
ρα onto the initial state, relative to the POVM element Π0 is
equal to p0(α) = Tr(ρα |ψ〉 〈ψ|). Using the relation between
QFI and the fidelity via the Bures metric, for small α we get

Tr(ρα |ψ〉 〈ψ|) = 1− 1

4
F+
Qα

2 +O(α3), (5)

so

p(0|α) = 1−1

4
F+
Qα

2+O(α3), p(1|α) =
1

4
F+
Qα

2+O(α3).

(6)

The CFI for this distribution is

FC(ρα, {Πi}) =
∑
i=0,1

1
p(i|α) ( ∂

∂αp(i|α))2 =

1
p(1|α)[1−p(1|α)]

(
∂
∂αp(1|α)

)2
= F+

Q (ρ0) +O(α), (7)

which ends the proof.
Two major issues connected with the measurement (3)

should be mentioned. Namely, the smaller is α, the larger
is the number of repetitions M needed to saturate the CR
bound, and also the more susceptible to noise is the measure-
ment [28]. For example, consider the noise which changes the
probabilities as p0(α) → (1 − ε)p0(α) + ε/2 and p1(α) →
(1−ε)p1(α)+ε/2. Then, from (7) one can see that in the limit
α → 0 even arbitrary small ε may completely decrease the
value of Fisher information. In practice, the procedure works
well and gives good estimates of α if the noise ε� p1(α) and
the number of repetitons M � 1/p1(α). Note that this issue
is not a specific defect of this protocol, but rather a unavoid-
able difficulty: for certain types of models, maximizing QFI is
unavoidably connected with extreme sensitivity to noise [28].

A physically relevant class of spreading channels is the one
obtained by averaging some unitary channel over the direction
of action. We consider a quantum channel of the form:

Λα(ρ) =

∫
dϕ p(ϕ) Uα,ϕ ρ U

†
α,ϕ, Uα,ϕ = U†ϕe

iαGUϕ.

(8)
This means that, every time the channel is used, ϕ is indepen-
dently randomly drawn from the distribution p(ϕ). This is not
a randomization of the parameter ϕ of the probe, but of the
channel itself. Assuming a pure input state, from convexity

∀α>0 FQ(ρα) ≤
∫
dϕ p(ϕ)FQ(|ψϕα〉) := FQ(α), (9)

where |ψϕα〉 ≡ Uα,ϕ |ψ〉 and FQ is the average QFI of |ψϕα〉
over ϕ. Below we show, that this inequality is tight in the limit
of small α – indeed, for fixed initial state, no information is
lost during averaging over ϕ. Moreover, all this information
may be extracted through a projection on the initial state. In-
deed, from the Bures metric for pure states we have:

| 〈ψ|ψϕα〉 |2 = 1− 1

4
FQ(|ψϕα〉)α2 +O(α3), (10)

which, after avaraging over ϕ, gives (5) with FQ(α) in place
ofF+

Q (ρ0), which shows that they differ by the factorFQ(α)−
F+
Q (ρ0) = O(α)

Note that, if p(ϕ) is not uniform, some care must be taken
to estimate α from the measurement outcomes, see App. B.

II. OPTICAL DISPLACEMENT ESTIMATION

In this section we consider a physically relevant example of
spreading channels: the estimation of the amplitude α of a dis-
placement D(α,ϕ) = U†ϕe

iαGUϕ, where G = 1
i (a
† − a) and
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Uϕ = e−iϕa
†a, with random phase ϕ. We consider the sce-

nario where the experiment is repeated M times with a bound
N for the mean input energy in each realization. This is re-
lated to typical realistic constrains, where the total number of
repetitionsM is restricted by the time of observation, which is
independent of the amount of resources used in a single repe-
tition (i.e. one cannot reduce N increasing M because of total
time constrains). For simplicity of the notation we introduce
G(ϕ) = U†ϕGUϕ = 1

