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Quantum computers promise considerable speed-ups with respect to their classical counterparts.
However, the identification of the innately quantum features that enable these speed-ups is chal-
lenging. In the continuous-variable setting—a promising paradigm for the realisation of universal,
scalable, and fault-tolerant quantum computing—contextuality and Wigner negativity have been
perceived as two such distinct resources. Here we show that they are in fact equivalent for the
standard models of continuous-variable quantum computing. While our results provide a unify-
ing picture of continuous-variable resources for quantum speed-up, they also pave the way towards
practical demonstrations of continuous-variable contextuality, and shed light on the significance of
negative probabilities in phase-space descriptions of quantum mechanics.

With the onset of quantum information theory, the
weirdness of quantum mechanics has transitioned from
being a bug to being a feature, and the first demonstra-
tions of quantum speedup have recently been achieved [1,
2], building on inherently nonclassical properties of phys-
ical systems. While entanglement is used daily for the
calibration of current quantum experiments, it was origi-
nally perceived as a ‘spooky action at a distance’ by Ein-
stein. This led him, Podolsky and Rosen (EPR) to spec-
ulate about the incompleteness of quantum mechanics [3]
and the existence of a deeper theory over ‘hidden’ vari-
ables reproducing the predictions of quantum mechanics
without its puzzling nonlocal aspects.

During the same period, Wigner was also looking for a
more intuitive description of quantum mechanics, and he
obtained a phase-space description akin to that of clas-
sical theory [4]. However, a major difference with the
classical case was that the Wigner function—the quan-
tum equivalent of a classical probability distribution over
phase space—could display negative values. These ‘nega-
tive probabilities’ seemingly prevented a classical phase-
space interpretation of quantum mechanics.

More than thirty years later, the seminal results of Bell
[5, 6] and Kochen and Specker [7] ruled out the possibil-
ity of finding the underlying hidden-variable model for
quantum mechanics envisioned by EPR, thus establish-
ing nonlocality, and its generalisation contextuality, as
fundamental properties of quantum systems.

At an intuitive level, contextuality and negativity of
the Wigner function are properties of quantum states
that seek to capture similar characteristics of quantum
theory: the non-existence of a classical probability distri-
bution that describes the outcomes of the measurements
of a quantum system.

In more operational terms, contextuality is present
whenever any hidden-variable description of the be-
haviour of a system is inconsistent with the basic as-

sumptions that (i) all of its observable properties may
be assigned definite values at all times, and (ii) jointly
measuring compatible observables does not disturb these
global value assignments, or, in other words, these as-
signments are context-independent. Aside from its foun-
dational importance, contextuality has been increasingly
identified as an essential ingredient for enabling a range
of quantum-over-classical advantages in information pro-
cessing tasks, which include the onset of universal quan-
tum computing in certain computational models [8–12].

Similarly, the negativity of the Wigner function, or
Wigner negativity for short, is also crucial for quan-
tum computational speedup as quantum computations
described by nonnegative Wigner functions can be simu-
lated efficiently classically [13].

Importantly, quantum information can be encoded
with discrete but also continuous variables (CV) [14], us-
ing continuous quantum degrees of freedom of physical
systems such as position or momentum. The study of
contextuality has mostly focused on the simpler discrete-
variable setting [15–21]. In [22], it was shown that gener-
alised contextuality is equivalent to the non-existence of a
nonnegative quasiprobability representation. The caveat
is that to check if a system is indeed contextual, one
would have to consider all possible quasi-probability dis-
tributions. Focusing on one particular quasiprobability
distribution, Howard et al. [9] showed that, for discrete-
variable systems of odd prime-power dimension, negativ-
ity of the (discrete) Wigner function [23] corresponds to
contextuality with respect to Pauli measurements. The
equivalence was later generalised to odd dimensions in
[24] and to qubit systems in [25, 26]. Under the hypoth-
esis of noncontextuality, it has also been shown that the
discrete Wigner function is the only possible quasiprob-
ability representation for odd prime dimensions [27].

