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Although the Bethe ansatz solution of the spin-1/2 Heisenberg model dates back nearly a cen-
tury, the anomalous nature of its high-temperature transport dynamics has only recently been
uncovered. Indeed, numerical and experimental observations have demonstrated that spin trans-
port in this paradigmatic model falls into the Kardar-Parisi-Zhang (KPZ) universality class. This
has inspired the significantly stronger conjecture that KPZ dynamics, in fact, occur in all integrable
spin chains with non-Abelian symmetry. Here, we provide extensive numerical evidence affirming
this conjecture. Moreover, we observe that KPZ transport is even more generic, arising in both
supersymmetric and periodically-driven models. Motivated by recent advances in the realization of
SU(N)-symmetric spin models in alkaline-earth-based optical lattice experiments, we propose and
analyze a protocol to directly investigate the KPZ scaling function in such systems.

First proposed in the context of surface growth [1], the
Kardar-Parisi-Zhang (KPZ) equation has become central
to our understanding of many stochastic processes [2–4].
While the central limit theorem ensures that the late-
time physics of linear stochastic processes is typically
Gaussian, the KPZ equation evades this fate. Instead,
it represents a distinct universality class which emerges
in myriad dynamical phenomena, ranging from directed
polymers and traffic models to kinetic roughening [5–14].

The characterization of dynamical universality classes
requires one to specify both the scaling exponents and
functions of the theory. This is perhaps most familiar in
the context of Brownian motion, where the diffusive late-
time behavior follows a Gaussian scaling function; the
width of the corresponding distribution grows as ∼ t1/z,
where z = 2 is the dynamical scaling exponent. By con-
trast, the scaling functions for the KPZ universality class
are significantly more complex and their exact functional
form represents a relatively recent mathematical achieve-
ment [8, 15–19]. The associated dynamical scaling expo-
nent is neither diffusive nor ballistic (z = 1), but rather
superdiffusive with z = 3/2.

Typically, KPZ behavior is expected in non-linear,
out-of-equilibrium classical systems subject to external
noise; in this context, its observation is extremely ro-
bust and does not require any fine-tuning or the pres-
ence of a particular symmetry. To this end, the numer-
ical and experimental observation of KPZ universality
in a one-dimensional quantum spin-chain (i.e. the spin-
1/2 Heisenberg model), fine-tuned for both integrability
and SU(2) symmetry, has attracted widespread atten-
tion [20–29]. Interestingly, this observation is at odds
with conventional expectations for spin chain transport,
which predict diffusion [30–33]. This naturally motivates
the following question: Is the Heisenberg chain an iso-
lated exception, or the first example of a broader group
of quantum models in the KPZ universality class?
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FIG. 1. (a) Schematic depicting a one dimensional chain
of alkaline-earth atoms (each with N -levels) trapped in an
optical lattice and interacting via nearest-neighbor super-
exchange. The equilibration of an initial domain-wall-like im-
balance encodes the underlying KPZ dynamics. (b) Domain-
wall dynamics as a function of time for an SU(3)-symmetric,
integrable spin chain. (c) The polarization profiles at differ-

ent times collapse upon rescaling with t−1/z. The dynamical
exponent, z = 3/2, indicates superdiffusion and is consistent
with KPZ transport.

Seminal recent work has made elegant progress on this
question by proving that all integrable spin chains with
a non-Abelian symmetry exhibit superdiffusive transport
with z = 3/2 (Fig. 1) [25, 28, 29]. However, a single scal-
ing exponent does not uniquely specify the universality
class and no analysis has been able to determine the na-
ture of the corresponding scaling functions.

In this Letter, we present an extensive numerical in-
vestigation that supports the following stronger con-
jecture — the dynamics of all integrable spin chains
with a non-Abelian symmetry belong to the KPZ uni-
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versality class [28, 29]. Leveraging a novel tensor-
network-based technique dubbed density matrix trunca-
tion (DMT) [34, 35], we demonstrate that the spin dy-
namics of such models are precisely captured by the KPZ
scaling function (Fig. 3). Intriguingly, our numerical ob-
servations suggest that the conjecture holds not only for
static systems, but also for periodically driven (Floquet)
systems [23, 36], as well as supersymmetric models.

