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Non-abelian anyons are fractional excitations of gapped topological models believed to describe
certain topological superconductors or quantum Hall states. Here, we provide the first numerical
evidence that they emerge as independent entities also in gapless electronic models. Starting from a
multi-impurity multi-channel chiral Kondo model, we introduce a novel mapping to a single-impurity
model, amenable to Wilson’s numerical renormalization group. We extract its spectral degeneracy
structure and fractional entropy, and calculate the F-matrices, which encode the topological in-
formation regarding braiding of anyons, directly from impurity spin-spin correlations. Impressive
recent advances on realizing multichannel Kondo systems with chiral edges may thus bring anyons
into reality sooner than expected.

Introduction.— Non-abelian anyons are exotic
(quasi-)particles which obey neither fermionic nor
bosonic statistics, and lie at the heart of topological
quantum computing [1, 2]. They define an anyonic
fusion-space which can only be transversed by their
mutual exchange, or braiding, thus providing topological
protection for information encoded in this space. An
important class of non-abelian anyons are the SU(2)k
anyons, which are governed by truncated SU(2) fusion
rules [3]. Each such anyon (of topological charge 1

2 )

carries with it a quantum dimension of dk=2 cos
(

π
2+k

)
,

which gives the degeneracy per anyon in the ther-
modynamic limit. Prominent examples are the Ising
(k=2, d2=

√
2) and Fibonacci (k=3, d3= 1+

√
5

2 ) anyons,
predicted to arise, e.g., in the ν= 5

2 and ν= 12
5 fractional

quantum Hall states, respectively [4, 5], and Majorana
“fermions” (also k=2), which arise in a variety of topo-
logical systems, e.g., pinned to vortices in 2D topological
superconductors [6–8] or on the edges of superconducting
nano-wires [9, 10]. However, these quasi-particles prove
to be extremely elusive, with no clear experimental
evidence for their non-abelian nature.

Another system governed by SU(2)k fusion rules, al-
though not of topological nature, is the k-channel Kondo
effect [11, 12]. This was most clearly demonstrated by
Emery and Kivelson [13], who formulated the solution of
the two-channel Kondo effect in terms of Majorana oper-
ators. Importantly, this effect has already been observed
in tunable nano-structures, for both k=2 [14–18] and k=3
[19] channels. The Kondo effect occurs when a quantum
impurity, e.g., a spin- 1

2 , is coupled antiferromagnetically
to (multiple) non-interacting spinfull fermionic bath(s),
i.e., channel(s). For a single channel, at temperatures
below the Kondo temperature, the fermions in the bath
screen the impurity, which can be interpreted as the im-
purity binding a fermion from the bath and forming a
singlet with it. Going to multiple channels, each channel
independently contributes a single screening fermion, but
this leads to frustration and fractionalization of the impu-
rity degrees of freedom. The fractionalized quasi-particle
comes with a zero-temperature entropy of log dk, corre-

sponding to the quantum dimension of a single SU(2)k
charge- 1

2 anyon [20]. Indeed, the low-energy physics of
the k-channel spin-s ≤ k

2 Kondo effect are captured by
a conformal field theory (CFT) in which a single SU(2)k
anyon with charge s is fused onto the primary fields of
(k-channel) free fermions [21, 22].

In order to discuss anyonic statistics, or braiding, we
require (i) multiple quasi-particles, and (ii) a physically
accessible operator which acts on the anyonic fusion-
space. The paradigmatic multi-channel Kondo effect as-
sumes a dilute scenario, so that at temperatures above
the Fermi-velocity over the inter-impurity separation
(vF /R), each impurity is effectively coupled to a differ-
ent bath, thus satisfying (i) but breaking (ii), while for
lower temperatures, the bath fermions mediate effective
RKKY interactions [23–25] between the impurities, thus
resolving the frustration and avoiding emergent fraction-
alized quasi-particles. It was only recently realized that
(i) and (ii) might be reconciled, either by gapping out the
bath via superconducting pairing [26] or preventing the
generation of interactions in the first place by employing
chiral channels [27]. In the latter, fermions (of all chan-
nel and spin species) can propagate only in one direction,
as on the edge of an integer quantum Hall system, thus
preventing backscattering and interference, the mecha-
nisms behind effective interactions. Intuitively, the first
impurity encountered by chiral fermions is unaware of the
impurities to follow, thus fractionalizing as in the single-
impurity case. Repeating this argument sequentially sug-
gests a fractionalized quasi-particle for each impurity.
Lopes et al. [27] introduced a multiple-impurity exten-
sion of the single-impurity multi-channel Kondo CFT fu-
sion as an ansatz for the low-energy behavior of such a
system: for each spin- 1