However, the EPR paradox [3] and the phase-space de-
scription derived byWigner [4] were originally formulated
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for CV systems. Moreover, from a practical point-of-
view, CV quantum systems are emerging as very promis-
ing candidates for implementing quantum informational
and computational tasks [28–33] as they offer unrivalled
possibilities for quantum error-correction [34, 35], deter-
ministic generation of large-scale entangled states over
millions of subsystems [36, 37] and reliable and efficient
detection methods, such as homodyne or heterodyne de-
tection [38, 39].

Since contextuality and Wigner negativity both seem
to play a fundamental role as nonclassical features
enabling quantum-over-classical advantages, a natural
question arises in the CV setting: What is the precise
relationship between contextuality and Wigner negativ-
ity?

Here we prove that contextuality and Wigner nega-
tivity are equivalent with respect to CV Pauli measure-
ments, thus unifying the quantum quirks that prevented
Einstein and Wigner from obtaining a classically intu-
itive description of quantum mechanics. We build on
the recent extension of the sheaf-theoretic framework of
contextuality [15] to the CV setting [40]. Note that this
treatment of contextuality is a strict generalisation of the
standard notion of Kochen–Specker contextuality [7, 41],
extended to CV systems. Using this framework, we prove
the equivalence between contextuality and Wigner neg-
ativity with respect to generalised position and momen-
tum quadrature measurements, i.e. CV Pauli measure-
ments. These are amongst the most commonly used mea-
surements in CV quantum information, in particular in
quantum optics [32, 42], and for defining the standard
models of CV quantum computing [14, 34].

Phase space and Wigner function

We fix M ∈ N∗ to be the number of qumodes, that
is, M CV quantum systems. For a single qumode, the
corresponding state space is the Hilbert space of square-
integrable functions L2(R) and the total Hilbert space
for all M qumodes is then L2(R)⊗M ∼= L2(RM ). To each
qumode, we associate the usual position and momentum
operators. We write q̂k and p̂k the position and momen-
tum operators of the kth qumode. In the context of quan-
tum optics, any linear combination of such operators is
called a quadrature of the electromagnetic field [38]. We
use this terminology in the rest of the article: any R-
linear combination of position and momentum operators
is called a quadrature.

The Wigner representation of a quantum state in the
Hilbert space L2(RM ) is a function defined on the phase
space R2M , which can be intuitively understood as a
quantum version of the position and momentum phase
space of a classical particle. We equip this phase space
with a symplectic form denoted Ω: for x,y ∈ R2M ,
Ω(x,y) := x · Jy where J =

(
0 1M
−1M 0

)
, in a given

basis (ek,fk)Mk=1 of R2M , which is therefore a symplectic
basis for the phase space. We also equip R2M with its
usual scalar product denoted by – · –.

A Lagrangian vector subspace is defined as a maximal
isotropic subspace, that is, a maximal subspace on which
the symplectic form Ω vanishes. For a symplectic space
of dimension 2M , Lagrangian subspaces are of dimension
M . See [43] for a concise introduction to the symplectic
structure of phase space and [44] for a detailed review.

To any x ∈ R2M we associate a quadrature operator
as follows. Assume w.l.o.g. that x =

∑
k qkek+

∑
k pkfk,

and put x̂ =
∑M
k=1 qkq̂k +

∑M
k=1 pkp̂k, where the indices

indicate on which qumode each operator acts. Then, it is
straightforward to verify, using the canonical commuta-
tion relations, that [x̂, ŷ] = iΩ(x,y)1̂, i.e. the symplectic
structure encodes the commutation relations of quadra-
ture operators.

