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Nonpairwise multi-qubit interactions present a useful resource for quantum information proces-
sors. Their implementation would facilitate more efficient quantum simulations of molecules and
combinatorial optimization problems, and they could simplify error suppression and error correction
schemes. Here we present a superconducting circuit architecture in which a coupling module medi-
ates 2-local and 3-local interactions between three flux qubits by design. The system Hamiltonian is
estimated via multi-qubit pulse sequences that implement Ramsey-type interferometry between all
neighboring excitation manifolds in the system. The 3-local interaction is coherently tunable over
several MHz via the coupler flux biases and can be turned off, which is important for applications
in quantum annealing, analog quantum simulation, and gate-model quantum computation.

A key challenge in the development of quantum com-
puters is the implementation of resource-efficient and pre-
cisely tunable interactions between qubits [1]. To date,
most of the interactions that have been implemented in
quantum systems are pairwise in nature. While pair-
wise interactions, which are referred to as 2-local, are
sufficient to generate entanglement across a many-qubit
system [2–4], there are many cases, particularly when us-
ing limited-depth circuits, in which such interactions are
insufficient or inconvenient: multi-qubit interactions are
a prerequisite for analog quantum simulations of chem-
istry Hamiltonians and certain condensed matter physics
models [5, 6] as well as for quantum annealing for combi-
natorial optimization [7–9]. They play a key role in error
suppression schemes [10] and in parity checks for error
correction algorithms [11].

Experimental demonstrations of multi-qubit interac-
tions are scarce: a 4-local ring exchange has been ob-
served in a cold-atom system when suppressing lower-
order interactions [12], and a small, chiral 3-local inter-
action has been engineered between dynamically driven
superconducting qubits [13]. Thus far, the interactions
have been slow and not suitable for use in a scalable quan-
tum information processing architecture. In addition,
few metrological methods exist to extract all interactions
of a nonpairwise coupled system precisely [14]. However,
significant interest in multi-qubit coupling mechanisms
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persists, as evidenced by a number of proposals for tun-
able multi-qubit couplers for quantum processors [15–21].

In this work, we demonstrate tunable 3-local interac-
tions between superconducting flux qubits. The interac-
tions are mediated by a coupler circuit, which enables
static coupling without the need for dynamic driving.
This eliminates the potential for unwanted leakage out
of the computational subspace as well as the generation
of spurious sidebands which can occur during high-power
driving [22]. A multi-qubit Hamiltonian estimation tech-
nique is implemented to determine the system param-
eters: the coherence of the qubits, which is drastically
improved over typical annealing-type qubits, is exploited
to implement multi-qubit Ramsey sequences for precise
metrology of the system eigenenergies. This technique
distinguishes the 3-local coupling from each individual 2-
local interaction between the qubits. We find that the
3-local coupling strength can be tuned from an essen-
tially off bias point to a maximal strength of −6.5 MHz,
which is comparable to typical interaction rates in cer-
tain state-of-the-art digital processors [23] and could en-
able gate times of a few hundred nanoseconds. Numer-
ical simulations of the full circuit Hamiltonian elucidate
the coupling mechanism and show that it arises from in-
teractions between the coupler excited state and higher
excited states of the qubit system. The coupling is also
tunable by about 3 MHz along a flux insensitive path in
the coupler dispersion, preserving maximum qubit coher-
ence. Therefore, our work presents both a demonstration
of an elusive coupling mechanism and a solution for more
resourceful interactions in quantum processors.

We consider a system of three qubits that are pair-
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FIG. 1. Coupled multi-qubit system. (a) The qubits are
coupled to a common coupler C, which mediates a 3-qubit
interaction. Spurious terms of lower locality are included in
the model (dashed lines). (b) Superconducting circuit that
implements the desired system. It is constructed from flux
qubits that couple inductively and capacitively to the coupler
circuit. External fluxes Φ determine the local spin fields and
coupler properties. (c) Micrograph of the on-chip realization
of the circuit.

wise coupled both among themselves and to a coupler
element (see Fig. 1(a)). The qubits are modeled as spins
that are aligned or anti-aligned with the z-axis, with the
ground (excited) state given by |0〉 (|1〉). The coupler
element induces a nonpairwise 3-local interaction as well
as spurious 2-local interactions, which add to the existing
capacitive and inductive 2-local interactions. As the cou-
pler has a larger frequency gap than the qubits and is not
excited during operations, we can model the system as
an effective 3-qubit system with the following eigenbasis
Hamiltonian:

H/~ = −
3∑
i=1

ωi
2
Ẑi +

3∑
i,j=1
i<j

JijẐiẐj +K123Ẑ1Ẑ2Ẑ3, (1)

where ωi denotes the single-qubit frequencies, Jij the 2-
local and K123 the 3-local coupling strengths. The Pauli
Ẑ matrix for qubit i is given by Ẑi.