2 impurity introduce an SU(2)k
anyon with “topological” charge 1

2 , fuse these anyons to
each other, defining a non-abelian fusion space, and then
fuse the result onto the free-fermionic primary fields (see
examples in Sec. I of [28]). In this ansatz, different fusion
outcomes (corresponding to different states in the fusion-
space) leave signatures, e.g., on the spatial fermionic cor-
relation functions, which (in principle) can be measured
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(a) (b)

FIG. 1. (a) The impurities are Kondo-coupled to “buffer”
dangling sites, which in turn quadratically couple to the chiral
channels, and are considered part of the non-interacting bath.
(b) Taking the distance between these sites to zero leads to
an effective chiral model, in which the dangling sites together
with the impurities form a large effective impurity.

by interferometry, enabling measurement-only braiding
[29] of quasi-particles. However, in the CFT ansatz the
anyons were put in by hand.

In this work we independently test this conjecture, em-
ploying a controlled, non-perturbative, numerically ex-
act method – Wilson’s numerical renormalization group
(NRG) [30], which enables zooming in on the low-energy
physics of quantum impurity problems. A key part of
NRG is mapping the bath onto a tight-binding (Wil-
son) chain, but this is incompatible with chirality, as any
notion of direction in a (nearest-neighbor) tight-binding
chain can be absorbed by gauge transformations. How-
ever, chirality is also the solution to the problem. As the
distance between the impurities typically enters through
interference effects, which are now forbidden, we argue
that it does not affect universal properties. This is sup-
ported by the results in Ref. [31], in which we numerically
account for the distance, as well as by the Bethe-ansatz
solution for the Kondo problem [32]. We have the free-
dom to take the distance between the impurities to be
arbitrarily small, as long as we retain the notion of chi-
rality and the ordering of the impurities. We do this by
first introducing “buffer sites” between the impurities and
the bulk chiral channels, and only then taking the inter-
impurity distance to zero. This results in a large effec-
tive impurity coupled to a trivial bath, which can readily
be plugged into NRG. We then numerically demonstrate
that the low-energy behavior of the system indeed corre-
sponds to an SU(2)k charge- 1

2 anyon for each impurity,
and that the fusion outcome of pairs of such anyons can
be probed by measuring inter-impurity spin correlations.
Model and Method.— We start with M spin- 1

2 impu-
rities with spin operator Sm where m ∈ {1, ...,M}, and
a bath of right-moving free fermions

Hchiral =
∑
ασ

∫
dxψ†ασ (x) (−ivF∂x)ψασ (x) , (1)

with Fermi velocity vF , spin σ ∈ {↑, ↓} and channel
α ∈ {1, .., k}. One can directly couple the impurities
to the bath at locations {Rm}, by writing the Hamilto-
nian

∑
m JSm · s (Rm) +Hchiral, with J > 0 the Kondo-

coupling and s (x) ≡
∑
ασ ψ

†
ασ (x)σσσ′ψασ′ (x) the bath

spin at location x. We treat such a model in Ref. [31],
by introducing M coupled effective k-channel baths, but

this comes with a very high computational price tag, due
to the exponential scaling of NRG with the number of
channels. Instead, here we employ a mapping which cap-
tures the chirality with a single k-channel bath. We first
separate the impurities from the bath, as illustrated in
Fig. 1(a), by introducing buffer “dangling” fermionic sites
coupled to the bath at locations {Rm}, and then couple
the impurities to these dangling sites, arriving at

Htotal = J
∑
m

Sm · sm +Hdang +Hchiral, (2)

Hdang = t̃0
∑
mασ

(
d†mασψασ(Rm)+ ψ†ασ(Rm)dmασ

)
, (3)

where dmασ and sm ≡
∑
ασ d

†
mασσσσ′dmασ′ are the

dangling-sites fermionic and spin operators, respectively,
J > 0 is the Kondo-coupling, and t̃0 together with the
Fermi velocity define a soft cutoff Γ ≡ t̃20

2vF
.