By applying perturbations to break either the non-
Abelian symmetry or the integrability, we characterize
the approach to superdiffusive transport from regimes
where there is analytical control on the dynamics. We
reproduce these analytical results with unprecedented
accuracy, both verifying and benchmarking our numer-
ics, as well as providing independent evidence for the
purported microscopic mechanism underlying superdif-
fusion [22, 28, 29, 37]. Finally, we propose an experimen-
tal implementation — based upon alkaline-earth atoms
in optical lattices — capable of investigating KPZ trans-
port in a variety of SU(N)-symmetric, integrable models.

In this work, we study the universality classes describ-
ing the infinite-temperature dynamics for a variety of
one-dimensional quantum spin-chains. We will focus on
the dynamics of a locally conserved charge Q̂ =

∑
r q̂r,

typically spin. If the system is characterized by a dy-
namical universality class, at late times the correlation
function must collapse under an appropriate rescaling of
space and time:

〈q̂r(t)q̂0(0)〉T=∞ ∝ t−1/zf
( r

t1/z

)
. (1)

This collapse defines the dynamical scaling exponent z
and the scaling function f(ξ), which together determine
the universality class.

Probing transport dynamics.—Let us begin by explor-
ing the dynamical exponent. While z can in principle
be extracted from the behavior of 〈q̂r(t)q̂0(0)〉T=∞, a
simpler and more robust numerical setup is to consider
the dynamics of a domain wall. More specifically, we
perturb an infinite-temperature density matrix with a
weak domain-wall-like imbalance in the charge density
(Fig. 1a) [38]:

ρ(t = 0) ∝ (1+ µq̂)⊗L/2 ⊗ (1− µq̂)⊗L/2, (2)

where µ determines the strength of the perturbation and
L is the length of the chain.

As the system equilibrates, charge crosses the domain
wall—the precise details of how this occurs reveals prop-
erties of the dynamical universality class [Fig. 1(b)]. In
particular, we focus on the spatial profile of the charge
density q(r, t) = 〈q̂r(t)〉 (hereafter, denoted as polariza-
tion), as a function of time t and displacement r from
the domain wall. A natural measure of transport is
the total polarization transferred across the domain-wall,

P(t) =
∑L/2
r=1 (µ− q(r, t)), which provides a robust way

to determine z: P(t) ∝ t1/z.
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FIG. 2. (a) Conjectured landscape of KPZ transport in inte-
grable, non-Abelian-symmetric models (blue dot). The non-
Abelian symmetry can be broken in two distinct ways, either
by adding a finite charge density to the initial state (orange
line) or by perturbing the underlying Hamiltonian (purple
line). (b) The total polarization transferred across the do-
main wall, P(t), directly determines the dynamical exponent.
For the integrable SU(3) model, z = 3/2; when either the inte-
grability or the symmetry is broken in the Hamiltonian, z = 2
[43]; when the initial state has non-zero charge density, z = 1.
Note that the curve for the integrability breaking case (green)
is shifted down for clarity. (c) Depicts the charge transport
velocity v as a function of charge density δ for both the SU(3)
model and the SU(2) model (inset) [44]. (d) The diffusion
coefficient, D, diverges as the Izergin-Korepin and XXZ (in-
set) integrable models approach the SU(3) and SU(2) (inset)
symmetric points. The DMT bond dimension, χ, is chosen
to be {64, 128, 256} and {64, 128, 256, 512} for the SU(3) and
SU(2) cases, respectively. Green crosses in the inset mark
previous numerical results obtained from tDMRG simulations
with bond dimension χ ∼ 2000 [45].

Although we will explore a wide variety of integrable
models (Fig. 3), let us begin by focusing our discussions
on the SU(3)-symmetric, spin-1 chain [39–41]:

HSU(3) =
∑
i

~Si · ~Si+1 + (~Si · ~Si+1)2, (3)

where ~Si is the vector of spin-1 operators acting on site i.
Figure 1(b) depicts the melting of the domain wall as a
function of time, starting from the initial state, ρ(t = 0)
with q̂ = Ŝz [Eqn. 2]. The corresponding polarization
transfer, P(t), exhibits a power-law ∼ t2/3 (blue line,
Fig. 2b), consistent with the expected z = 3/2 expo-
nent [42]. This exponent can be independently confirmed
via a scaling collapse of the polarization profile (Fig. 1c).

