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We propose a universal gate set acting on a qubit formed by the degenerate ground states of
a Coulomb-blockaded time-reversal invariant topological superconductor island with spatially sep-
arated Majorana Kramers pairs: the “Majorana Kramers Qubit”. All gate operations are imple-
mented by coupling the Majorana Kramers pairs to conventional superconducting leads. Interest-
ingly, in such an all-superconducting device, the energy gap of the leads provides another layer of
protection from quasiparticle poisoning independent of the island charging energy. Moreover, the
absence of strong magnetic fields – which typically reduce the superconducting gap size of the island
– suggests a unique robustness of our qubit to quasiparticle poisoning due to thermal excitations.
Consequently, the Majorana Kramers Qubit should benefit from prolonged coherence times and may
provide an alternative route to a Majorana-based quantum computer.

PACS numbers: 03.67.Lx; 74.50.+r; 85.25.Cp; 71.10.Pm

In recent years an increasing number of platforms have
been proposed for realizing time-reversal invariant topo-
logical superconductors (TRI TSCs) [1]. Among the most
notable platforms are nanowires and topological insula-
tors in contact to unconventional superconductors (SCs)
[2–5] and conventional SCs [6–11], proximity-induced
Josephson π-junctions in nanowires and topological in-
sulators [12–15] as well as TSCs with an emergent time-
reversal symmetry (TRS) [16–19].

A common feature of TRI TSCs is that they host spa-
tially separated Majorana Kramers pairs (MKPs) which
form robust, zero energy modes protected by TRS. In
spite of much fundamental interest in the properties of
MKPs [20–26], a yet unsolved question is if MKPs can
be employed for applications in quantum computation.
Here, we answer this question in the affirmative.

The purpose of this work is to introduce a qubit formed
by the degenerate ground states of a Coulomb-blockaded
TRI TSC island with spatially separated MKPs: the
“Majorana Kramers Qubit” (MKQ). We depict the min-
imal experimental setup for a single MKQ in Fig. 1. It
comprises two SC leads which separately couple to two
distinct MKPs on a U-shaped TRI TSC island. The two
SC leads are also coupled among themselves by normal
and spin-flip tunnelling barriers.

Within this setup, we implement single-qubit Clif-
ford gates not by braiding of MKPs [27, 28] but rather
by making use of a measurement-based approach to
Majorana quantum computing [29, 30]. In such a
measurement-based approach, we perform read-out of
Majorana bilinears, which correspond to the Pauli oper-
ators of our qubit, through Josephson current measure-
ment. More specifically, we selectively deplete either the
normal or the spin-flip tunneling barrier and, in this way,
realize Josephson couplings that contain different Majo-
rana bilinears, see Fig. 2. To achieve universal quantum
computing, we further propose an unprotected T -gate
and entangling gate by pulsing of tunnel couplings.
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FIG. 1. (Color online) Setup comprised of a U-shaped TRI
TSC island (gray) realizing a MKQ. Tunnel couplings (white,
dashed) connect the SC leads ` = L,R (red) to the MKPs
γ`,s (yellow) with s =↑, ↓. The SC leads are connected by
gate-tunable spin-flip and a normal tunnelling barriers with
lengths d, d′. To facilitate Cooper pair splitting between these
two tunnelling barriers and the TRI TSC island, the sepa-
ration of the tunnelling contacts is smaller than the coher-
ence length ξSC of the SC leads. To avoid couplings of the
MKPs to fermionic corner modes [31], the length of the ver-
tical TRI TSC segments is much longer than the MKP local-
ization length ξMKP. A gate voltage V tunes the charge on
the TRI TSC island via a capacitor with capacitance C.