Initially we treat the dangling sites together with the
chiral channels as the non-interacting bath to which the
impurities are coupled. As typical of Kondo problems,
the bath dependence of impurity quantities enters (to all
orders in the Kondo-coupling J) only through the (re-
tarded) Green function of the bath at the sites coupled
to the impurities, i.e., the dangling sites, when these are
decoupled from the impurities:

gRdang (ω) =
(
ω1− h−ΣR (ω)

)−1
, (4)

with 1 theM×M identity matrix, h=0 the single-particle
Hamiltonian acting on the dangling sites, and

ΣR
mm′ (ω) = −2iΓΘ (Rm′ −Rm) eiω(Rm′−Rm)/vF , (5)

the retarded self-energy due to the coupling of the dan-
gling sites to the chiral channels, where Θ (x) is the Heav-
iside step function (taking Θ (0) = 1

2 ). A clear signature
of chirality (assuming right-movers) is that any retarded
quantity at location r due to an event at r′ > r van-
ishes. And indeed, all elements below the diagonal of
ΣR (ω) are zero, as a result of which the same holds for
gRdang (ω). Thus the introduction of the dangling sites
importantly retains chirality. The obtained model is for-
mally equivalent to one without dangling sites in the
Γ → ∞ limit, whereas for finite Γ we have merely mod-
ified the bath density of states to a Lorentzian of width
Γ at each dangling site, which should not affect the uni-
versal low-energy properties. Assuming J < Γ, we can
define the Kondo temperature as TK = Γe−πΓ/J .

We now take the limit ω(RM−R1)/vF → 0, corre-
sponding to low temperatures or long wave-lengths. This
limit is taken after the infinite bandwidth limit of Eq. (1),
and is not impaired by the soft cutoff Γ. ΣR (ω) looses
its frequency dependence, but not its chirality, and can
be written as

ΣR
mm′ → −iΓ

{
2 m′>m
1 m′=m
0 m′<m

≡ heff
mm′ − iΓ, (6)
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with heff an Hermitian matrix. Thus heff can be inter-
preted as an effective (single-particle) Hamiltonian cou-
pling all dangling sites to each other via imaginary hop-
ping amplitudes, while −iΓ describes a single trivial bath
coupled equally to all dangling sites, i.e.,

Heff
dang =

∑
ασ

∑
m>m′

it′mm′

(
d†mασdm′ασ − d†m′ασdmασ

)
+
√
Mt̃0

∑
mασ

(
d†mασψασ(0)+ ψ†ασ(0)dmασ

)
, (7)

with t′mm′ = Γ. Replacing Hdang in Eq. (2) with Heff
dang,

we arrive at the model depicted in Fig. 1(b).
Let us review what we have achieved. The obtained

model is still chiral (for the very specific choice of t′mm′),
and reproduces the bath Green function in the low tem-
perature limit. But now we can interpret the impurities
together with the dangling sites as a large effective im-
purity, coupled to an effective bath (described only by
Hchiral) at a single location, so that its chirality is no
longer important. The resulting structure also hints at
first fusing all the impurities together, and then fusing
onto a single (multi-channel) bath, as in the CFT ansatz
of Ref. [27]. The obtained model is amendable to stan-
dard NRG, although one still needs to account for the
multiple channels. In order to reduce the computational
cost, we exploit the different symmetries of the model
(charge, spin, channel), using the QSpace tensor net-
work library, which treats abelian and non-abelian sym-
metries on equal footing [33–35]. For implementation
details see Sec. III in [28] and Refs. [36–39] therein. In or-
der to apply NRG, we introduce an artificial sharp high-
energy cutoff D � Γ, J to the bath density of states.
This cutoff, and to a lesser extent the NRG discretiza-
tion and truncation, mimic the effect of the bulk bands
(Landau levels), setting a finite bandwidth for the chiral
mode, and mediating effective non-chiral RKKY inter-
actions between the impurities. The latter are expected
to decay exponentially with both the bulk gap and the
inter-impurity distance [40–42], and are thus eliminated
by numerically tuning each t′mm′ slightly away from Γ to
re-instate chirality (see Sec. IV D in [28]).
Results.— We apply NRG to the effective Hamilto-

nian for 2 channels with up to 3 impurities, and for 3
channels with up to 2 impurities. In Fig. 2 we plot the
impurity entropy Simp, defined as the difference between
the entropy of the full system and that of the fermionic
bath (dangling sites + chiral channels) in the absence
of the impurities, which quantifies the effective degree
of freedom deff each impurity introduces. We find that
deff is independent of the number of impurities M , so
that Simp/M = log deff (k, T ) follows the universal single-
impurity curve, matching the limit of infinitely separated
impurities, and thus supporting our argument that in a
chiral system the inter-impurity distance is not impor-
tant. At high temperatures each impurity is effectively a

FIG. 2. Impurity entropy per impurity for 2 channels (red)
with 1-3 impurities, and 3 channels (blue) with 1,2 impuri-
ties, taking 2J=Γ=D/8. At high temperatures the impurity
spins are free, each contributing an entropy of log 2. At low
temperatures each impurity contributes a fractional entropy
corresponding to the quantum dimension of Ising (SU(2)2) or
Fibonacci (SU(2)3) anyons for 2 or 3 channels, respectively.

