
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Absorption and Transport Effects Induced in Plasmas by the
Interaction of Electrons with Laser Speckles

M. Sherlock and P. Michel
Phys. Rev. Lett. 129, 215001 — Published 16 November 2022

DOI: 10.1103/PhysRevLett.129.215001

https://dx.doi.org/10.1103/PhysRevLett.129.215001


Absorption and transport effects induced in plasmas by the interaction of electrons

with laser speckles

M. Sherlock and P. Michel
Lawrence Livermore National Laboratory, California 94551, United States.

(Dated: October 4, 2022)

We show that the ponderomotive force associated with laser speckles can scatter electrons in a
laser-produced plasma in a manner similar to Coulomb scattering. Analytic expressions for the
effective collision rates are given. The electron-speckle collisions become important at high laser
intensity or during filamentation, affecting both long- and short- pulse laser intensity regimes. As
an example, we find the effective collision rate in the laser-overlap region of hohlraums on the
National Ignition Facility is expected to exceed the Coulomb collision rate by an order of magni-
tude, leading to a fundamental change to the electron transport properties. At the high intensities
characteristic of short-pulse laser-plasma interactions (I & 10

17
Wcm

−2), the scattering is strong
enough to cause direct absorption of laser energy, generating hot electrons with energy scaling as

E ≈ 1.44
(

I/1018Wcm
−2

)

1/2
MeV, close to experimentally observed results.

PACS numbers: PACS numbers.

Intense lasers are used in the laboratory to gener-
ate plasmas as a route to understanding the physics of
high energy-density systems, with applications ranging
from Inertial Confinement Fusion (ICF) and particle ac-
celeration to laboratory studies of astrophysics. The
dominant electron transport processes that describe the
flow of thermal energy and magnetic field in the plasma
are mediated by Coulomb collisions between electrons
and ions [1]. In this paper we show that electrons can
also undergo scattering with the laser electromagnetic
field, which introduces an additional collisionality to the
plasma and modifies the transport properties. Modern
high-power lasers use smoothing techniques, such as Ran-
dom Phase Plates (RPP) [2] and Smoothing by Spectral
Dispersion (SSD) [3], to produce smooth intensity profiles
at large spatial and temporal scales (relative to hydro-
dynamic scales), thereby limiting the growth of hydro-
dynamic instabilities. However, laser intensity profiles
still exhibit small-scale time-dependent intensity non-
uniformities (speckles) whose size and lifetime is deter-
mined by the smoothing technique, typically character-
ized by spatial scales of a few microns and timescales of
a few picoseconds. Each speckle exerts a ponderomotive
force on the electrons which acts to scatter them. The
electrostatic field induced in the plasma by the speckles
acts in a similar way and may cause additional scatter-
ing, depending on the circumstances. The cumulative
effect of electrons interacting with multiple speckles re-
sults in loss of electron directed momentum. In some
important applications, such as the laser-overlap region
in ICF hohlraum plasmas, electron-speckle collisions can
dominate over Coulomb collisions. Fig.1 shows a con-
ceptual illustration of this process for a simple two-beam
hohlraum, with an example stochastic electron trajectory
represented by the cyan curve (labelled “e”). In this Let-
ter, we derive the rate of directed momentum loss and
show how it affects electron transport and laser absorp-
tion. Applying the theory to the region of crossing beams
on the National Ignition Facility (NIF) laser, we estimate

a reduction in the electron thermal conductivity by a fac-
tor of ≈ 20. Understanding the plasma conditions in the
laser overlap region in hohlraums is important because
this region determines the energy transfer between beams
by the Cross Beam Energy Transfer effect [4, 5, 7] and the
growth rates for laser filamentation [8, 9], which in turn
determine the symmetry of the radiation drive onto the
capsule. The plasma conditions are primarily determined
by the inverse bremsstrahlung absorption (a process that
is relatively well understood, see e.g. [10]) and thermal
transport in the kinetic regime [11, 12]. Given the dom-
inance of electron speckle collisions, we make the case
that these interactions should also be considered for a
complete description of heat flow.

If the electromagnetic wave is speckled, the Lawson-
Woodward theorem [13] no longer applies and when the
intensity approaches relativistic (I & 4 × 1017Wcm−2)
electrons can gain energy from the laser directly, with-
out the involvement of space-charge fields. This ef-
fect can be motivated phenomenologically by making
an analogy with inverse-bremsstrahlung absorption [10],
in which the average thermal momentum of electrons,
〈

∆p2
〉

is related to the oscillatory momentum posc via

d
〈

∆p2
〉

/dt ≈ υpp
2
osc, where υp is the effective collision

rate for electrons interacting with speckles. As with in-
verse bremsstrahlung, electrons gain energy because of
the change in phase induced by the collision. As a result
of the effective collisionality introduced by speckles, the
accelerated electron spectrum is expected to be quasi-
thermal, as observed in experiments [14–18].