The main conceptual lesson we learn is that Majorana-
based quantum computing is possible without the need
for magnetic fields. In particular, this point differenti-
ates our proposal from previous works [32–41] that pro-
pose quantum computing architectures based on conven-
tional Majorana bound states, which in the available ex-
perimental candidate platforms require the use of strong
magnetic fields for their realization. In particular, the
absence of such strong magnetic fields in our proposal
constitutes a fundamental advantage because magnetic
fields act detrimentally on superconductors and, as a
result, constitute a significant challenge towards realiz-
ing topological superconductivity. Besides that, there
two features of our setup that yield improved protection
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from quasiparticle poisoning: (1) Within the single-MKQ
setup of Fig. 1, single-electron tunnelling from the SC
leads does not only require overcoming the charging en-
ergy of the TRI TSC island but also the breaking of a
Cooper pair in the leads. Consequently, the SC gap of the
leads provides an additional layer of protection against
quasiparticle poisoning, independent of the island charg-
ing energy. (2) Quasiparticle poisoning due to thermal
excitations within the TRI TSC island is suppressed the
SC gap of the island itself. In particular, the energy
gap of a TRI TSC may be larger than the energy gap
of TRS-breaking Majorana island [32–43] since there is
no magnetic field reducing the SC gap size. However,
despite the absence of magnetic fields, repulsive inter-
actions, which are present in certain TRI TSC setups
[7, 13], could suppress the SC gap size.

Setup. As shown in Fig. 1, our setup comprises a U-
shaped TRI TSC islands hosting MKPs γ`,s with s =↑, ↓
at spatially well separated boundaries ` = L,R. The two
members of a MKP are related by TRS,

T γ`,↑T −1 = γ`,↓, T γ`,↓T −1 = −γ`,↑. (1)

We assume that the dimensions of the vertical island
segments exceed the MKP localization length, ξMKP, to
avoid couplings to fermionic fermionic modes that are po-
tentially localized at the island corners [31]. The MKPs
are then robust zero-energy states protected by TRS.

Since the TRI TSC island is of mesoscopic size, it ac-
quires (like mesoscopic TSC islands with broken time-
reversal symmetry [42]) a charging energy given by

UC = (ne−Q)
2
/2C. (2)

Here, Q is the island gate charges that is continuously
tunable with a voltage across a capacitor with capac-
itance C. We tune the gate charge Q/e so that the
ground state of the TRI TSC island comprises n0 electron
charges. For a sufficiently large charging energy e2/2C,
the joint parity of the MKPs on the TRI TSC island is
then given by [42, 44]

γL,↑γR,↑γL,↓γR,↓ = (−1)n0 . (3)

We note that this parity constraint applies to the MKPs
on the same TRI TSC, which is different from quan-
tum computing proposals based on conventional Majo-
rana bound states that require two different TSCs that
are connected by a conventional SC bridge [39–41]. The
parity constraint reduces the four-fold degeneracy of the
ground state at zero charging energy, to a two-fold de-
generate ground state which forms the MKQ. The Pauli
operators acting on each of the two MKQs can be written
as bilinears in the Majorana operators,

x̂ = iγR,↑γL,↓, ŷ = iγR,↑γR,↓, ẑ = iγR,↓γL,↓. (4)

Under TRS, the Pauli operators transform as T x̂T −1 =
(−1)n0 x̂, T ŷT −1 = −ŷ and T ẑT −1 = (−1)n0 ẑ. We note

again that the Pauli operators are defined in terms of
MKPs on the same TRI TSC islands, unlike the Pauli
operators in quantum computing proposals based on Ma-
jorana bound states that are localized on different TSCs
connected by a conventional SC bridge [39–41].

In our setup, we choose to address the MKQ by weakly
coupling each MKP to a separate s-wave SC lead. The
Hamiltonian for the two SC leads is of the standard BCS
(BardeenCooperSchrieffer) form,

HSC =
∑
`=L,R

∑
k

Ψ†`,k
(
ξkηz + ∆`ηxe

iϕ`ηz
)

Ψ`,k, (5)

where Ψ`,k = (c`,k↑, c
†
`,−k↓)

T is a Nambu spinor with c`,ks
the electron annihilation operator at momentum k and
spin s in lead `. The Pauli matrices ηx,y,z act in Nambu-
space. Furthermore, ξk is the normal state dispersion
and ∆`,ϕ` denote magnitude and phase of the SC order
parameter of the m-SC lead. The SC phase difference
is ϕ ≡ ϕL − ϕR. We assume low temperatures, so no
quasiparticle states in the SC leads are occupied with
notable probability and can couple to the MKPs.