In order to tune the system away from superdiffusion,
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FIG. 3. (a-d) The KPZ scaling function emerges from a wide variety of integrable dynamics: static, non-Abelian-symmetric
models, their Floquet counterparts, and supersymmetric models. (a)[(d)] At late times, the rescaled polarization profiles of the
SU(3)[SU(2|1)] model differ from both the Gaussian and Lévy-flight expectations, but exhibit excellent agreement with the KPZ
scaling function. Insets of (a)[(d)]: relative difference with respect to the KPZ scaling function. We note that the agreement
extends to longer length-scales as time is increased. (b)[(c)] Late-time, rescaled polarization profiles of static [Floquet] integrable
models with different non-Abelian symmetries. For all symmetries explored, the dynamics exhibit excellent agreement with
the KPZ scaling function. Insets of (b)[(c)]: zoom-in of the polarization profiles. The system sizes in the numerical simulation
are chosen as: L = 600 for all static models, L = 1200 for Floquet SU(3) and SO(3) models, and L = 800 for other Floquet
models. (e) For all models considered, the ratio between the polarization gradient and the current is inhomogeneous, in stark
contrast with the expectation for any linear transport equation. The observed curvature is instead in agreement with KPZ
transport. (f) In integrable supersymmetric models, the total charge transferred across the domain wall (upper panel) and the
extracted dynamical exponent z (lower panel) are consistent with superdiffusion. (g) Polarization gradients in an integrable
SU(2|1) model with varying hole density. At the same evolution time, systems with a smaller hole density are closer to the
KPZ expectation.

one can perturb the spin-chain by either breaking the
non-Abelian symmetry of the underlying equilibrium ini-
tial state [28, 29] or the symmetry of the Hamiltonian.
To study the former, we initialize the system in ρ(t = 0)
and add a uniform magnetization, δ (along the ẑ-axis)
on each site. The polarization transfer exhibits markedly
distinct dynamics with a ballistic exponent, z = 1 (or-
ange line, Fig. 2b). Analytically, for weak magnetiza-
tions, the velocity of this ballistic transport is expected to
scale linearly with δ; this is indeed borne out by the data
(Fig. 2c) [22, 46]. For the spin-1/2 Heisenberg model,
an even stronger statement can be made—the velocity
extracted from DMT quantitatively agrees with analytic
calculations [via generalized hydrodynamics (GHD)] even

in the non-linear regime (inset, Fig. 2c) [22, 37].

Next, we break the symmetry of HSU(3) down to
U(1) by considering the so-called Izergin-Korepin fam-
ily of integrable spin-1 models [47–58]. We parametrize
the symmetry-breaking strength by ∆, such that when
∆ = 0, we recover HSU(3). For finite values of ∆, we
observe diffusive transport with the polarization transfer
scaling as P(t) ∼ t1/2 (purple line, Fig. 2b). In addi-
tion, the extracted diffusion coefficient, D, diverges as
∆ → 0, consistent with the approach to superdiffusion
(Fig. 2d). The analogous numerical experiment in the
Heisenberg model, where ∆ controls the anisotropy of
the XXZ model in the easy-axis regime, again quantita-
tively agrees with analytic calculations.
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Probing KPZ dynamics.—While our numerical obser-
vation of a z = 3/2 exponent in HSU(3) clearly estab-
lishes the presence of superdiffusion, it does not deter-
mine the system’s dynamical universality class. Indeed,
such an exponent can also arise in long-range interact-
ing systems exhibiting Lévy flights, as well as rescaled
diffusion [20, 23, 24, 59–61].

To this end, we now investigate the universal scaling
function. In particular, using our domain-wall dynamics,
we can compute the charge correlation function from the
spatial gradient of the polarization profile [23]:

〈q̂r(t)q̂0(0)〉T=∞ = lim
µ→0

∂rq(r, t)

2µ
=

b

t2/3
f

(
br

t2/3

)
, (4)

where b is a system-dependent parameter [62].
As depicted in Figure 3a, ∂rq(r, t) indeed collapses

under the rescaling, f(ξ = brt−2/3). For Lévy flights,
one expects power-law tails (gray dashed line), which are
manifestly inconsistent with the data. However, the dif-
ference between rescaled diffusion and KPZ is more sub-
tle: for the former, f(ξ) is Gaussian, while for KPZ, f(ξ)
exhibits faster decaying tails ∼ exp

(
−0.295|ξ|3

)
[16–18].