The elements of R2M can also be associated to trans-
lations in phase space. Firstly, for any s ∈ RM , define
the Weyl operators, acting on L2(RM ), by X̂(s)ψ(t) =
ψ(t − s) and Ẑ(s)ψ(t) = eistψ(t), for all t ∈ RM . Then,
define the displacement operator for any x = (q, p) ∈
RM ×RM in the symplectic basis (ek,fk)Mk=1 by D̂(x) =

e−i
q·p
2 X̂(q)Ẑ(p), so that [D̂(x), D̂(y)] = eiΩ(x,y)1̂.

There are several equivalent ways of defining the
Wigner function of a quantum state [45–47]. We fol-
low the conventions adopted in [48]. The characteris-
tic function Φρ : R2M → C of a density operator ρ
on L2(RM ) is defined as Φρ(x) := Tr(ρD̂(−x)). The
Wigner function Wρ of ρ is then defined as the symplec-
tic Fourier transform of the characteristic function of ρ:
Wρ(x) := FT[Φρ](Jx). The Wigner function is a real-
valued square-integrable function on R2M , and one can
recover the probabilities for quadrature measurements
from its marginals: ifW is the Wigner function of a pure
state ψ ∈ L2(RM ) such that W is integrable on R2M ,
then identifying x with (q, p) ∈ RM × RM in the same
basis (ek,fk)Mk=1 as before,

1

(
√

2π)M

∫
RM

W (q, p) dp = |ψ(q)|2, (1)

1

(
√

2π)M

∫
RM

W (q, p) dq = |FT[ψ](p)|2 . (2)

In general, if x ∈ R2M describes an arbitrary quadrature,
the probability of obtaining an outcome x in E ⊆ R when
measuring the quadrature x̂ is

Prob[x ∈ E|ρ] =
1

(
√

2π)M

∫
A

Wρ(y)dy, (3)

where A =
{
y ∈ R2M | y · x ∈ E

}
. This corresponds to

marginalising the Wigner function over the axes orthog-
onal to x. If the Wigner function only takes nonnegative
values, it can therefore be interpreted as a simultane-
ous probability distribution for position and momentum
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measurements (and in general, any quadrature obtained
as a linear combination of these).

Continuous-variable contextuality

In what follows, we use the contextuality formalism
from [40], which is the extension of [15] to the CV setting.
We refer to the Supplemental Material or Refs. [49, 50]
for an introduction to this formalism and the associated
tools of measure theory.
Measurement scenario.— In order to define ‘contextu-

ality’ in a CV experiment, we need an abstract descrip-
tion of the experiment, called a measurement scenario,
which is defined by a triple 〈X ,M,O〉 as follows: in a
given setup, experimenters can choose different measure-
ments to perform on a physical system. Each possible
measurement is labelled and X is the corresponding (pos-
sibly infinite) set of measurement labels. Several compat-
ible measurements can be implemented together (for in-
stance, measurements on space-like separated systems).
Maximal sets of compatible measurements define a con-
text, and M is the set of all such contexts. For a mea-
surement labelled by x ∈ X , the corresponding outcome
space is Ox = 〈Ox,Fx〉, which is a measurable space
with an underlying set Ox and its associated Lebesgue
σ-algebra Fx. The collection of all outcome spaces is de-
noted O = (Ox)x∈X . For various measurements labelled
by elements of a set U ⊆ X, the corresponding joint out-
come space is denoted OU :=

∏
x∈U Ox. In this article,

we consider the following measurement scenario:
Definition 1.—The quadrature measurement scenario
〈X ,M,O〉quad is defined as follows: (i) the set of mea-
surement labels is the symplectic phase space X := R2M ;
(ii) the contexts are Lagrangian subspaces of R2M , so
that the set of contexts M is the set of all Lagrangian
subspaces of X ; (iii) for each x ∈ X , the corresponding
outcome space is Ox := 〈R, σ〉 (σ being the Lebesgue
sigma algebra of R).
〈X ,M,O〉quad is to be interpreted as follows: given