The system is implemented as a superconducting cir-
cuit that consists of three flux qubits [24–26] and a
flux tunable coupler [21, 27] (see Fig. 1(b)). The flux

qubit eigenstates are superpositions of clockwise and
counterclockwise circulating currents in the qubit loop.
Throughout this work, the qubits are operated at the
flux insensitive point, which occurs when the external
flux threading the loop is ΦQBi = 0.5 Φ0. At this flux
bias, the three qubit frequencies ∆QBi are in the range of
2.5–5.5 GHz. Before diagonalizing the system to obtain
the form of Eq. (1), each flux qubit is described by the
following Hamiltonian in the persistent-current basis:

HQBi = ε (ΦQBi) ẑi + ∆QBi x̂i, (2)

where ẑi and x̂i are the Pauli matrices specified in the
persistent-current basis and the flux insensitive point is
parameterized to ε = 0. The pairwise coupling to other
qubits and the coupler includes both inductive and ca-
pacitive interactions.

The coupler circuit was first proposed in Refs. [21, 28]
and shown experimentally to exhibit a nonlinear coupling
potential versus flux [27]. It is therefore expected to me-
diate nonpairwise interactions when inductively coupled
to a set of flux qubits. At the same time, the excited
state of the coupler can push down the qubit energy
levels and induce effective interactions in the qubit sub-
space when biased around its minimum frequency gap
of about 9 GHz. In order to predict the system cou-
plings, we numerically simulate the circuit Hamiltonian
in a mixed representation of the charge and harmonic os-
cillator bases, using a hierarchical diagonalization strat-
egy to solve the qubit and coupler Hamiltonians sepa-
rately before adding the interactions [29].

The circuit was fabricated with a high-quality
aluminum-based process patterned on a silicon substrate,
embedded in readout and control infrastructure as shown
in Fig. 1(c) [26]. The qubit loops are elongated to encom-
pass surface area within or in proximity to the left cou-
pler loop, thereby coupling the qubits inductively and
capacitively to the coupler. In two of the qubit loops,
bowtie-shaped crossovers are used to route wires over
one another and connect ground planes and twist the
loops [30]. These twists reduce the inductive coupling
between the qubits. Individual readout resonators are
capacitively coupled to the shunt capacitor of each qubit,
with a state-dependent resonator shift χi between 2–
20 MHz at the flux insensitive point and coupling rate
κi = 1–2 MHz to a shared feedline, which enables fast
readout with a 360 ns integration time. Qubit operations
are implemented by resonantly driving the qubit through
the resonator. Local flux lines permit control of the indi-
vidual loop fluxes. Flux crosstalk to non-primary loops
is suppressed to a mean of 0.5% and maximum of 3.4%
between any antenna-loop pair via an iterative calibra-
tion procedure based on Refs. [27, 31]. For details on
the procedure, we refer to the Supplementary Informa-
tion, which includes Refs. [32, 33]. The on-chip circuit
includes a fourth flux qubit that is not needed and so was
far detuned from the other transitions.

In order to estimate the Hamiltonian of the 3-qubit sys-
tem and extract its interactions, we measure the eigenen-
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ergies of the system up to a total of three excitations, one
per qubit. The transitions between eigenstates in adja-
cent excitation manifolds are shown in Fig. 2(a). Each
transition frequency is a linear combination of the Hamil-
tonian parameters in the eigenbasis of the full system.
If we are able to identify and precisely measure a set
of transitions that include each eigenstate at least once,
the Hamiltonian parameters in Eq. (1) can be deter-
mined by inverting a linear system of equations. We use
a Ramsey interferometry experiment to determine each
transition frequency [34], for example for the transition
|001〉 → |011〉 (see Fig. 2(b,c)). It is realized by applying
successive π-pulses such that the system is driven from
the ground state to the lower state of the transition of
interest, which in the example case requires the sequence

|000〉 X3(π)−→ |001〉 . (3)