free spin, contributing a deff=2 degree of freedom. Going
below the Kondo temperature while assuming the ther-
modynamic limit for the bath, each impurity contributes
a fractional degree of freedom deff=dk corresponding ex-
actly to an SU(2)k anyon. These results are well known
in the single-impurity scenario [20], but the scaling to
multiple impurities, implying an anyon for each impu-
rity, is quite remarkable. This is very different from
the paradigmatic multi-impurity multi-channel scenario,
where the initially similar entropy curves break for tem-
peratures below ∼ vF /R due to coherent backscattering
which generates effective RKKY interaction. In order to
probe anyonic statistics we need coherence, and indeed in
our case we are already in the regime of T � vF /R→∞,
but now due to chirality, backscattering is forbidden, and
the anyons survive.

The curves in Fig. 2 were obtained for the specific
choice of the dangling-sites hopping amplitudes t′mm′

which renders the system chiral. We can characterize this
point by artificially tuning away from it, and demonstrate
that at the chiral point, the low-energy theory is exactly
that of the CFT ansatz of Ref. [27]. This is best observed
in the finite-size spectrum obtained by NRG, but as its
analysis is quite technical, we defer it to Sec. II in [28].
Instead, here we discuss more intuitive quantities.

For two impurities, with either 2 or 3 channels, we
find that the effective system undergoes a quantum phase
transition from a Kondo-screened spin-1 impurity when
the single parameter t′12 is below some critical value to
a spin-0 “Kondo” effect above it, similar to the two-
impurity Kondo-RKKY phase transition [43]. The two
phases can be identified by their low-energy spectra (see
Sec. II in [28]), with the transition observed, e.g., in the
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inter-impurity spin-correlator 〈S1 · S2〉T→0, which flips
sign from positive (triplet-like) to negative (singlet-like),
as shown in Fig. 3(a). Tuning away from criticality and
projecting the operator S1 · S2 down to the low-energy
subspace, we find it is a constant (equal to 〈S1 · S2〉T→0),
and thus commutes with the low-energy Hamiltonian.
This is consistent with our characterization of the two
phases, but is not trivial, as S1·S2 does not commute with
the full Hamiltonian, and hence the definite spin states
(singlet and triplet) mix low- and high-energy states. The
critical t′12 is exactly the hopping amplitude required for
the system to be chiral (it indeed converges to Γ for
D � Γ, J , see Fig. S4(a) in [28]). The projected S1 · S2

also commutes with the low-energy Hamiltonian at this
point, but now has two eigenvalues, positive and nega-
tive. Projecting onto the subspace corresponding to the
negative (positive) eigenvalue takes us back to the spin-0
(spin-1) Kondo phase. Thus, at the chiral point, the low-
energy Hamiltonian is the direct sum of the low-energy
Hamiltonians of the spin-0 and spin-1 Kondo effects. Re-
membering these can be obtained by fusing an SU(2)k
charge-0 or 1 anyon to the k-channel bath, we see that in
the chiral case we fuse two charge- 1

2 anyons to the bath

0× Bath + 1× Bath = (0 + 1)× Bath = 1
2 ×

1
2 × Bath,

in perfect agreement with the CFT ansatz of Ref. [27].
As a byproduct we have also demonstrated that a (low-
energy) measurement of the spin-correlator S1 · S2 actu-
ally measures the fusion outcome of the two anyons. We
note that this relation between the fusion channel and
the spin-correlator was also recently demonstrated ana-
lytically in the limits of k=2 and large-k channels [44].

This suggests we can extract the anyonic F-matrix,
which fully characterizes the non-abelian part of the any-
onic theory [3], from measurements of different pairwise
spin-correlators, as depicted in Fig. 3(b). We explicitly
demonstrate this for 3 impurities and 2 channels. We
now tune two parameters: the nearest-neighbor t′12 = t′23

(equal by symmetry) and next-nearest-neighbor t′13 hop-
ping amplitudes. For general values the effective low-
energy Hamiltonian is that of a single spin- 1

2 two-channel
Kondo (2CK) effect, H2CK . However, at a single criti-
cal point, corresponding to the system being chiral, we
get a two-fold degeneracy (for each energy eigenstate)
on-top of this 2CK effect. We can thus write the low-
energy Hamiltonian as a direct sum of two 2CK low-
energy Hamiltonians H2CK⊕H2CK , each given by CFT
by fusing a charge- 1

2 anyon to the bath(
1
2 + 1

2

)
×Bath = (0 + 1)× 1

2 ×Bath = 1
2 ×

1
2 ×

1
2 ×Bath.