The most general tunneling Hamiltonian between the
MKPs and the fermions on the `-SC lead reads,

HT =
∑
`=L,R

∑
k,s

λ`c
†
`,ksγ`,se

−iφ/2 + H.c., (6)

where we have diagonalized the tunnelling Hamilto-
nian in spin-space by an appropriate rotation of the
lead fermions [26]. This rotation constraints the point-
like tunnelling amplitudes λ` to be real numbers, a
consequence of the time-reversal symmetry that is not
present in quantum computing proposals based on con-
ventional Majorana bound states [41]. The operators
e±iφ/2 raise/lower the total island charges by one unit,
[n, e±iφ/2] = ±e±iφ/2, while the MBSs operators γ`,s flip
the respective electron number parities.

As evident from Fig. 1, there are two types of cou-
plings between the SC leads: The first type is an indirect
coupling via the TRI TSC islands which is induced by
the tunnelling Hamiltonian of Eq. (6). The second type
is a direct coupling via two additional tunnelling barri-
ers. The first tunnelling barrier is used for measuring the
ẑ-Pauli operator and only allows for normal tunnelling,

HN = tN
∑
k

c†R,k↑cL,k↑ + c†L,k↓cR,k↓ + H.c., (7)

where tN is a complex, point-like tunnelling amplitude.
The second barrier is used for measuring the x̂-Pauli op-
erator and only permits spin-flip tunnelling,

HS = tS
∑
k

c†R,k↑cL,k↓ − c
†
L,k↑cR,k↓ + H.c., (8)

where tS is again a complex, point-like tunnelling ampli-
tude. For the x̂ (ẑ) measurement protocols, we require
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ẑ = i�R,#�L,#
<latexit sha1_base64="ep/DxNofsyLvAJws7oUvZXaPugI="></latexit>

x̂ = i�R,"�L,#
<latexit sha1_base64="/KBpWqwm9Hwp4OKRKUX/F6L5T7Y="></latexit>

�R,#
<latexit sha1_base64="95jOxqPHHrPBlGTyDHnyycToaxM=">AAAC53ichVHPTxNBFP5YQFsQrXrEQ2Nj4oE0WzDRYxOK4UJSDS0klDSz22GZdH9ldtpSm178B7wRrty44n+jf4sHvx23JkIMs5l9b773vW/em+elocqM6/5YcpZXVh89LpXX1p9sPH1Wef6imyUj7cuOn4SJPvZEJkMVy45RJpTHqZYi8kJ55A138/jRWOpMJfGhmabyNBJBrM6ULwyhfuVVLxBRJPqznpEXZvZ5vtUbJJNYaJ1M5v1Kza27dlXvO43CqaFY7aTyEz0MkMDHCBEkYhj6IQQyfidowEVK7BQzYpqesnGJOdaYOyJLkiGIDvkPeDop0JjnXDOz2T5vCbk1M6t4w/3RKnpk57dK+hntL+4vFgv+e8PMKucVTmk9Kpat4gFxg3MyHsqMCuailocz864MzvDBdqNYX2qRvE//r06LEU1saCNV7FlmQA3Pnsd8gZi2wwryV14oVG3HA1phrbQqcaEoqKdp89dnPRxz4+5Q7zvd7Xpjp7796V2t2SoGXsImXuMtp/oeTeyjzTp8fMUNbvHdUc4359K5+kN1loqcl/hnOde/Ac6/m2I=</latexit>