a quantum state ρ, the measurement corresponding to
the label x ∈ X is given by the measurement of the
corresponding quadrature x̂ of the state, while contexts
correspond to maximal sets of commuting quadratures.
This scenario consists in a continuum of possible mea-
surements, each of which corresponds to a quadrature
operator with continuous spectrum (see Fig. 1).
Empirical model.— While measurement scenarios de-

scribe experimental setups, empirical models capture in
a precise way the probabilistic behaviours that may arise
upon performing measurements on physical systems. In
practice, these amount to tables of normalised frequen-
cies of outcomes gathered among various runs of the ex-
periment, or to tables of predicted outcome probabilities
obtained by analytical calculation. Formally:
Definition 2.—An empirical model on a measurement

scenario 〈X ,M,O〉 is a family e = (eC)C∈M, where eC is
a probability measure on the space OC for each context
C ∈M.

Informally, the empirical data is noncontextual when-
ever local descriptions (within a valid context) can be
glued together consistently so that it can be described
by a global probability measure (over all contexts).
Definition 3.—An empirical model e = (eC)C∈M on a
〈X ,M,O〉 is noncontextual if there exists a probability
measure p on the space OX such that marginalising p on
a context gives back the empirical prediction i.e. p|C = eC
for every C ∈M.

Noncontextuality is equivalent to the existence of a
deterministic hidden-variable model (HVM) [40].
Definition 4.—A HVM on a measurement scenario
〈X ,M,O〉 is a tuple 〈Λ, p, (kC)C∈M〉 where: (i) Λ =
〈Λ,FΛ〉 is the measurable space of hidden variables; (ii)
p is a probability distribution on Λ; (iii) for each context
C ∈ M, kC is a probability kernel between the measur-
able spaces Λ and OC , i.e. kC is a measurable function
over Λ and a probability measure over OC .

Determinism for the HVM is further ensured by re-
quiring that each hidden variable gives a predetermined
outcome. That is, for all contexts C ∈ M and for every
λ ∈ Λ, kC(λ, –) = δx is a Dirac measure at some x ∈ OC .

The space OX can be thought of as a space of hid-
den variables, while the probability measure p provides
probabilistic information about them. Hidden variables
are supposed to provide an underlying description of the
physical world at perhaps a more fundamental level than
the empirical-level description via the quantum state.
The motivation is that hidden variables could explain
away some of the non-intuitive aspects of the empiri-
cal predictions of quantum mechanics, which would then
arise from an incomplete knowledge of the true state of
a system rather than being fundamental features.

Since we consider experiments arising from quadrature
measurements of a quantum system ρ, we restrict our at-
tention to empirical models e = (eC)C∈M reproducing
the Born rule, which we refer to as quantum empirical
models. We will use the notation eρ = (eρC)C∈M to make
explicit the dependence in the state ρ. If eρ is noncontex-
tual in 〈X ,M,O〉quad, we say that the density operator
ρ is noncontextual for quadrature measurements.

In 〈X ,M,O〉quad, for each context C ∈ M, the set
OC =

∏
x∈C R can be seen as the set of functions from

C to R with the corresponding product σ-algebra. These
functions are called local value assignments. In contrast,
functions X → R which assign a tentative outcome to
all quadratures simultaneously are called global value
assignments. Contextuality then expresses the tension
which arises when trying to explain different experimen-
tal predictions across distinct contexts (local value as-
signments) in terms of global value assignments.
Linearity of value assignments.— Before connecting

the notions of contextuality and negativity of the Wigner
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function in 〈X ,M,O〉quad, we must resolve the follow-
ing mismatch: the Wigner function of a density opera-
tor ρ is a quasiprobability distribution over X = R2M ,
while a density operator ρ which is noncontextual for
quadrature measurements corresponds by Definition 3 to
a global probability measure over the set OX of global
assignments, which can be seen in this case as the set of
functions X = R2M → R. In general, the latter is much
larger than the former.