i (e
iϕa† − e−iϕa). For each ϕ, the QFI

is

FQ(|ψϕα〉) = 4(〈ψϕα |G(ϕ)2|ψϕα〉 − 〈ψϕα |G(ϕ)|ψϕα〉
2
) =

4(〈ψ|G(ϕ)2|ψ〉 − 〈ψ|G(ϕ)|ψ〉2) ≤ 4 〈G(ϕ)2〉
= 4 〈−e2iϕa†2 − e−2iϕa2 + 2a†a+ 1〉 , (11)

where in the second equality we used the fact that acting with
eiG(ϕ) does not change the variance of G(ϕ). Therefore, the
average is upper bounded by the average photon number of
the initial state as

FQ =
1

2π

∫
dϕ FQ(|ψ〉ϕα) ≤ 8(〈a†a〉+

1

2
) (12)

which was derived in a different manner in [9]. This bound
can be clearly saturated by a Fock state [9] which is invariant
for Uϕ = eiϕa

†a. What was unknown up to now is that it
can also be saturated by a squeezed vacuum state |r, 0〉 (r the
squeezing parameter), where for α ∼ 0 we have

FQ(|ψϕα〉) = 8(cos(2ϕ) cosh(r) sinh(r) + sinh2(r) + 1/2),
(13)

where N = 〈a†a〉 = sinh2(r), so indeed after averaging over
ϕ, (12) is saturated. As can be expected, for the squeezing
in direction of the shift (ϕ ≈ 0), the QFI is significantly en-
hanced, while for the perpendicular direction (ϕ ≈ π/2) it
performs even worse than the vacuum state. The intuition be-
hind our procedure is that these competing effects do not can-
cel (due to the nonlinearity of the QFI) and, after averaging
over ϕ, the bound (12) is saturated. For the optimal measure-
ment proposed in (3) the probability of outcome 0 is exactly
given by the fidelity between the initial and final state aver-
aged over ϕ (the averaging being irrelevant for Fock states).
For the squeezed state [29]:∫

dϕ

2π
| 〈r, 0|D(α,ϕ)|r, 0〉 |2 =∫

dϕ

2π
e−α

2(cos2(ϕ)e2r+sin2(ϕ)e−2r) =

e−α
2 cosh(2r)I0(α2 sinh(2r)) =

e−α
2(2N+1)I0(α22

√
N(N + 1)), (14)

with I0 modified Bessel functions of the first kind, whereas
for Fock states [9, 30]:

| 〈N |D(α,ϕ)|N〉 |2 = e−|α|
2

(LN (|α|2))2, ∀ϕ (15)

with LN the Laguerre polynomial. Both behave in the same
way for small α. So, while both states are equally optimal in

the limit α → 0, for larger values of |α| the FI for the Fock
state is typically higher even though at specific points it is null
(see Fig. 1) and there Fock states become useless. So, in the
case of local estimation, the Fock state performs better typi-
cally, but the situation changes for global estimation since the
averaged squeezed state has a monotonic decreasing fidelity,
the Fock state does not. So, the value of α cannot always be
derived uniquely solely from the measurement (3) if one uses
a Fock state, but it can in the case of squeezed states. Indeed,
if one uses a squeezed vacuum, the maximum liklehood esti-
mator α̃ML(m0,m1) (where m0,1 are the number of measure-
ments with outcome 0, 1 in the measurement (3)) is simply
given by the inverse of the function p(0|α) (with respect to
α) at point p(0|α) = m0

m0+m1
. Clearly, when a finite num-

ber of measurements are employed, statistical fluctuations in
the average (14) will become important, which can be esti-
mated through Monte-Carlo methods (App. C). Up to now,
we considered the case where the phase is completely ran-
domized between different measurements. If there is no ran-
domization and the value ofϕ is known, then the optimal strat-
egy is known [31]: use a squeezed vacuum with ϕ-dependent
squeezing. The intermediate case in which the randomization
happens slowly is analyzed in App. D.
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FIG. 1. Classical Fisher information for the measurement (3) and the
fidelity (inset) between the initial state |ψ〉 and the final state |ψϕα〉 =
D(α,ϕ)|ψ〉 (with D displacement), averaged over ϕ as a function
of α. Blue dotted - Fock state, yellow solid - squeezed vacuum state,
green dashed - coherent state, all with N = 5 average photons. For
the vacuum state the fidelity is the same as for coherent state (green
dashed).