�L,#
<latexit sha1_base64="r4XC3z5sEYkHh6QHODu1Jd6YpF8="></latexit>

�L,#
<latexit sha1_base64="r4XC3z5sEYkHh6QHODu1Jd6YpF8="></latexit>

�R,"
<latexit sha1_base64="7n1y0SomITc2amPqwQyEBY7FY+c="></latexit>

(a)
<latexit sha1_base64="WNGWfO8ACddYBvHLEQZMsV8uqyc=">AAACzHichVFLT8JAEB7qC/CFevTSSEzwQlo86JFENF40GOWRIDHbstQNfaVdSJBw9eZVf5v+Fg9+XYuJEsM225n95ptvZ3as0BWxNIz3jLa0vLK6ls3l1zc2t7YLO7vNOBhGNm/YgRtEbYvF3BU+b0ghXd4OI848y+Uta3CWxFsjHsUi8O/kOORdjzm+6AubSUC3JXb0UCgaZUMtfd4xU6dI6aoHhQ+6px4FZNOQPOLkk4TvEqMYX4dMMigE1qUJsAieUHFOU8ojdwgWB4MBHeDv4NRJUR/nRDNW2TZucbEjZOp0iH2hFC2wk1s5/Bj2E/tJYc6/N0yUclLhGNaCYk4pXgGX9AjGokwvZc5qWZyZdCWpT6eqG4H6QoUkfdo/OjVEImADFdHpXDEdaFjqPMIL+LANVJC88kxBVx33YJmyXKn4qSKDXgSbvD7qwZjNv0Odd5qVsnlcrtxUitVaOvAs7dMBlTDVE6rSJdVRh43qXuiV3rRrTWoTbfpN1TJpzh79WtrzF+Wmj1s=</latexit>

(b)
<latexit sha1_base64="kN5FoHpboIhbwuggyAYbNXSOMR8="></latexit>

FIG. 2. (Color online) (a) A sequence of intermediate states in
which a Cooper pair moves between the SC leads by splitting
up between the normal tunnelling barrier and the TRI TSC.
The spin-flip tunnelling barrier is fully depleted. The MBS
operators (not) participating in the sequence are shown in
yellow (gray). The resulting effective coupling is ∝ ẑ. (b)
Same as (a) but now the Cooper pair splits up between the
spin-flip tunnelling barrier and the TRI TSC. The normal
tunnelling barrier is fully depleted. The coupling is ∝ x̂.

Im tS 6= 0 (Im tN 6= 0) when n0 even and Re tS 6= 0
(Re tN 6= 0) when n0 odd. In addition, we propose two
ways to engineer such tunnellling barriers: (1) We con-
sider barriers with a finite intrinsic spin-orbit coupling
with spin-orbit length λSO as well as different barrier
lengths d, d′. Tuning λSO/d

′ (λSO/d) to a positive in-
teger (positive half integer) realizes a barrier with pure
normal (spin-flip) tunnelling [45]. (2) We consider barri-
ers with an engineered spin-orbit coupling due to a local,
rotating magnetic field induced by a series of nanomag-
nets [46, 47]. By adjusting the the rotating field period
through the nanomagnet separation, we can realize bar-
riers with pure normal or spin-flip tunnelling.

In summary, the full Hamiltonian reads H = UC +
HSC +HT +HN +HS .

Single-qubit Clifford gates. In this section, we will im-
plement single-qubit Clifford gates by “Majorana track-
ing” [30]. This means for a given circuit of single-qubit
Clifford gates we record all Pauli operator redefinitions
on a classical computer and use the quantum hardware
only to perform suitable measurements of the x̂, ŷ, ẑ-Pauli
operators at the end of the computation.

First, for measuring the ẑ-Pauli operator, we consider
the situation when a local gate depletes the spin-flip tun-
nelling barrier between the two SC leads, Im tS = 0 for
n0 even and Re tS = 0 for n0 odd.

In this case, to second order in tN , Cooper pairs tunnel
between the SC leads only via the normal tunnelling bar-
rier inducing a finite Josephson coupling JN ∼ 2|tN |2/∆.

In particular, a Josephson coupling due to Cooper tun-
nelling between each SC lead and the TRI TSC is un-
favorable due to the substantial island charging energy
[41]. The island charging energy thus plays two key roles:
First, it suppresses quasiparticle poisoning due to single-
electron tunnelling from the environment. Second, it sup-
presses local mixing ∝ ŷ due to Cooper pair tunnelling
between each SC lead and the TRI TSC island. Such
local mixing terms are – as noticed earlier [49] – of im-
portance for TRI TSCs with zero charging energy and, as
we will see, can be used to measure the ŷ-Pauli operator.