To derive the electron-speckle collision rates, we use an
analogy with electron-ion Coulomb scattering, replacing
the ions with speckles. A laser speckle with intensity I
encountered by an electron moving in the x-y plane is
approximated by an intensity profile with ponderomotive

potential of the form ϕp = 1
4mv2osc

(

1− x2+y2

R2

)

, where

vosc = eE0/mω0 is the electron oscillatory velocity in

the laser field of frequency ω0, E0 =
√

2I/cε0 is the
peak laser electric field strength and R is the speckle
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Figure 1. A simple hohlraum illuminated by two speckled
laser beams (with incident k-vectors k1 and k2). Speckles
approximated with cylindrical (“cyl.”) and spherical (“sph.”)
symmetry are shown. The colorbar corresponds to the laser
intensity (normalized to the average) and the cyan curve (la-
belled “e”) shows an example electron trajectory.

radius. One can consider a correction factor of order
unity to this potential to account for the electrostatic
response of the plasma to the SSD, and kinetic effects
(discussed below). The equation of motion of an electron
in this potential is md2r/dt2 = −∇ϕp. With reference
to Fig.6, an electron incident on the speckle with
impact parameter b = y (0) at x (0) = x0 = −

√
R2 − b2

and initial velocity v in the x-direction has solu-
tions x (t) = 1

2e
ωt (v/ω − x0) − 1

2e
−ωt (v/ω + x0)

and y (t) = 1
2b (e

ωt + e−ωt), where ω = vosc/
√
2R.

The electron is scattered by the speckle through
angle θ, returning to the initial radius R at
time tR = ln (W+/W−) /

(

R/
√
2vosc

)

, where

W± = Rv2osc ± 2
√

2 (R2 − b2)voscv + 2Rv2. The angle
θ can be found from the electron velocity at t = tR:
θ = arctan

{

2bx0v
2
osc/

(

2b2v2osc +
(

2v2 − v2osc
)

R2
)}

.
Since the scattering angle is known, we can calculate
the directed momentum-loss rate [19] νp defined via the
equation 〈∆vx/∆t〉b = −νpvx, where ∆vx is the change
in the electron velocity along its inital direction (vx) in
time ∆t. The angular parentheses 〈...〉b denote an aver-
age over all impact parameters. The directed momentum
loss of an electron with impact parameter b, after the
interaction with a single speckle of intensity I ∝ v2osc and
radius R, is m∆vx = mvx (1− cos θ). The integration
over the impact parameter depends on the speckle shape
and we consider two limits: when the beam is tightly
focussed (corresponding to beam F-number F = 1)
or multiple beams overlap, we treat the speckles as
spherically symmetric, with rates denoted by subscript
“s” (νp,s etc), and when the beam is straight (F = ∞),
speckles are treated as potentials with cylindrical sym-
metry, with rates denoted by subscript “c”. Examples of
cylindrical and spherical speckles are indicated in Fig.
1. In the case of cylindrical speckles, only the electrons
moving perpendicular to the beam direction are heavily

scattered, but in the case of spherical spckles the
scattering is isotropic. The case of spherical scatterers
is deferred to the Supplemental Material [20], here we
focus on the cyclindrical case. In time ∆t, cylindrical
scatterers with number nA per unit area will undergo

velocity change ∆vx =
∫ R

0
vx (1− cos θ)nAv∆tdb.

Carrying out the integral gives νp,c (w, vosc) = 24w3 −
4w −

√
2
(

12w4 − 4w2 − 1
)

ln Λ (w)nARvosc/
(

32w2
)

,

where Λ =
(

2w2 + 2
√
2w + 1

)

/
(

2w2 − 2
√
2w + 1

)

, and
w = vx/vosc. This expression for νp,c can be simplified by
carrying out a fit to a rational approximant. We choose
a fitting function of the form g (w) = p1w/

(

1 + p2w
4
)

,
which is the simplest function exhibiting the same
dependence on w in the small (w ≪ 1) and large
(w ≫ 1) limits. The coefficients pi are found by
equating the coefficients of the first-order Taylor (in
w) and asymptotic (in 1/w) expansions of νp,c (w, vosc)
with the coefficients of the same expansions of g (w),
giving ν̃p,c (w, vosc) ≃ 4

3nARvoscw/
(

1 + 20w4
)

as an
approximate form for νp,c. This agrees well with the full
expression for νp,c in the range 0.15 & w & 1.