The Ramsey experiment then proceeds with 20-ns long
π/2-pulses slightly detuned from the desired transition,
separated by a time delay δt and followed by a readout
pulse. The precise transition frequency is manifest in the
Ramsey fringe oscillation frequency, which is determined
from a fit to the data of a sinusoid that includes the T1
decay of the other qubits (see Fig. 2(c)). The error is
estimated as the one-sigma confidence interval for the fit
parameter [35].
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FIG. 2. Hamiltonian estimation method. (a) Energy level
diagram of the 3-qubit system. The allowed single-photon
transitions are indicated with arrows. The 3-qubit Hamilto-
nian model is fully determined by a subset of transitions (solid
black). The other transitions are used to validate the model.
(b) Multi-qubit pulse sequence that implements Ramsey in-
terferometry between arbitrary single-photon transitions. (c)
Example Ramsey interferometry data for the |001〉 → |011〉
transition. The fit is used to determine the transition fre-
quency precisely, which is determined by the sum of the drive
frequency and the extracted detuning ∆f .

It is essential for the Hamiltonian estimation method
that the computational eigenstates are correctly identi-
fied, which is generally a challenge for strongly coupled
systems. We first perform qubit spectroscopy to deter-
mine the lowest three transitions in the system, which

correspond to single-qubit excitations. In Fig. 3, we show
a qubit spectroscopy data set that is obtained by sweep-
ing the frequency of a continuous-wave tone and monitor-
ing the resonator coupled to QB3. In this measurement,
coupling between each qubit and the three resonators was
used as a resource, as it makes visible the excited states of
all three qubits as well as some higher excited states in a
single two-dimensional scan. Having identified the lowest
transitions, we proceed to find successively higher transi-
tions in the computational subspace by applying π-pulses
to lower transitions and performing Rabi spectroscopy
around the bare frequency of the respective qubit. To
exclude the mislabeling of undesired multi-photon tran-
sitions, we double the drive amplitude and check that
the Rabi oscillation frequency also doubles. In addition,
after all transitions are identified and measured via the
multi-qubit Ramsey protocol, we use a minimal subset
of transitions to predict the remaining ones. By finding
that the predictions match the measurements to within
the error estimates, we have verified that the identified
transitions connect a closed set of computational states.
We refer the reader to the Supplementary Information for
additional details about the eigenstate verification proce-
dure. The set of computational states is then used to fit a
full circuit Hamiltonian model to the spectroscopy data,
which is overlaid with that data in Fig. 3 for all states
including those that do not appear in the spectroscopy.
The model is valid around the flux insensitive point of
the qubits, which corresponds to ε = 0. In addition, it
approximately captures the second excited state energy
E002 of QB3 as well as the coupler excited state energy
Ecoup, which are faintly visible in the spectrum.

The interactions between the qubits can be tuned by
changing the flux bias point of the coupler circuit. The
flux tuning landscape of the coupler is shown in Fig. 4(a).
The dark, diagonal feature in the transmission spectrum
indicates the flux manifold along which the coupler fre-
quency gap is minimal [27]. It arises from the coupler
excited state pushing the coupler resonator down in fre-
quency via dispersive interaction. Simulations of the cir-
cuit predict maximum 3-local coupling in this regime.

We identify two distinct tuning paths for the 3-local
coupling between the qubits. The first is a vertical “on-
off” path along ΦC2 with fixed ΦC1, which enables the
maximum range of K123 including zero coupling. The 3-
local coupling is tuned from 0.8 MHz to -4.6 MHz along
this path, as seen in the visualization of the extracted
couplings in Fig. 4(b). These Hamiltonian parameters
are extracted using the estimation procedure that was
described above at each flux point. We also observe that
the local qubit fields and 2-local interactions between the
qubits are modified by the coupler. When using the cou-
pler for practical applications, additional 2-local couplers
for each qubit pair can be used to eliminate such spuri-
ous couplings and tune all Hamiltonian parameters inde-
pendently [36]. The qubit decoherence rates are largest
in the steepest region of the coupler spectrum. Higher
coherence is recovered at the point of maximum 3-local
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FIG. 3. Spectroscopy of the system at maximum coupling
around the flux insensitive point ε = 0 of the qubits. The ex-
cited states of the qubits as well as some higher-lying states
are visible. Eigenenergies obtained from a full circuit Hamil-
tonian model are overlaid. The data are acquired by strongly
driving the circuit through a shared feedline and reading out
the QB3 resonator. The vertical and horizontal lines are arti-
facts stemming from qubit-resonator hybridization and inter-
ference of the spectroscopy tones, respectively.

coupling, which is a flux insensitive point of the coupler.