Next, we note that to third order in tN , λL, λR Cooper
pair splitting sequences between the TRI TSC island and
the normal tunnelling barrier induce additional Joseph-
son couplings, Jz for n0 even and J ′z for n0 odd, see
Fig. 2(a). In a first process, a Cooper pair on the left
SC lead breaks up and one of the electrons tunnels via
the normal tunnelling barrier to the right SC lead. This
leaves the left SC lead in an excited state with one quasi-
particle above the SC gap. In a second process, the
quasiparticle on the left SC tunnels to the TRI TSC is-
land and increments its charge by one unit. While the
left SC returns to its ground state in this way, the TRI
TSC island is now in an excited state with one excess
charge. It, therefore, requires a third process to remove
the extra charge from the TRI TSC by recombining it
to a Cooper pair on the right SC lead. Critically, the
tunnelling events via both the normal tunnelling barrier
and the TRI TSC island conserve the electron spin. For
that reason, the just described third-order sequences con-
tribute terms ∝ ẑ = iγR,↓γL,↓ = (−1)n0iγL,↑γR,↑.

For πν`λ
2
` � ∆, e2/2C with ν` the normal-state den-

sity of states per spin of the `-SC lead at the Fermi en-
ergy, we compute the amplitudes of all above-mentioned
sequences perturbatively. Up to third order in the tun-
nelling amplitudes, we obtain an effective Hamiltonians
acting on the ground states of the SC leads and the TRI
TSC island. For n0 even and n0 odd, we find,

Hz,even = −(JN + ẑ Jz) cosϕ,

Hz,odd = −JN cosϕ+ ẑ J ′z sinϕ.
(9)

The Josephson couplings are Jz = Im(tN )λ2νFα/∆ and
J ′z = −Re(tN )λ2νFα/∆, where we assumed λL = λR ≡
λ, νL = νR ≡ νF , and α is a dimensionless prefactor
of order one if U ∼ ∆ [48]. Notably, Jz [J ′z] and J are
of comparable magnitude if we choose the coupling be-
tween the SC leads so that νFλ

2 & 2|tN |2/(Im(tN )α)
[νFλ

2 & 2|tN |2/(Re(tN )α)]. Also, we note that both ef-
fective Hamiltonians exhibit TRS: For Hz,even both ẑ and
cosϕ are time-reversal even, while for Hz,odd both ẑ and
sinϕ are time-reversal odd.

To measure the z-eigenvalue of the ẑ-Pauli opera-
tor, we adopt a two-step protocol: (1) First, we sepa-
rately measure the Josephson current through the nor-
mal tunnelling barrier and through the TRI TSC island
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to determine JN and J . (2) Second, we measure the
Josephson current through the entire device. For n0
even, the latter is given by I = Ic sinϕ with the criti-
cal current Ic = 2e(JN + z Jz)/~ fixing the z-eigenvalue.
For n0 odd, the current phase relation is of the form
I = Ic sin(ϕ + ϕ0). This time it is not the critical cur-
rent Ic = 2e sgn(JN )

√
(JN )2 + (J ′z)2/~ but the anoma-

lous phase shift ϕ0 = z arctan[J ′z/JN ] which fixes the
z-eigenvalue. We note that the anomalous phase shift re-
sults from the ẑ-eigenstates breaking TRS when n0 odd.

To measure the x̂-Pauli operator, we consider a de-
pleted normal tunnelling barrier, Im tN = 0 for n0 even
and Re tN = 0 for n0 odd. As before, second order
co-tunnelling events now induce a Josephson coupling
JS ∼ 2|tS |2/∆ as a result of Cooper pair tunnelling
via the spin-flip tunnelling barrier whereas fourth or-
der events mediate a Josephson coupling J via the TRI
TSC island. However, a qualitative difference to the pre-
ceding considerations arises for the third order Cooper
pair splitting sequences, see Fig. 2(b). These sequences
now demand two spin-flips, one for an electron to move
through the spin-flip tunnelling barrier and one for an
electron to move through the TRI TSC island. Conse-
quently, the third-order sequences now contribute terms
∝ x̂ = iγR,↑γL,↓ = (−1)n0iγR,↓γL,↑. Up to third order
in the tunnel couplings, the effective Hamiltonians for n0
even and n0 odd read,

Hx,even = −(JS + x̂ Jx) cosϕ,

Hx,odd = −JS cosϕ+ x̂ J ′x sinϕ.
(10)

Here, Jx = Im(tS)λ2νFα/∆ and J ′x = −Re(tS)λ2νFα/∆,
where we assumed λL = λR ≡ λ and νL = νR ≡ νF .
We further note that both effective Hamiltonian exhibit
TRS: For Hx,even both x̂ and cosϕ are time-reversal even,
while for Hx,odd both x̂ and sinϕ are time-reversal odd.
To measure the x̂-Pauli operator, we see that the effective
Hamiltonians are of the same form as those in Eq. (9).
Hence, our measurement protocol for the ẑ-Pauli opera-
tor carries over to x̂-Pauli operator measurements.