To solve this issue, we show that we can restrict to
linear global value assignments w.l.o.g. so that OX can
be replaced by X ∗, the linear dual of X . Since X ∗ is
isomorphic to X , this allows us to resolve the mismatch:
Proposition 1.—If M > 2, global value assignments can
w.l.o.g. be taken to be linear functions X → R, and the
set of global value assignments then forms an R-linear
space of dimension 2M , namely X ∗.

We refer to Appendix A for the proof. Therefore
w.l.o.g. for any U ⊂ X , we can restrict OU to be the set
of linear functions from U → R that extend to R-linear
functions on the vector space generated by U . Thus, an
empirical model will be a collection of probability mea-
sures on C∗ for each C ∈M.

Equivalence

We may now prove our main result, i.e. the equiva-
lence between contextuality and Wigner negativity in the
quadrature measurement scenario 〈X ,M,O〉quad:
Theorem 1.—For any M > 2, a density operator ρ on
L2(RM ) is noncontextual for quadrature measurements
if and only if its Wigner function Wρ is both integrable
and nonnegative.

We refer to Appendix B for the full proof.
Sketch of proof.—Using Definition 3 and Proposition 1,

a density operator ρ which is noncontextual for quadra-
ture measurements corresponds to a probability measure
p on the space X ∗ describing the outcomes of quadrature
measurements on ρ. We show that the Fourier trans-
form of p must be equal to the characteristic function Φρ.
Hence, p andWρ have the same Fourier transform, which
gives wp = Wρ and thus Wρ ≥ 0, since wp is the den-
sity of a probability measure. Conversely, if the Wigner
function is assumed to be integrable and nonnegative, we
obtain the outcome probabilities for quadrature measure-
ments by marginalising along the correct axes.
Experimental setup.—The quadrature measurement

scenario requires measuring any linear combination of
multimode position and momentum operators, e.g. q̂1 +
2p̂1 + 5q̂2. The measurement setup is represented in
Fig. 1.

To do so experimentally, we first apply phase-shift op-
erators R̂ for each individual qumode to obtain the right
quadrature for each mode. Then, we apply CZ gates of
the form eigq̂k q̂l for g ∈ R to pairs of qumodes k and

ρ R̂ CZ

LO (ϕ)

−

Figure 1. Experimental protocol corresponding to the quadra-
ture measurement scenario 〈X ,M,O〉quad.

l in order to sum them. This permits the construc-
tion of the desired linear combination, which is stored
in one quadrature of a qumode. The measurement can
then be implemented with standard homodyne detec-
tion, which consists in a Gaussian measurement of a
quadrature of the field, by mixing the state on a bal-
anced beam splitter (dashed line) with a strong coherent
state (local osccilator LO). The intensities of both out-
put arms are measured with photodiode detectors and
their difference yields a value proportional to a quadra-
ture x̂φ := (cosφ)q̂ + (sinφ)p̂ of the input qumode, de-
pending on the phase φ of the local oscillator. All of
these steps can be implemented experimentally with cur-
rent optical technology [45, 51].
Discussion.—We have shown that Wigner negativity is

equivalent to contextuality with respect to CV quantum
measurements which may be realised using homodyne
detection, a standard detection method in CV [36], and
the basis of several computational models in CV quantum
information [52–55].

From a practical perspective, this implies that contex-
tuality is a necessary resource for achieving a computa-
tional advantage within the standard model of CV quan-
tum computation [14]. Like in the discrete-variable case
[9], CV contextuality supplies the necessary ingredients
for CV quantum computing.

From a foundational perspective, the failure of a lo-
cal hidden-variable model describing quantum mechani-
cal predictions, as enlightened by Bell regarding the EPR
paradox, is very closely related to the impossibility of
a nonnegative phase-space distribution, as described by
Wigner. Hence, our result implies that the negativity of
phase-space distributions can be cast as an obstruction to
the existence of a noncontextual hidden-variable model.