The interactions in the 3-qubit system are a combina-
tion of two contributions: first, the computational states
of the isolated qubit circuits interact directly, which leads
to 2-local interactions in the effective spin model. Second,
capacitive and inductive interactions between the compu-
tational and higher excited modes of the circuit modify
both the 2-local and 3-local interactions. As a result, a
small 3-local coupling of 0.51 MHz is present even when
the coupler is turned off and the coupler excited state is
far detuned (ΦC2 = 0 Φ0). When the coupler is turned on
(ΦC2 ∼ 0.5 Φ0), its frequency gap drops to about 9.5 GHz
and the coupler excited state interacts with nearby qubit
modes. Numerical simulations of the full circuit Hamilto-
nian reveal an approximate picture of the higher-excited
state frequencies, which is detailed in the Supplementary
Information. Repulsion or attraction between the coupler
excited state and the qubit modes, most prominently the
computational states |101〉 and |110〉, modify the effective
spin Hamiltonian of the system. As a result, the coupling
strengths in the effective spin system are modified. The
tuning rate is highest when the coupler flux is close to
0.5 Φ0, which is when the coupler dispersion is steepest
and its frequency is lowest. The measured coupling pa-
rameters in Fig. 4(b) reflect this tuning behavior, which
validates our understanding of the multi-mode system.

The second tuning path follows the diagonal feature,
and it enables tunability of K123 between -3.2 MHz and
-6.5 MHz. It preserves maximum coherence of the qubits
as the coupler stays first-order insensitive to flux noise
at these fluxes. The stable coherence is evident in the

bottom panel of Fig. 4(c). In addition, all the interac-
tions tune smoothly, and the change in spurious 2-local
coupling is smaller than in the on-off tuning direction.
As a result, the coherent tuning regime is suitable for
variations of the coupling during analog simulations or
for digital gates, whereas the on-off tuning path is opti-
mal for quickly turning the coupling on or off during an
annealing protocol.
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FIG. 4. Tuning of the qubit interactions with coupler flux
bias. (a) Transmission spectrum of the coupler resonator ver-
sus the coupler fluxes. Transmission is measured at a fixed
frequency below the bare resonator frequency. (b) Tunability
of the interactions is largest along the on-off direction. Shown
are the 3-local interaction K123, the 2-local interactions Jij ,
and the mean decoherence rates Γ2. Error bars for the cou-
plings are smaller than the markers unless visible, and the
shaded area for Γ2 indicates the standard deviation between
the decoherence rates of all transitions. (c) The couplings can
also be varied along the noise insensitive diagonal feature of
the coupler spectrum, which is optimal for quantum simula-
tion.
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In conclusion, we have demonstrated a coherent quan-
tum system that exhibits tunable multi-body interac-
tions. Multi-qubit effects are of fundamental interest as
they do not arise naturally in non-relativistic quantum
systems, and they provide a resource for analog quantum
simulation, problem Hamiltonian engineering for quan-
tum annealing, and gate design for digital algorithms. In
our demonstration, the system Hamiltonian is estimated
via digital multi-qubit pulse sequences that precisely de-
termine the frequencies of all computational eigenstates,
enabling the distinct identification of 3-local interactions
in the presence of lower-order couplings. We study two
different tuning regimes for the 3-local coupling and iden-
tify interactions between higher-excited states of the cir-
cuit as the source of the effective interaction. The coher-
ence times of the qubits, which we expect to be limited
by flux noise from on-chip sources [37], can be improved
by reducing the loop size of the flux qubits and coupler
as well as by 3D integration [30]. The required coupling
can then be boosted by connecting the circuit elements
galvanically rather than by a mutual inductance. This
should greatly improve lifetimes across the circuit as the
coupling mechanism itself does not seem to intrinsically
limit qubit lifetimes, as shown in (see Supplementary In-
formation). We highlight that the coupling scheme is
compatible with other qubit modalities such as the trans-
mon [38] or fluxonium qubit [39] and thus could serve