This is equivalent to fusing three charge- 1
2 anyons to the

bath, again in perfect agreement with the CFT ansatz
of Ref. [27]. We see that the degeneracy is associated to
a decoupled fusion-space, and can write the low-energy
Hamiltonian as an outer product H2CK⊗12×2, acting on
the “energy space” and (trivially) on the fusion space.

FIG. 3. (a) Quantum phase transition for two impurities with
2 (red) and 3 (blue) channels as a function of the dangling-
sites hopping amplitude t′12, taking 2J=Γ=D/8. Correla-
tions for a bare singlet / triplet are indicated by dashed lines.
(b) Extraction of the F-matrix from inter-impurity spin cor-
relators in a three-impurity system.

Projecting the three pairwise spin-correlators S1· S2,
S2· S3, and S1· S3 down to the low-energy subspace, we
find all three commute with the low-energy Hamiltonian,
and act non-trivially only on the fusion-space. Thus, for
each pair of impurities m,m′ the projected Sm· Sm′ can
be written as 12CK ⊗ smm′ , where 12CK is the identity
matrix in the “energy space” and smm′ is a 2×2 Hermi-
tian matrix. Diagonalizing smm′ we find that it (and
thus Sm· Sm′) has one negative (singlet-like) and one
positive (triplet-like) eigenvalue, with eigenstates |0mm′〉
and |1mm′〉, respectively. The different correlators do not
commute with each other, and so define different bases
for the fusion space, related by the basis transformation

F =

(
〈012 | 023〉 〈012 | 123〉
〈112 | 023〉 〈112 | 123〉

)
=

1√
2

(
1.003 0.997
0.997 −1.003

)
. (8)

For concreteness we have restricted ourselves to the re-
lation between the eigenbases of S1· S2 and S2· S3, and
presented the numerically extracted values in this case.
We note that this result displays dependence on the ratio
J/Γ, which we discuss in Sec. IV of [28]. Interpreting the
eigenstates of the spin-correlator Sm· Sm′ as states with
definite fusion outcomes of anyons m and m′ (as in the
two-impurity case), Eq. (8) exactly defines the F-matrix,
which matches 1√

2

(
1 1
1 −1

)
corresponding to SU(2)2 anyons.

Conclusions.— We have numerically demonstrated
that multiple Kondo impurities coupled to k chiral chan-
nels (i) host multiple SU(2)k non-abelian anyons (one per
impurity), highlighted by the fractional entropy contribu-
tion per impurity, and (ii) the emergence of a decoupled
fusion-space, which can be probed by low-energy mea-
surements of the inter-impurity spin-correlators, explic-
itly extracting the F-matrix of SU(2)2 anyons. We can
now braid the anyons by a measurement-only protocol
[29], which teleports them using only measurements of
pairwise topological charge (fusion channel). One can en-
vision implementing this protocol, e.g., by a low-energy
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scattering experiment, directly demonstrating the non-
abelian nature of the anyons in the system.

Experiments consisting of a single impurity coupled
to 2 and 3 integer quantum Hall edge-states (i.e., chiral
channels) have already been carried out [18, 19], with
clear signatures of the fractionalized degrees of freedom
[45–48]. Extending these experiments to multiple impu-
rities with all spin and channel species propagating be-
tween the impurities is a challenge. Testing if more real-
istic setups, in which only some of the species connect the
impurities while the remainder are local to each impurity,
also support non-abelian anyons, and what physical ob-
servables probe their fusion-space is quite straightforward
for the method presented, and is left for future work.
Note that due the absence of a (topological) gap, we ex-
pect information encoded in the fusion space to decohere
as a power law of T/TK , in contrast to the exponen-
tial suppression in the presence of a gap. Still, based on
the success of [18, 19], the path to observing non-abelian
anyons might be shorter in these systems.
Acknowledgments.— We would like to thank J. von

Delft, A. Weichselbaum and S.-S. Lee for fruitful dis-
cussions, as well as sharing the QSpace tensor-network
library and accompanying code [33–35, 49]. E.S. was sup-
ported by the Synergy funding for Project No. 941541,
ARO (W911NF-20-1-0013), the US-Israel Binational Sci-
ence Foundation (BSF) Grant No. 2016255, and the Is-
rael Science Foundation (ISF) Grant No. 154/19. M.G.
was supported by the ISF and the Directorate for De-
fense Research and Development (DDR&D) Grant No.
3427/21 and by the BSF Grant No. 2020072.