The EPR state [3] describes a CV state that has a
nonnegative Wigner function and still violates a Bell in-
equality [56]. This is possible since it necessitates parity
operator measurements that do not have a nonnegative
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Wigner representation [22], and thus is not in contra-
diction with our result. Indeed, our quadrature mea-
surement scenario is nonnegatively represented in phase
space: since homodyne detection (and quadrature mea-
surements in general) is a Gaussian measurement, any
possible quantum advantage is due to Wigner negativity
being present before the detection setup.

Our results open up a number of future research direc-
tions. Firstly, our present argument requires consider-
ing a measurement scenario that comprises an uncount-
able family of measurement labels (the entire phase space
X = R2M ). From an experimental perspective, it is cru-
cial to wonder what happens if we restrict to a finite
family of measurement labels and see whether we can
derive a robust version of this theorem.

Another question concerns the link between quanti-
fying contextuality and quantifying Wigner negativity.
Quantifying contextuality for CV systems is possible via
semidefinite relaxation [57]. Also, there exist various
measures of Wigner negativity [58, 59]. In particular,
witnesses for Wigner negativity have been introduced in
[60], whose violation gives a lower bound on the distance
to the set of states with nonnegative Wigner function.
It would be highly desirable to establish a precise and
quantified link between these different measures of non-
classicality.

This equivalence may also be useful in better under-
standing the problem of characterising those quantum-
mechanical states whose Wigner function is nonnegative.
This is a notoriously thorny issue when one considers
mixed states, and, to the authors’ knowledge, progress
has mostly stalled since the 90s [48, 61–63]. Strong math-
ematical tools are being developed to detect contextuality
from the theoretical description of a state [10, 64–69], al-
though much work remains in applying them to CV and
understanding their relation to machinery previously de-
veloped to tackle the positivity question.

On the practical side, our result paves the way for sur-
prisingly simple demonstrations of nonclassicality. Con-
textual states are typically associated with violated Bell-
like inequalities—although this result has only been for-
mally proven in the case of a finite number of measure-
ment settings [40], and needs to be generalised to CV.
In principle, this means that one should be able to vi-
olate such an inequality with a setup as simple as a
single photon and a heterodyne detection, necessitating
only a single beamsplitter. The existence of such a gen-
uinely continuous Bell inequality has been elusive, since
previously-observed violations amount to encodings of
discrete-variable inequalities in CV [70–76].
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Appendix A: Proof of Proposition 1.—Let L ⊆ X be
a Lagrangian subspace and let eρ be a quantum em-
pirical model. For U ∈ FL a Lebesgue measurable
set of functions L → R and for x ∈ L, let πx(U) :=
{f(x) | f ∈ U} ⊆ R. We start by showing the following
result:
Lemma 1.— Let U ∈ FL be a Lebesgue measurable set
of functions L → R such that πx(U) is distinct from R
for a finite number of x ∈ L. Then there exists a subset
Ulin of linear functions L → R such that for all x ∈ L,
πx(Ulin) ⊆ πx(U) and eρL(Ulin) = eρL(U).
Proof.—First, let (ek)k=1,...,M be a basis of L ∼= RM .

Let P be the joint spectral measure of {ê1, . . . , êM}. For
any y ∈ L, define the function

fy : L −→ R (4)
x 7−→ x · y , (5)

where – · – is the usual Euclidean scalar product on L ∼=
RM . For any x ∈ L, Px̂ is the push-forward of P by the
measurable function fx by the functional calculus on M
commuting observables (see Supplemental Material for
a concise introduction to measure theory; this includes
Ref. [78] for the product σ-algebra).

Then,

Tr

(
ρ
∏
x∈L

Px̂ ◦ πx(U)

)
=Tr

(
ρ
∏
x∈L

P
(
f−1
x (πx(U))

))
(6)

=Tr

(
ρP

(⋂
x∈L

f−1
x (πx(U))

))
(7)

with⋂
x∈L

f−1
x (πx(U)) = {y ∈ L | ∀x ∈ L, x · y ∈ πx(U)} .