The quantum enhancement can be shown if one starts from
a coherent state |β〉 with average number of photons |β|2, it is
clear that

|〈β|D(α,ϕ)|β〉|2 = |〈0|D(α,ϕ)|0〉|2 = e−α
2

, (16)

namely, the fidelity between a coherent state and a displaced
coherent state is the same as the fidelity between the vacuum
and the displaced vacuum for the same degree of displace-
ment. So one can obtain a strategy that performs equally well
using a zero-energy vacuum state instead of a coherent state
(and both are impervious to the value of ϕ which does not af-
fect the fidelity). In the context of of (12), the inequality is not
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saturated in this case, since for general coherent state |β〉 the
term 〈β|G(ϕ)|β〉 (appearing in (11)) has non zero value.

Thermal states will perform worse. So, it is clear that any
classical strategy of energy |β|2 = N is, at best, as effective as
a strategy that uses a vacuum state (which is the optimal strat-
egy for zero energy). In contrast, (12) shows that the optimal
quantum strategy of energy N has QFI of order N . While
this resembles the typical

√
N enhancement in precision of

quantum strategies vs. classical ones in quantum metrology,
interestingly it has a different origin than usual: it originates
from the fact that any energy devoted to classical strategies is
completely useless, rather than from a different allocation of
the resources.

Both Fock state and squeezed states may help with the
problem with noise susceptibility discussed after (7). Indeed,
looking at (14) one can see that for large N the probability of
getting result 0 is approximately a function of ∼ α2N , so
even for extremely small values of the parameter one is able
to keep the probability of the result 1 sufficiently large, by
increasing the energy.

We now comment on the practicalities of the two strate-
gies. On one hand, the Fock state strategy [9, 30] requires
that the initial state of the radiation be prepared in |N〉. There
is no currently known technique to prepare such state for the
electromagnetic field which is scalable to high values of N .
Then, at the detection stage one must project onto the initial
state |N〉, which can be implemented with a photon-number
resolving photodetector. Such devices exist, but cannot re-
tain effective photon-number resolution to large numbers N
of photons. On the other hand, the squeezed state strategy
seems more practical, since there is a vast literature for the
preparation of squeezed states at different wavelengths span-
ning from the optical [32] to the microwave [33]. At the de-
tection stage, one must evaluate the probability that the out-
put state of the channel |ψϕα〉 is equal to a squeezed vacuum,
namely p(0|α) = |〈0|S†(r)|ψϕα〉|2, where |r, 0〉 = S(r)|0〉.
This expression can be also interpreted as the calculation of
the overlap between the state S†|ψϕα〉 with the vacuum state
|0〉, which can be easily implemented: the first is the state
obtained by applying the inverse squeezing transformation S†

after the channel and then performing a photodetection. The
probability to obtain zero photons at the measurement will
give p(0|α), whereas the probability to obtain one or more
photons will give p(1|α). An avalanche photodiode (APD) or
any equivalent avalanche photodetector (e.g. transition edge
sensors) will provide such output signal in the ideal case. The
whole procedure must be gated so that it is clear when a “no

click” must be interpreted as an outcome.
It might seem surprising that one must un-squeeze the sig-

nal before the detection, since the state preparation involves
a squeezing transformation: however, the squeezing, chan-
nel application and un-squeezing is equivalent to a (sub-shot
noise) effective amplification of the quadrature, whenever the
signal is orthogonal to the squeezing. In general, this condi-
tion is not warranted but, as shown in the previous section,
this is irrelevant: after the averaging over ϕ, this procedure
still performs very well, and it performs optimally for small
values of α, which is the regime of interest.