The data quantitatively agree with the KPZ prediction:
The longer the evolution time, the closer ∂rq(r, t) is to
the KPZ scaling function (highlighted by the relative er-
ror, Fig. 3a inset). This agreement allows us to directly
extract b = 0.460±0.001, which reflects the ratio between
the diffusive smoothing, and the non-linear growth and
noise in the KPZ equation. We emphasize that these ob-
servations apply to any conserved charges generated by
the non-Abelian symmetry [63].

A complementary way to distinguish between rescaled
diffusion and KPZ dynamics is to study the ratio between
the spin current, j(r, t) = −

∫ r
−∞ ∂tq(r

′, t)dr′, and the po-
larization gradient. In rescaled diffusion, Fick’s law en-
sures that the two are proportional, j(r, t) ∝ t1/3∂rq(r, t),
while the non-linearity of KPZ transport leads to the
breakdown of this proportionality [16, 23]. Crucially, as
illustrated in Fig. 3e, we find that the ratio is not con-
stant (as would be predicted for rescaled diffusion) and
rather, is in good agreement with the KPZ prediction.

Universality of KPZ dynamics.—We now turn our at-
tention to the conjecture that KPZ dynamics emerge
in several broad classes of integrable models. We will
focus on three distinct settings: (i) static models with
generic non-Abelian symmetries, (ii) periodically-driven
(Floquet) models with non-Abelian symmetries, and (iii)
supersymmetric models. In these latter two classes, even
for the dynamical exponent, there are no generic results,
although some particular instances are known to exhibit
superdiffusion [23, 42, 64].

The construction of static, non-Abelian, integrable
spin chains has a rich history, with different prescriptions
for each of the four classes of simple Lie groups: SU(N),
SO(2N), SO(2N + 1) and SP(2N) [25, 51–57, 63, 65].
Following our previous strategy for HSU(3), we analyze

the transport dynamics of conserved charges for each of
these models. In all cases, we observe excellent agree-
ment with the KPZ universality class (Fig. 3b,e).

Extending this exploration to periodically driven sys-
tems requires systematically building the correspond-
ing Floquet integrable models. Somewhat astonishingly,
one can straightforwardly build such models from their
static counterparts [36, 66]. The Hamiltonian is divided
into terms acting on even and odd bonds (denoted as
Heven and Hodd, respectively), which are then alter-
natingly applied, leading to a Floquet unitary: U =
e−iHoddT/2e−iHevenT/2. Using this procedure, we can ex-
tend our analysis to the Floquet regime for all of the pre-
vious non-Abelian models (Fig. 3c,e). Our conclusions
are identical. The resulting transport falls within the
KPZ universality class even though energy is no longer
conserved.

Finally, let us consider integrable models where the
non-Abelian symmetry is replaced with supersymmetry.
Such models have been conjectured to exhibit superdif-
fusion, but observing this, either numerically or analyt-
ically, remains an open challenge [21, 25]. Here, we fo-
cus on a pair of spinful fermionic lattice models: the t-J
model (with t = 2J), and the Essler-Korepin-Schoutens
(EKS) model [57, 67–70]. These exhibit the two simplest
supersymmetries, SU(1|2) and SU(2|2), respectively.

The defining feature of models with supersymmetry is
that their conserved charges fall into two types: bosonic
and fermionic, although only the bosonic charge can in
principle exhibit superdiffusion [21]. For the t-J model,
each lattice site can be occupied by either a spin-up
fermion, a spin-down fermion, or a hole. The conserved
bosonic charges are given by the total number of holes,
and the total spin. Holes live in the Abelian U(1) sector
and thus lack particle-hole symmetry leading to a finite
Drude weight and ballistic transport [21]. Therefore, we
study the spin polarization, given by the difference be-
tween the number of spin-up and spin-down particles.
As before, we prepare a weak domain-wall in the spin
polarization while keeping the other charge densities—
including the hole density—constant.