(8)

Now define

Ulin :=

{
L −→ R
x 7−→ x · y

∣∣∣∣ y ∈ ⋂
x∈L

f−1
x (πx(U))

}
. (9)

By construction,
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x∈L

f−1
x (πx(Ulin)) =

⋂
x∈L

f−1
x ({x · y | y ∈ L s.t. ∀z ∈ L, y · z ∈ πz(U)}) (10)

=
⋂
x∈L
{α ∈ L | x ·α = x · y with y ∈ L s.t. ∀z ∈ L, y · z ∈ πz(U)} (11)

= {α ∈ L | ∀x ∈ L, x ·α = x · y with y ∈ L s.t. ∀z ∈ L, y · z ∈ πz(U)} (12)
= {α ∈ L | ∀z ∈ L, α · z ∈ πz(U)} (13)

=
⋂
x∈L

f−1
x (πx(U)) , (14)

where (13) follows from that fact that (∀x ∈ L, x · α =
x·y) implies α = y. Also for all x ∈ L, πx(Ulin) ⊆ πx(U)
so that we are indeed reproducing all value assignments
from linear functions of U . Then, by the Born rule,

eρL(Ulin) = Tr

(
ρ
∏
x∈L

Px̂ ◦ πx(Ulin)

)
(15)

= Tr

(
ρ
∏
x∈L

P
(
f−1
x (πx(Ulin))

))
(16)

= Tr

(
ρP

(⋂
x∈L

f−1
x (πx(Ulin)

))
(17)

= Tr

(
ρP

(⋂
x∈L

f−1
x (πx(U))

))
(18)

= Tr

(
ρ
∏
x∈L

Px̂ (πx(U))

)
(19)

= eρL(U). (20)

We are now in position to prove Proposition 1.
The sheaf-theoretic framework for contextuality de-

scribes value assignments as a sheaf E where E (U) is
the set of value assignments for the measurement labels
in U , which can be viewed as a set of functions U → R.
For any Lagrangian L ∈ M, there is a restriction map
E (X )→ E (L) : f 7→ f |L that simply restricts the domain
of any function from X to L. Then E (L) must coincide
with the set of possible value assignments OL.

By Lemma 1, E (L) consists in linear functions L →
R so that the set of global value assignments E (X )
contains only functions X → R whose restriction to
any Lagrangian subspace is R-linear. Then, following
[24, Lemma 1] (the Lemma is proven for the discrete
phase-space ZMd × ZMd but its proof extends directly to
RM × RM ), we conclude that if M > 2, E (X ) contains
only R-linear functions X → R, i.e. E (X ) = X ∗, where
X ∗ is the dual space of X .
Appendix B: Proof of Theorem 1.—The proof proceeds

by showing both directions of the equivalence. We make
use of standard properties of the Wigner function, which
are reviewed in the Supplemental Material.

( =⇒ ) It follows from the definition of the Wigner
function that, for x ∈ X , Φρ(x) = FT−1 [Wρ] (−Jx) =
FT [Wρ] (Jx). On the other hand, fix a noncontextual
quantum empirical model eρ satisfying the Born rule
associated to ρ and the quadrature measurement sce-
nario 〈X ,M,O〉quad. By Proposition 1, the set of global
value assignments forms an R-linear space of dimension
2M , namely X ∗, which is isomorphic to its dual X .
Hence, by [40, Theorem 1] (restated in the Supplemen-
tal Material as Proposition 13) we have a deterministic
HVM 〈X , p, (kC)C∈M〉 for eρ (see Definition 4), where
X = 〈X ,FX 〉 with FX the usual σ-algebra of X = R2M .
Moreover:

Φρ(x) = Tr
(
D̂(−x)ρ

)
(21)

= Tr
(
ρ

∫
λ∈R

e−iλ dPĴx(λ)

)
(22)

=

∫
R
e−iλ dpρ

Ĵx
(λ) (23)

=

∫
X
e−iJx·y dp(y) (24)

= FT[p](Jx), (25)

where the second line comes from the spectral theorem;
the third line by letting pρ

Ĵx
(E) = Tr(PĴx(E)ρ) and the

fact that the integral and the trace may be inverted by
the definition of the integral with respect to the spec-
tral measure [79]; the fourth line via the push-forward of
measures; and the last line comes the definition of the
Fourier transform of a measure.