∗ matanlotem@mail.tau.ac.il
† eransx@googlemail.com
‡ mgoldstein@tauex.tau.ac.il

[1] A. Y. Kitaev, Fault-tolerant quantum computation by
anyons, Annals of Physics 303, 2 (2003).

[2] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and
S. Das Sarma, Non-Abelian anyons and topological quan-
tum computation, Reviews of Modern Physics 80, 1083
(2008).

[3] P. H. Bonderson, Non-Abelian Anyons and Interferom-
etry, Ph.D. thesis, California Institute of Technology
(2007).

[4] G. Moore and N. Read, Nonabelions in the fractional
quantum hall effect, Nuclear Physics B 360, 362 (1991).

[5] N. Read and E. Rezayi, Beyond paired quantum Hall
states: Parafermions and incompressible states in the
first excited Landau level, Physical Review B 59, 8084
(1999).

[6] N. Read and D. Green, Paired states of fermions in
two dimensions with breaking of parity and time-reversal
symmetries and the fractional quantum Hall effect, Phys-
ical Review B 61, 10267 (2000).

[7] D. A. Ivanov, Non-Abelian Statistics of Half-Quantum
Vortices in p-Wave Superconductors, Physical Review

Letters 86, 268 (2001).
[8] L. Fu and C. L. Kane, Superconducting Proximity Effect

and Majorana Fermions at the Surface of a Topological
Insulator, Physical Review Letters 100, 096407 (2008).

[9] R. M. Lutchyn, J. D. Sau, and S. Das Sarma, Majo-
rana Fermions and a Topological Phase Transition in
Semiconductor-Superconductor Heterostructures, Phys-
ical Review Letters 105, 077001 (2010).

[10] Y. Oreg, G. Refael, and F. von Oppen, Helical Liquids
and Majorana Bound States in Quantum Wires, Physical
Review Letters 105, 177002 (2010).

[11] P. Nozières and A. Blandin, Kondo effect in real metals,
Journal de Physique 41, 193 (1980).

[12] A. C. Hewson, The Kondo Problem to Heavy Fermions,
Cambridge Studies in Magnetism (Cambridge University
Press, Cambridge, 1993).

[13] V. J. Emery and S. Kivelson, Mapping of the two-channel
Kondo problem to a resonant-level model, Physical Re-
view B 46, 10812 (1992).

[14] R. M. Potok, I. G. Rau, H. Shtrikman, Y. Oreg, and
D. Goldhaber-Gordon, Observation of the two-channel
Kondo effect, Nature 446, 167 (2007).

[15] H. T. Mebrahtu, I. V. Borzenets, D. E. Liu, H. Zheng,
Y. V. Bomze, A. I. Smirnov, H. U. Baranger, and
G. Finkelstein, Quantum phase transition in a resonant
level coupled to interacting leads, Nature 488, 61 (2012).

[16] H. T. Mebrahtu, I. V. Borzenets, H. Zheng, Y. V.
Bomze, A. I. Smirnov, S. Florens, H. U. Baranger, and
G. Finkelstein, Observation of Majorana quantum criti-
cal behaviour in a resonant level coupled to a dissipative
environment, Nature Physics 9, 732 (2013).

[17] A. J. Keller, L. Peeters, C. P. Moca, I. Weymann,
D. Mahalu, V. Umansky, G. Zaránd, and D. Goldhaber-
Gordon, Universal Fermi liquid crossover and quantum
criticality in a mesoscopic system, Nature 526, 237
(2015).

[18] Z. Iftikhar, S. Jezouin, A. Anthore, U. Gennser, F. D.
Parmentier, A. Cavanna, and F. Pierre, Two-channel
Kondo effect and renormalization flow with macroscopic
quantum charge states, Nature 526, 233 (2015).

[19] Z. Iftikhar, A. Anthore, A. K. Mitchell, F. D. Parmentier,
U. Gennser, A. Ouerghi, A. Cavanna, C. Mora, P. Simon,
and F. Pierre, Tunable quantum criticality and super-
ballistic transport in a “charge” Kondo circuit, Science
360, 1315 (2018).

[20] A. M. Tsvelick, The thermodynamics of multichannel
Kondo problem, Journal of Physics C: Solid State Physics
18, 159 (1985).

[21] I. Affleck and A. W. W. Ludwig, The Kondo effect, con-
formal field theory and fusion rules, Nuclear Physics B
352, 849 (1991).

[22] I. Affleck and A. W. W. Ludwig, Critical theory of over-
screened Kondo fixed points, Nuclear Physics B 360, 641
(1991).