For both the static and Floquet t-J models, we observe
superdiffusive spin transport (with z = 3/2) via both the
polarization transfer (Fig. 3f) and the collapse of the po-
larization profile [63]. The numerical evidence that spin
transport falls within the KPZ universality class is more
subtle. In particular, the polarization gradient, ∂rq(r, t),
exhibits a discrepancy with both the KPZ and Gaussian
expectations (Fig. 3d). However, the finite-time flow of
∂rq(r, t) approaches the KPZ scaling function in the same
qualitative fashion as is observed in the SU(3) case (in-
sets, Fig. 3a,d); we conjecture that finite-time effects are
exacerbated in supersymmetric models owing to the pres-
ence of additional ballistic modes (Fig. 3g) [71]. More-
over, a careful comparison of the relative error to the
Gaussian model suggests that rescaled diffusion cannot
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be the correct limiting behavior [63].
Experimental proposal.—Recent advances in the con-

trol and manipulation of alkaline-earth atoms in opti-
cal lattices have opened the door to studying SU(N)-
symmetric spin models [72–81]. In particular, at unit-
filling in the Mott insulating phase, the lack of hyper-
fine coupling in the ns2 1S0 electronic ground state nat-
urally leads to SU(N)-symmetric spin-exchange interac-
tions [80, 82–84]:

HSU(N) = JSU(N)

∑
i

N∑
α,β=1

sα,βi sβ,αi+1, (5)

where sα,βi = |α〉 〈β| on site i; in one dimension, HSU(N)

is integrable and precisely corresponds to the models con-
sidered above (e.g. Eqn. 3).

The observation and characterization of KPZ trans-
port requires the ability to address two main experimen-
tal challenges: (i) preparing near infinite-temperature
states with a well-defined domain-wall polarization and
(ii) measuring the tails of the scaling function with sub-
percent accuracy. The former can be accomplished via a
two step process: first, optical pumping via an intercom-
bination transition (e.g. ns2 1S0 ↔ nsnp 3P1) can be
used to generate arbitrary magnetization distributions
which are preserved upon cooling to the Mott insula-
tor [63]; second, with single-site addressing [26, 85–90], a
coherent optical drive can be applied to half the system
in order to prepare the domain wall.

Achieving the latter is significantly more subtle. In or-
der to distinguish between KPZ dynamics and rescaled
diffusion, careful estimates suggest the need to experi-
mentally resolve the scaling function with a relative er-
ror of ∼ 10−3 [63]. Achieving this error floor requires the
ability to spatially resolve spin-transport dynamics over
long time-scales and large distances. For concreteness,
let us consider 87Sr atoms loaded into a two-dimensional
optical lattice [80, 91, 92]. Recent experiments have
demonstrated the elegant use of cavity-enhancement to
realize homogeneous lattices capable of supporting Mott
insulators with a diameter of ∼ 300 sites [63, 91]. By
implementing strong confinement in one direction, one
can subsequently divide the system into ∼ 250 indepen-
dent chains, each with length ∼ 150 sites. Assuming
an on-site interaction energy, U ∼ 3 kHz, and a tunnel-
ing rate, t ∼ 300 Hz, yields a spin-exchange interaction,
J = 2t2/U ≈ 60 Hz [63, 91]. Optimizing for an evolution
time of ∼ 50/J and assuming an experimental cycle time
of ∼ 10 s [80], we estimate that a relative error of ∼ 10−3,
can be achieved within two days of averaging [63]. Fi-
nally, the presence of a finite density (& 1% [63, 93]) of
doublons and holes in the Mott insulator will perturb
the polarization dynamics, but the exact nature of their
effect remains an intriguing open question.

Outlook.—Since it was first observed in the spin-1/2
Heisenberg model [20], the microscopic origin of KPZ

dynamics in integrable quantum magnets has remained
a mystery [94]. Our work suggests that any such un-
derstanding will need to encompass a broader physical
setting, including both Floquet and supersymmetric sys-
tems. In the context of supersymmetry, an intriguing di-
rection is to characterize the impact of ballistic fermionic
modes on the KPZ dynamics. Finally, the ability to ex-
perimentally measure the full counting statistics of spin
transport opens the door to studying KPZ dynamics from
a new perspective, which is currently challenging to ac-
cess both analytically and numerically [26, 95].
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ban, P. Wiegmann, and A. Zabrodin (Springer Nether-
lands, Dordrecht, 2006) pp. 139–161.