One could think that an alternative detection for the
squeezed strategy could be implemented through homodyne
detection, by measuring the quadrature of the light consis-
tent with the squeezing phase. While this strategy may be
useful in some cases, surprisingly in the regime of small α,
this strategy fails in a way reminiscent of Rayleigh’s curse
[21, 24] for the evaluation of the distance of two point sources
(while the last problem also may easily described within our
formalism by taking |ψ〉 ∝ exp(−x2/4σ2) |x〉, G = 1

i ∂x,
p(ϕ) = 1

2 (δ(ϕ) + δ(ϕ − π)); see App. E for broader discus-
sion about relation between these two models).

III. CONCLUSIONS

We have provided the optimal estimation strategy for the
spreading parameter α of spreading noisy channels, where
some other parameter ϕ is randomized. This is one of the
very few instances where we can give the optimal metrology
strategy for a noisy channel. We analyzed a specific instance
of spreading channels: the estimation of the amplitude of a
displacement with random phase. We show a quantum en-
hancement equal to the square root of the number of pho-
tons employed in the estimation and we derived a new optimal
strategy, based on squeezed vacuum states, that is practically
implementable with current techniques, in contrast to the pre-
viously known one [9, 25] based on Fock states.
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tum Materials and Systems Center (SQMS) under contract
number DE-AC02-07CH11359. W. G. acknowledges sup-
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2020/37/B/ST2/02134 and the Foundation for Polish Science
(FNP) via the START scholarship. We acknowledge useful
feedback from M. Sacchi and R. Demkowicz-Dobrzański.
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Appendix A: Discontinuity of QFI and α = 0

In this appendix we recall a simple example from [27] to
show that the issues mentioned in [27] do not affect our rea-
soning in the case we are interested in. Namely, the situation
when the parameter α to be estimated is non-negative.

Consider the family of states:

ρα = α2 |0〉 〈0|+ (1− α2) |1〉 〈1| (A1)

and let α be an arbitrary real number. Then for any point
different from α = 0, the symmetric logarithmic derivative is
equal to

L = 2
α |0〉 〈0| −

2α
1−α2 |1〉 〈1|), (A2)

which leads to a QFI

FQ(ρα) = Tr(ραL
2) = 4 +

4α2

1− α2
, (A3)

so limα→0+ FQ(ρα) = 4. However, for α = 0, the sym-
metric logarithmic derivative is simply L = 0, so also
FQ(ρα)|α=0 = 0. The simple intepretation of this fact is that
the state ρα does not distinguish between positive and nega-
tive values of α, so any measurement performed on it cannot
allow for local estimation of α around point α = 0 (while for
any different point α 6= 0 local estimation will be possible). It
is clear that, in our case, where we consider only non-negative
α, this issue does not appear, so it is reasonable to consider
F+
Q (ρ0) instead of FQ(ρα)|α=0 = 0.
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Appendix B: Estimator of α

In order to recover the value of α, one must know the actual
form of the probability distribution p(ϕ), since the maximum
likelihood estimator is obtained from the theoretical probabil-
ity of obtaining the results which, in turn, depends on p(ϕ).
Indeed, the maximum likelihood estimator is

α̃ML(k0, k1) := arg maxαp(k0, k1|α), (B1)

where k0/1 the number of results 0/1. Therefore, if one has no
a priori knowledge on p(ϕ) we cannot simply assume that the
distribution is uniform, as it may lead to a strongly biased es-
timator. However, one can add an additional random-uniform
rotation, so that the overall rotation becomes uniformly dis-
tributed. Indeed, assume that ϕ is non-uniform distributed
with some unknown function p(ϕ). Add an additional rota-
tion of the initial state Uθ |ψ〉 as well as a final rotation prior
to the measurement UθΠ0U