[23] M. A. Ruderman and C. Kittel, Indirect Exchange Cou-
pling of Nuclear Magnetic Moments by Conduction Elec-
trons, Physical Review 96, 99 (1954).

[24] T. Kasuya, A Theory of Metallic Ferro- and Antifer-
romagnetism on Zener’s Model, Progress of Theoretical
Physics 16, 45 (1956).

[25] K. Yosida, Magnetic Properties of Cu-Mn Alloys, Physi-
cal Review 106, 893 (1957).

[26] Y. Komijani, Isolating Kondo anyons for topological
quantum computation, Physical Review B 101, 235131

mailto:matanlotem@mail.tau.ac.il
mailto:eransx@googlemail.com
mailto:mgoldstein@tauex.tau.ac.il
https://doi.org/10.1016/S0003-4916(02)00018-0
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.1103/RevModPhys.80.1083
https://doi.org/10.7907/5NDZ-W890
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevB.59.8084
https://doi.org/10.1103/PhysRevB.59.8084
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevB.61.10267
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.86.268
https://doi.org/10.1103/PhysRevLett.100.096407
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.077001
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1103/PhysRevLett.105.177002
https://doi.org/10.1051/jphys:01980004103019300
https://doi.org/10.1017/CBO9780511470752
https://doi.org/10.1103/PhysRevB.46.10812
https://doi.org/10.1103/PhysRevB.46.10812
https://doi.org/10.1038/nature05556
https://doi.org/10.1038/nature11265
https://doi.org/10.1038/nphys2735
https://doi.org/10.1038/nature15261
https://doi.org/10.1038/nature15261
https://doi.org/10.1038/nature15384
https://doi.org/10.1126/science.aan5592
https://doi.org/10.1126/science.aan5592
https://doi.org/10.1088/0022-3719/18/1/020
https://doi.org/10.1088/0022-3719/18/1/020
https://doi.org/10.1016/0550-3213(91)90109-B
https://doi.org/10.1016/0550-3213(91)90109-B
https://doi.org/10.1016/0550-3213(91)90419-X
https://doi.org/10.1016/0550-3213(91)90419-X
https://doi.org/10.1103/PhysRev.96.99
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1143/PTP.16.45
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRev.106.893
https://doi.org/10.1103/PhysRevB.101.235131


6

(2020).
[27] P. L. S. Lopes, I. Affleck, and E. Sela, Anyons in multi-

channel Kondo systems, Physical Review B 101, 085141
(2020).

[28] See Supplemental Material.
[29] P. Bonderson, M. Freedman, and C. Nayak,

Measurement-Only Topological Quantum Computa-
tion, Physical Review Letters 101, 010501 (2008).

[30] K. G. Wilson, The renormalization group: Critical phe-
nomena and the Kondo problem, Reviews of Modern
Physics 47, 773 (1975).

[31] M. Lotem, E. Sela, and M. Goldstein, The Chiral Nu-
merical Renormalization Group (2022), arXiv:2208.02283
[cond-mat].

[32] N. Andrei, K. Furuya, and J. H. Lowenstein, Solution of
the Kondo problem, Reviews of Modern Physics 55, 331
(1983).

[33] A. Weichselbaum, Tensor networks and the numerical
renormalization group, Physical Review B 86, 245124
(2012).

[34] A. Weichselbaum, Non-abelian symmetries in tensor net-
works: A quantum symmetry space approach, Annals of
Physics 327, 2972 (2012).

[35] A. Weichselbaum, X-symbols for non-Abelian symme-
tries in tensor networks, Physical Review Research 2,
023385 (2020).

[36] R. Bulla, T. A. Costi, and T. Pruschke, Numerical renor-
malization group method for quantum impurity systems,
Reviews of Modern Physics 80, 395 (2008).

[37] V. L. Campo and L. N. Oliveira, Alternative discretiza-
tion in the numerical renormalization-group method,
Physical Review B 72, 104432 (2005).

[38] R. Žitko, Adaptive logarithmic discretization for numer-
ical renormalization group methods, Computer Physics
Communications 180, 1271 (2009).

[39] J. J. Sakurai and J. Napolitano, Modern Quantum Me-
chanics, 2nd ed. (Cambridge University Press, Cam-
bridge, 2017).

[40] N. Bloembergen and T. J. Rowland, Nuclear Spin Ex-
change in Solids: Tl203 and Tl205 Magnetic Resonance in
Thallium and Thallic Oxide, Physical Review 97, 1679
(1955).