as an efficient resource for gate-model quantum applica-
tions. In particular, either the longer coherence of these
qubits or a larger interaction strength stemming from gal-
vanic coupling could enable 3-qubit gates that are faster
than the coherence time. We also note that the coherence
times demonstrated here are already sufficient for quan-
tum annealing applications and merely require the use of
stronger multi-qubit interactions. Methods of strength-
ening this coupling even further have been investigated
previously and could be implemented in future work [20].
The studied superconducting circuit includes an addi-
tional flux qubit, which can be used to demonstrate 4-
body interactions. Moreover, the coupling scheme is ex-
tensible to even higher orders of interactions by adding
additional loops to the coupler circuit [27].
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[7] R. Martoňák, G. E. Santoro, and E. Tosatti, “Quantum
annealing of the traveling-salesman problem,” Physical
Review E 70 (2004), 10.1103/physreve.70.057701.

[8] G. E. Santoro and E. Tosatti, “Optimization using quan-
tum mechanics: quantum annealing through adiabatic

evolution,” Journal of Physics A: Mathematical and Gen-
eral 39, R393 (2006).

[9] P. Hauke, H. G. Katzgraber, W. Lechner, H. Nishimori,
and W. D. Oliver, “Perspectives of quantum annealing:
Methods and implementations,” Reports on Progress in
Physics 83, 054401 (2020).

[10] D. Bacon, “Operator quantum error-correcting subsys-
tems for self-correcting quantum memories,” Physical
Review A 73, 012340 (2006).

[11] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N.
Cleland, “Surface codes: Towards practical large-scale
quantum computation,” Physical Review A 86, 032324
(2012).

[12] H.-N. Dai, B. Yang, A. Reingruber, H. Sun, X.-F. Xu,
Y.-A. Chen, Z.-S. Yuan, and J.-W. Pan, “Four-body
ring-exchange interactions and anyonic statistics within
a minimal toric-code hamiltonian,” Nature Physics 13,
1195 (2017).

[13] W. Liu, W. Feng, W. Ren, D.-W. Wang, and H. Wang,
“Synthesizing three-body interaction of spin chirality
with superconducting qubits,” Applied Physics Letters
116, 114001 (2020).

[14] T. R. Bergamaschi, T. Menke, W. P. Banner,
A. Di Paolo, S. J. Weber, C. F. Hirjibehedin, A. J.
Kerman, and W. D. Oliver, “Distinguishing multi-spin
interactions from lower-order effects,” arXiv preprint
arXiv:2111.12717 (2021).

[15] A. Mezzacapo, L. Lamata, S. Filipp, and E. Solano,
“Many-body interactions with tunable-coupling trans-
mon qubits,” Physical Review Letters 113 (2014),

http://dx.doi.org/ 10.1103/physreve.70.057701
http://dx.doi.org/ 10.1103/physreve.70.057701
http://dx.doi.org/10.1088/0305-4470/39/36/r01
http://dx.doi.org/10.1088/0305-4470/39/36/r01
http://dx.doi.org/10.1103/physrevlett.113.050501


6

10.1103/physrevlett.113.050501.
[16] M. Hafezi, P. Adhikari, and J. M. Taylor, “Engineering

three-body interaction and Pfaffian states in circuit QED
systems,” Physical Review B 90 (2014), 10.1103/phys-
revb.90.060503.

[17] N. Chancellor, S. Zohren, and P. A. Warburton, “Cir-
cuit design for multi-body interactions in superconduct-
ing quantum annealing systems with applications to a
scalable architecture,” npj Quantum Information 3, 1
(2017).

[18] D. Kafri, C. Quintana, Y. Chen, A. Shabani, J. M. Mar-
tinis, and H. Neven, “Tunable inductive coupling of su-
perconducting qubits in the strongly nonlinear regime,”
Phys. Rev. A 95, 052333 (2017).

[19] M. Schöndorf and F. Wilhelm, “Nonpairwise interac-
tions induced by virtual transitions in four coupled
artificial atoms,” Physical Review Applied 12 (2019),
10.1103/physrevapplied.12.064026.

[20] D. Melanson, A. J. Martinez, S. Bedkihal, and A. Lu-
pascu, “Tunable three-body coupler for superconducting
flux qubits,” arXiv preprint arXiv:1909.02091 (2019).
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