†
θ . Then,

p(0|α) =

∫
p(ϕ)dϕ

∫ 2π

0

dθ

2π
| 〈ψ|ψθ+ϕα 〉 |2 =∫ 2π

0

dθ

2π
| 〈ψ|ψθα〉 |2, (B2)

which leads to the same statistics as an initial uniform distri-
bution of ϕ. Of course, this is in general a suboptimal strategy,
as the mean value of the QFI for uniform distribution may be
smaller than the one for the true p(ϕ). In practice, it will usu-
ally be better to spend some resources to find an estimate to
p(ϕ) and then use the rest to estimate α.

Appendix C: Performance of different types of initial states

In this section we analyze the performance of other initial
states, in addition to the squeezed vacuum and Fock states
considered in the main text. Moreover, we present some
Monte-Carlo simulations that show how the squeezed vacuum
(and the other states) perform when considering a finite num-
berM of repetitions of the experiment with randomly varying
phase ϕ (in the main text we considered the simple case in
which the randomization is perfect).

Consider the multi-cat state [34]

|catN,θ〉 ∝
N∑
n=1

| exp(2iπn/N + iθ)β〉 , (C1)

namely a superposition of N coherent states with equispaced
phases. As shown in Fig. 2, this is a good approximation for
the Fock state already for moderate values of N , and it may
be simpler to create in practice: at least for N = 2 it can be
created in quantum optics, e.g. [35, 36] or in the microwave
regime also for N = 3, 4 [37].

In Fig. 3 we consider various states: the coherent state |β〉,
the vacuum state |0〉, the squeezed state |r, θ〉, the multicat
|catN,θ〉 for different values of N and θ. We plot the overlap

FIG. 2. Wigner function of the multi-cat |catN,θ〉 with N = 10 and
10 average photons, i.e. β ' 8.3045 in Eq. (C1). It is evident that
such a state closely approximates a Fock state with the same number
of photons (insert).

between each of these states and its displaced version after a
displacement D(α,ϕ) with a fixed phase. A good metrologi-
cal state is the one that is highly sensitive to α, namely whose
value changes rapidly as a function of α. In Fig. 4 we present
a Monte-Carlo simulation that shows how the randomly vary-
ing ϕ affects the overlap. As expected (see also Fig. 1), the
random phase ruins the metrological sensitivity of the more
phase-sensitive states. Yet, in the regime of small α we are
interested in, the squeezed state |r, 0〉 and the two-cat state
|catN=2,θ〉 still behave as well as the Fock state which is in-
sensitive to ϕ.

Appendix D: Slowly varying ϕ

Up to now we have assumed that the rotation ϕ changes
randomly from one shot to the next. In practice, there might be
a slow time dependence such that the value of ϕ is reasonably
constant for some time: consider a time-dependent probability
p(ϕ|t), which gives p(ϕ) of (8) when averaged over a large
time interval, but which is sufficiently tight for a short period
of time. Then one can use a feedback strategy in which one
quickly performs an estimate of ϕ and then uses it to prepare a
squeezed vacuum with squeezing parameter orthogonal to ϕ.
Such a state performs better than the Fock state, as long as the
value of ϕ is known. Alternatively, instead of first estimating
ϕ and then using its value in the subsequent measurements,
one could also employ multiparameter estimation [38].