Since the characteristic function Φρ is square-
integrable, we can apply [80, Lemma 1.1] (restated in the
Supplemental Material as Lemma 7). Then, the measure
p must have a density wp ∈ L2(RM ). As a result, for all
x ∈ X , FT[wp](x) = FT[p](x) = Φρ(−Jx) = FT[Wρ](x)
and since wp and Wρ are both in L2(X ) on which the
Fourier transform is unitary, it must hold that wp = Wρ

dx-almost everywhere. wp is the density of a probability
measure, so it follows that both functions must be almost
everywhere nonnegative. Because the Wigner function is
a continuous function from X to R [46],Wρ must be non-
negative.

( ⇐= ) Conversely, the Wigner function provides the
correct marginals for the quadratures and can be seen
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as a global probability density on phase space when it
is nonnegative. Via the equivalence demonstrated in the
first part of the proof (namely that the density of p is
almost everywhere the Wigner function), the idea is to
show that 〈X ,Wρdx, (k̃L)L∈M〉 is a valid deterministic
HVM (see Definition 4) that reproduces the empirical
predictions, where k̃L(x, U) := (

√
2π)−Mδ(x·–)|L(U).

For any x ∈ X , there is a special orthogonal and sym-
plectic transformation S such that x = ‖x‖Se1. For any
U ∈ Fx,

eρx(U) = Tr(Px̂ ◦ πx(U)ρ) (26)

=
1

(
√

2π)M

∫
‖x‖−1πx(U)×R2M−1

Wρ(Sz) dz (27)

=
1

(
√

2π)M

∫
(e1·−)−1(‖x‖−1·πx(U))

Wρ(Sz) dz (28)

=
1

(
√

2π)M

∫
(‖x‖e1·S−1−)−1(πx(U))

Wρ(z) dz (29)

=
1

(
√

2π)M

∫
(‖x‖Se1·−)−1(πx(U))

Wρ(z) dz (30)

=
1

(
√

2π)M

∫
(x·−)−1(πx(U))

Wρ(z) dz, (31)

where we have used the symplectic covariance of the
Wigner function (restated as Lemma 9 in the Supple-
mental Material) and the fact that the Jacobian change
of variable in (29) is 1. By definition of k̃, for all x ∈ X
and all U ∈ Fx:∫

z∈X
k̃{x}(z, U)Wρ(z) dz (32)

=
1

(
√

2π)M

∫
z∈X

δ(z·–)|{x}(U)Wρ(z) dz. (33)

U ∈ Fx consists of functions {x} → R, which therefore
extend to linear functions on the subspace generated by
x, so:

{z ∈ X | (z · –)|{x} ∈ U} = {z ∈ X | (z · x) ∈ πx(U)}
(34)

= (– · x)−1(πx(U)). (35)

Thus:∫
z∈X

k̃{x}(z, U)Wρ(z) dz =
1

(
√

2π)M

∫
(–·x)−1(πx(U))

Wρ(z) dz

(36)

= eρx(U), (37)

While we have verified the calculation only for eρx(U) for
U ∈ Fx, the same computation can be carried out for
eρL(U) for a Lagrangian subspace L and U ∈ FL to re-
trieve the joint probability distributions from the HVM
〈X ,Wρdx, (k̃L)L∈M〉, using Proposition 1 to restrict the
elements of U to linear functions.
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