We highlight that potential errors in the x̂, ẑ-
measurements occur when both Im tN 6= 0, Im tS 6= 0
for n0 even or Re tN 6= 0, Re tS 6= 0 for n0 odd. This can
happen either if one of the tunnelling barriers is not fully
depleted, or the barrier lengths d, d′ are not appropriately
adjusted to the spin-orbit length λSO. Fortunately, this
constitutes a hardware error addressable prior to exper-
iments. In particular, the error can be made small with
a careful design of a conventional Josephson junction.

Finally, we address ŷ-measurements. These require the
tuning the charging energy of the TRI TSC to zero which
is attainable – on demand – by coupling the TRI TSC
island to a bulk SC through a gate-tunable valve [37].
Critically, even at zero charging energy the value of the
joint fermion parity in Eq. (3) remains protected as a
result of the lead SC gap. However, unlike in the case

⌧ ⇠SC

Qubit a Qubit b

FIG. 3. (Color online) Setup of two MKQs a, b coupled to two
SC leads. The width of the leads is much smaller than their
SC coherence length ξSC, thereby, permitting Cooper pair
splitting between the two MKQs. The resulting Heisenberg
interaction between the MKQs is used for an entangling gate.

of a substantial charging energy, Cooper pairs can now
tunnel in a second order process between each SC lead
and the TRI TSC island inducing a Josephson coupling
∝ ŷ [20]. Consequently, the resulting Josephson current
provides a means for measuring the ŷ eigenvalue. The
details of this measurement scheme are discussed in [20].

Universal quantum computation. For universal quan-
tum computation, the single-qubit Clifford gates need to
be supplemented by a T = exp(−iẑπ/8) gate and an
entangling gate [50]. If n0 odd [even], we obtain the T -
gate by pulsing Jz cos(ϕ) [J ′z cos(ϕ)] in Hz,even [Hz,odd]
for a duration τ so that

∫ τ
0
Jz(t

′) cos(ϕ(t′))dt′ = π/8

[
∫ τ
0
J ′z(t

′) cos(ϕ(t′))dt′ = π/8]. Due to imprecisions in
the pulsing intervals, these operations are not protected.
The need for unprotected gates is generic for Majorana
qubits [38–41]. Moreover, for the presented procedure,
phase-independent contributions – which were irrelevant
for the Josephson current – should now be included in
the effective Hamiltonians, see [48].

For an entangling gate, we consider the setup of Fig. 3
which comprises two SC leads addressing two MKQs a, b.
A local gate depletes both normal and spin-flip tunnelling
barrier, tN = tS = 0. If the width of the SC leads is much
smaller than the SC coherence length ξSC, a Cooper pair
can split between the two TRI TSC islands and entangle
the MKQs. For symmetric couplings and a ground state
charge n0 for both islands, we have computed the process
amplitudes in the weak coupling limit. An anisotropic
Heisenberg coupling results,

Hab = Jy ŷaŷb

+ [Jxz + (−1)n0+1J ′xz cosϕ](x̂ax̂b + ẑaẑb).
(11)

For the microscopic form of Jxz, J
′
xz, Jy, see [48]. The

Heisenberg interaction can be made isotropic by choos-
ing the SC phase difference such that J̃ ≡ Jy = Jxz +
(−1)n0+1J ′xz cosϕ. Pulsing the couplings for a time τ de-
fined by

∫ τ
0
J̃(t′) dt′ = π/2 then implements a

√
SWAP-

gate via the unitary time evolution operator. The lat-
ter, combined with single-qubit gates, allows for universal
quantum computing [51].

Conclusions. We introduced the “Majorana Kramers
Qubit” formed by the ground states of a TRI TSC. By
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coupling a MKQ to SC leads, single-qubit Clifford gates
are realized by qubit measurements. A T -gate and an
entangling gate are realized by pulsing Josephson cou-
plings. The MKQ shows that strong magnetic fields are
not needed for Majorana-based quantum computing.
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