In essence, the bounds to precision presented in this paper
can be beaten under the hypothesis that the random parameter
ϕ changes sufficiently slowly.
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FIG. 3. Plot of the overlap between the initial state and the initial
state displaced byD(α,ϕ) (here with fixed phase ϕ) as a function of
α. Namely, overlap = |〈ψ|D(α)|ψ〉| where |ψ〉 is any of the states
we consider here. The squeezed vacuum state |r, θ〉 (green stars with
dash-dotted line) performs worse if the squeezing phase θ is parallel
to the displacement phase ϕ (upper curve) and it performs very well
if the two phases are orthogonal (lower curve). The coherent state,
the vacuum state and the two-cat state with phase θ parallel to the
displacement all perform equally (higher solid multi-colored curve).
They all perform quite badly: the overlap decreases very little as
a function of α. The multi-cat state |catN,θ〉 (here we use N =
10 cats) is plotted as the continuous blue curve for parallel phase
θ and as the orange dot-dashed curve for orthogonal phase θ (they
are indistinguishable in this plot as there is little difference between
their performance: the multi-cat is almost insensitive to phase). In
contrast, the two-cat state is quite sensitive to the phase θ: the cyan
dotted curve plots its performance when its phase is orthogonal to
the displacement (good behavior), whereas it behaves exactly as the
coherent state if the phase is parallel. The best state overall appears to
be the 2-cat state (but is highly phase-sensitive). In contrast, the Fock
state (black line) is basically identical to the multi-cat and are both
independent on the phase (the Fock is exactly independent, the multi-
cat is approximately independent). All states here (except for the
vacuum state) have the same average number of photons, 〈a†a〉 =
10.

Appendix E: Quadrature measurement and Rayleigh’s curse

In this section we analyze how a quadrature measurement
compares to the projection onto the initial state that was con-
sidered in the main text. Surprisingly, we show that, even
though this measurement strategy performs well for large val-
ues of α, it does not work well in the regime of asymptotically
small α we are interested in.

This failure mode is somewhat reminiscent of the
Rayleigh’s curse in discriminating two point-like sources at

FIG. 4. Monte-Carlo simulation of the overlap between the initial
state and the initial state displaced by D(α,ϕ) with randomly cho-
sen ϕ as a function of α. The coherent state/vacuum (red stars), the
Fock state (black lines) and the 10-cat (blue circles) are unaffected
(the multi-cat is affected slightly, but the effects cannot be seen at
this scale). The two-cat (green squares) is quite phase sensitive and
the fluctuations for random phases can be easily seen (vertical bars).
The squeezed vacuum (pink triangles) is also very sensitive to phase.
In the regime α → 0, the Fock state, the squeezed vacuum, the two-
cat and the 10-cat all perform in a similar way. The vertical bars are
not the statistical error bars: they are an estimation of the fluctuations
(the root mean square of the overlap). [The error bars would be the
root mean square divided by the square root of the number of simu-
lated phases.] Here all states (except the vacuum) have 〈a†a〉 = 10
and an average over M = 50 uniformly distributed random values
of ϕ is performed.

a distance using a finite-aperture lens. It is known that using
a quantum optimized detection strategy, the Rayleigh’s curse
can be beaten [21]. Analogously, in the estimation of α in the
regime α→ 0, the quadrature measurement fails, whereas the
projection onto the initial state is optimal.

Consider estimating the value of α from measuring the
quadrature of the light in a direction consistent with the ini-
tial squeezing. I.e. for an initial squeezed state with zero
phase, consider the measurement of the zero-phase quadra-
ture, namely

x̂ =
1√
2

(a+ a†) (E1)

Since ϕ is uniformly distributed, the expected value of the
quadrature is 〈x̂〉 = 0, so α cannot be simply estimated from
its mean value. Can we use the second moment or the variance
〈x̂2〉? Consider the observable A = x̂2. On the squeezed
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vacuum, displaced and averaged over ϕ, we find

〈A〉 = α2 +
1

2
e−2r, 〈∆2A〉 = e−2r

(
2α2 + 1

2e
−2r
)
, (E2)

Error propagation gives:

∆2α̃ =
〈∆2A〉
|∂α 〈A〉 |2

=
e−2r(4α2 + e−2r)

8α2
. (E3)