[32] E. Bettelheim, A. G. Abanov, and P. Wiegmann, Phys.
Rev. Lett. 97, 246401 (2006).

[33] M. Blake, H. Lee, and H. Liu, J. High Energ. Phys.
2018, 127 (2018).

[34] C. D. White, M. Zaletel, R. S. K. Mong, and G. Refael,
Phys. Rev. B 97, 035127 (2018).

[35] B. Ye, F. Machado, C. D. White, R. S. K. Mong, and
N. Y. Yao, Phys. Rev. Lett. 125, 030601 (2020).

[36] M. Vanicat, L. Zadnik, and T. Prosen, Physical review
letters 121, 030606 (2018).

[37] J. De Nardis, D. Bernard, and B. Doyon, SciPost
Physics 6 (2019), 10.21468/scipostphys.6.4.049.

[38] We choose to work with open boundary conditions
throughout this work. The boundary conditions do not
affect the dynamics we observed within the timescale we
considered [63]. However, a strict analytical approach
may require a careful treatment of the boundary condi-
tions, which is important and subtle in integrable sys-
tems [96, 97].

[39] G. Uimin, Soviet Journal of Experimental and Theoret-
ical Physics Letters 12, 225 (1970).

[40] C. Lai, Journal of Mathematical Physics 15, 1675
(1974).

[41] B. Sutherland, Phys. Rev. B 12, 3795 (1975).
[42] M. Dupont and J. E. Moore, Phys. Rev. B 101, 121106

(2020).
[43] Here, we perturb HSU(3) using SU(3)-symmetry-

respecting, but integrability-breaking next-nearest-
neighbor interactions. As expected for generic non-
integrable models, P(t) ∼ t1/2, consistent with diffusive
transport [98–100].

[44] The agreement between DMT numerics and GHD an-
alytics (which have different underlying assumptions)
serves a dual benchmarking role; in particular, it high-
lights DMT’s ability to faithfully characterize late-time
transport dynamics and GHD’s ability to quantita-
tively compute transport coefficients in integrable mod-
els [37, 45].

[45] C. Karrasch, J. Moore, and F. Heidrich-Meisner, Phys-
ical Review B 89, 075139 (2014).

[46] J. De Nardis, S. Gopalakrishnan, E. Ilievski, and
R. Vasseur, Phys. Rev. Lett. 125, 070601 (2020).

[47] A. G. Izergin and V. E. Korepin, Comm. Math. Phys.
94, 67 (1984).

[48] V. I. Vichirko and N. Y. Reshetikhin, Theoretical and
Mathematical Physics 56, 805 (1983).

[49] K. Hao, J. Cao, G.-L. Li, W.-L. Yang, K. Shi, and
Y. Wang, Journal of High Energy Physics 2014, 1
(2014).

[50] A. Izergin and V. Korepin, Communications in Mathe-
matical Physics 79, 303 (1981).

[51] M. Jimbo, Comm. Math. Phys. 102, 537 (1985).
[52] C. L. Schultz, Physical Review Letters 46, 629 (1981).
[53] V. E. Korepin, N. M. Bogoliubov, and A. G. Izer-

gin, Quantum Inverse Scattering Method and Correla-
tion Functions, Cambridge Monographs on Mathemat-
ical Physics (Cambridge University Press, Cambridge,
1993).

[54] P. Kulish and E. Sklyanin, Journal of Soviet Mathemat-
ics 19, 1596 (1982).

[55] P. Kulish, Journal of Soviet Mathematics 35, 2648
(1986).

[56] C. Kassel, Quantum Groups, Graduate Texts in Math-
ematics (Springer-Verlag, New York, 1995).

[57] M. Martins and P. Ramos, Nuclear Physics B 500, 579
(1997).

[58] A systematic way to generate such integrable mod-
els with lower symmetries by breaking a non-Abelian
symmetry is called q-deformation. The corresponding
models models are often called q-deformed vertex mod-
els [51, 52].
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