[41] P. D. Kurilovich, V. D. Kurilovich, and I. S. Burmistrov,
Indirect exchange interaction between magnetic impuri-
ties in the two-dimensional topological insulator based
on CdTe/HgTe/CdTe quantum wells, Physical Review B
94, 155408 (2016).

[42] V. D. Kurilovich, P. D. Kurilovich, and I. S. Burmistrov,
Indirect exchange interaction between magnetic impuri-
ties near the helical edge, Physical Review B 95, 115430
(2017).

[43] C. Jayaprakash, H. R. Krishna-murthy, and J. W.
Wilkins, Two-Impurity Kondo Problem, Physical Review
Letters 47, 737 (1981).

[44] D. Gabay, C. Han, P. L. S. Lopes, I. Affleck, and E. Sela,
Multi-impurity chiral Kondo model: Correlation func-
tions and anyon fusion rules, Physical Review B 105,
035151 (2022).

[45] L. A. Landau, E. Cornfeld, and E. Sela, Charge Frac-
tionalization in the Two-Channel Kondo Effect, Physical
Review Letters 120, 186801 (2018).

[46] G. A. R. van Dalum, A. K. Mitchell, and L. Fritz,
Wiedemann-Franz law in a non-Fermi liquid and Majo-
rana central charge: Thermoelectric transport in a two-
channel Kondo system, Physical Review B 102, 041111
(2020).

[47] T. K. T. Nguyen and M. N. Kiselev, Thermoelectric
Transport in a Three-Channel Charge Kondo Circuit,
Physical Review Letters 125, 026801 (2020).

[48] C. Han, Z. Iftikhar, Y. Kleeorin, A. Anthore, F. Pierre,
Y. Meir, A. K. Mitchell, and E. Sela, Fractional Entropy
of Multichannel Kondo Systems from Conductance-
Charge Relations, Physical Review Letters 128, 146803
(2022).

[49] S.-S. B. Lee and A. Weichselbaum, Adaptive broadening
to improve spectral resolution in the numerical renormal-
ization group, Physical Review B 94, 235127 (2016).

https://doi.org/10.1103/PhysRevB.101.235131
https://doi.org/10.1103/PhysRevB.101.085141
https://doi.org/10.1103/PhysRevB.101.085141
https://doi.org/10.1103/PhysRevLett.101.010501
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.1103/RevModPhys.47.773
https://doi.org/10.48550/arXiv.2208.02283
https://doi.org/10.48550/arXiv.2208.02283
https://arxiv.org/abs/2208.02283
https://arxiv.org/abs/2208.02283
https://doi.org/10.1103/RevModPhys.55.331
https://doi.org/10.1103/RevModPhys.55.331
https://doi.org/10.1103/PhysRevB.86.245124
https://doi.org/10.1103/PhysRevB.86.245124
https://doi.org/10.1016/j.aop.2012.07.009
https://doi.org/10.1016/j.aop.2012.07.009
https://doi.org/10.1103/PhysRevResearch.2.023385
https://doi.org/10.1103/PhysRevResearch.2.023385
https://doi.org/10.1103/RevModPhys.80.395
https://doi.org/10.1103/PhysRevB.72.104432
https://doi.org/10.1016/j.cpc.2009.02.007
https://doi.org/10.1016/j.cpc.2009.02.007
https://doi.org/10.1017/9781108499996
https://doi.org/10.1017/9781108499996
https://doi.org/10.1103/PhysRev.97.1679
https://doi.org/10.1103/PhysRev.97.1679
https://doi.org/10.1103/PhysRevB.94.155408
https://doi.org/10.1103/PhysRevB.94.155408
https://doi.org/10.1103/PhysRevB.95.115430
https://doi.org/10.1103/PhysRevB.95.115430
https://doi.org/10.1103/PhysRevLett.47.737
https://doi.org/10.1103/PhysRevLett.47.737
https://doi.org/10.1103/PhysRevB.105.035151
https://doi.org/10.1103/PhysRevB.105.035151
https://doi.org/10.1103/PhysRevLett.120.186801
https://doi.org/10.1103/PhysRevLett.120.186801
https://doi.org/10.1103/PhysRevB.102.041111
https://doi.org/10.1103/PhysRevB.102.041111
https://doi.org/10.1103/PhysRevLett.125.026801
https://doi.org/10.1103/PhysRevLett.128.146803
https://doi.org/10.1103/PhysRevLett.128.146803
https://doi.org/10.1103/PhysRevB.94.235127

	Manipulating non-abelian anyons in a chiral multi-channel Kondo model
	Abstract
	Acknowledgments
	References