For α2 � e−2r we find ∆2α̃ ≈ 1
2e
−2r. It means that the

variance scales as the inverse of the mean energy of the input
state, which is the optimal scaling, as shown in (12). However,
for α2 � e−2r, the variance scales inversely to α2 and goes
to infinity for α → 0. This is closely related to the Rayleigh
curse [21]. In fact, in our problem the output state may be
written in following form:

ρα =

∫ 2π

0

dϕ

2π
|ψϕα〉 〈ψϕα | =∫ π

0

dϕ

π

1

2

(
|ψϕα〉 〈ψϕα |+ |ψϕ+π

α 〉 〈ψϕ+π
α |

)
=∫ π

0

dϕ

π

1

2

(
|ψϕα〉 〈ψϕα |+ |ψ

ϕ
−α〉 〈ψ

ϕ
−α|
)
. (E4)

The convexity of classical Fisher information implies

FC(ρα,Πx) ≤∫ π

0

dϕ

π
FC
(

1
2

(
|ψϕα〉 〈ψϕα |+ |ψ

ϕ
−α〉 〈ψ

ϕ
−α|
)
,Πx

)
. (E5)

Moreover, for any ϕ,

lim
α→0

FC
(

1
2

(
|ψϕα〉 〈ψϕα |+ |ψ

ϕ
−α〉 〈ψ

ϕ
−α|
)
,Πx

)
= 0. (E6)

The last equation may be proved for any reasonable
initial state (the precise criteria will be given later), not
only for squeezed vacuum state. Indeed, for the state
1
2

(
|ψϕα〉 〈ψϕα |+ |ψ

ϕ
−α〉 〈ψ

ϕ
−α|
)

the probability of getting the
result x has the form

p(x|α) = Tr(Πx
1
2

(
|ψϕα〉 〈ψϕα |+ |ψ

ϕ
−α〉 〈ψ

ϕ
−α|
)
) =

1

2
(f(x+

√
2α cos(ϕ)) + f(x−

√
2α cos(ϕ))), (E7)

where f(x) = Tr(Πx |ψ〉 〈ψ|). This implies

lim
α→0

∂p(x|α)

∂α
= 0 ∀x. (E8)

Since FC is given by:

FC =

∫
dx

1

p(x|α)

(
∂p(x|α)

∂α

)2

, (E9)

then equation (E8) does not immediately lead to the conclu-
sion that the CFI vanishes, since we need to pay special at-
tention to the points where also limα→0 p(x|α) = 0 (since in
principle it may lead to non-zero Fisher information, as in the
example discussed in App. A).

Let us restrict to the functions f(x) which have a contin-
uous second derivative with respect to x. Moreover, let as
assume that there exists an integrable function g(x) such that

∀x,α 1
p(x|α)

(
∂p(x|α)
∂α

)2

≤ g(x) (which is satisfied for both the
squeezed vacuum state and the Fock state discussed in this
paper). Then, from the dominated convergence theorem

lim
α→0

FC =

∫
dx lim

α→0

1

p(x|α)

(
∂p(x|α)

∂α

)2

. (E10)

For any point where f(x) 6= 0, obviously
1

p(x|α)

(
∂p(x|α)
∂α

)2

= 0. Where f(x) = 0:

p(x|α) = cos2(ϕ)α2∂2
xf(x) +O(α3)

∂αp(x|α) = 2 cos2(ϕ)α∂2
xf(x) +O(α2)

(E11)

and therefore:

lim
α→0

1

p(x|α)

(
∂p(x|α)

∂α

)2

={
0 if f(x) = 0

4 cos2(ϕ)∂2
xf(x) if f(x) 6= 0

(E12)

Note, that for any function f(x), which have a continuous sec-
ond derivative, there could be at least countably many points
where simultaneously f(x) = 0 and ∂2

xf(x) 6= 0, so the value
of the integral (E10) is equal to 0 anyway.

In conclusion, in the limit α → 0, the measurement (3) is
much more informative than measuring quadrature, which is,
in general a poor measurement in this regime.
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