In the Appendix we average ν̃p,c over the speckle in-
tensity distribution giving

ν̃p,c (v) =
4

3πR

v

1 + ac (v/v0)
4 (1)

where ac ≈ 1.1. In order for multiple scattering to
apply, we require the mean-free-path of electrons λmfp =
v/ν̃p,c/s (v) to exceed the speckle size. In most regimes of
interest for transport, v ≫ v0, and in this limit λmfp =
3πR
4 ac/s (v/v0)

4 ≫ R. Eq. 1 can be further averaged over
a Maxwellian velocity distribution (see the Appendix)
and expressed in practical units:

νp,c,M ≈ I215λ
4
3R

−1
µmT

−3/2
keV ln

(

46TkeV I
−1
15 λ−2

3

)

4.3×109s−1

(2)
where I15 is the average laser intensity in units of

1015Wcm−2, λ3 the laser wavelength in units of 0.351µm,
TkeV the electron temperature in units of keV and Rµm

the speckle radius in µm.
At intensities of ∼ 1015Wcm−2, the effective colli-

sion rates are relatively weak, but some important ap-
plications in ICF involve high intensities. For example,
taking conditions representative of the Laser Entrance
Hole (LEH) region in hohlraums on the NIF laser (ne ≈
0.05nc, Te ≈ 5keV, Z ≈ 2) [11], where 96 overlapping
beams [21] generate speckles at the wavelength scale λ0 =
0.351µm, with average intensity ≈ 2.4× 1016Wcm−2, we
find νp,s,M ≈ 1 × 1012s−1. This estimate is over an
order-of-magnitude greater than the Coulomb collision
rate (≈ 4.5 × 1010s−1), indicating electron-speckle colli-
sions may be the dominant scattering mechanism. The
collision rate relative to the Coulomb rate ( νp,c,M/υei)
is plotted as a function of intensity in Fig.2 for the NIF
conditions and a typical scenario relevant to the OMEGA
laser (ne ≈ 0.1nc, Te ≈ 3keV, Z ≈ 5.3, R ≈ 3µm).
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Figure 2. The speckle collision rate relative to the Coulomb
rate ( νp,c,M/υei) as a function of laser intensity. The inten-
sity in the laser overlap region on the NIF is indicated by the
asterisk (*). The dashed red line corresponds to the same
conditions as the red line but accounts for thermal filamenta-
tion.

When the ponderomotive force acts on the plasma, an
electrostatic field is also generated, and we consider now
the characteristics of this field. In the case of a time-
independent intensity, the electrostatic field can be de-
termined by the force balance between the ponderomo-
tive force F p = −e2/

(

4mω2
0

)

∇ |E0 (r)|2 and the plasma
pressure gradient −Te∇ne/ne, where ne is the electron
number density, Te is the electron temperature (assumed
uniform), e is the electron charge, m is the electron mass,
ω0 is the laser frequency, E0 the electric field of the laser
and I the intensity. The velocity-averaged electron equa-
tion of motion is medue/dt = −eE − Te∇ne/ne + F p,
where E is the electrostatic field and ue is the aver-
age electron velocity. The effect of the laser field has
been averaged over the laser cycle and is included only
in the term F p, while the field E results from charge
separation. The ions reach equilibrium by balancing
the induced electric field with the ion pressure gradi-
ent: midui/dt = ZeE − Ti∇ni/ni, where Z is the ion
charge. In equilibrium these equations can be com-
bined, assuming quasineutrality ne ≃ Zni, to show
E = (1 + ZTe/Ti)

−1
F p/e, i.e. the speckle induces a field

with spatial characteristics closely related to its intensity
profile. However, this analysis ignores time-dependence
associated with the SSD. In the Supplemental Material
[22] we describe Vlasov-Fokker-Planck simulations that
account for this effect, resulting in a similar scaling for
the induced field: E ≈ αF p/e, where α is a parame-
ter, determined by the simulations, lying in the range
0.5 . α . 2. The field E therefore adds corrections of
order α to the theory.

The effect on electron transport can be estimated from
the v ≫ v0 limit of Eq.1, ν̃p,s (v) ≈ 4v40/

(

as3πRv3
)

,
which represents the directed momentum loss rate of the
electons involved in determining most transport coeffi-
cients of interest (vt . v . 5vt), including the important
effects of thermal conductivity and Nernst convection [1].

Low velocity effects such as electron-ion thermal equi-
libration and collisional damping of ion acoustic waves
are unaffected due to the dominance of Coulomb scatter-
ing. Since this form for ν̃p,s has the same dependence on
velocity as electron-ion Coulomb scattering (v−3), the
effect of electron scattering with spherical speckles can
be approximately accounted for by making the replace-
ment νei → νei + νp,s,M in the coefficients, where νei is
the Maxwellian-averaged electron-ion Coulomb collision
rate and νp,s,M is given in the Supplemental Material
[23]. For example, the thermal conductivity, κ ∝ 1/νei,
is straightforwardly replaced with κ ∝ 1/ (νei + νp,s,M ).
Note that for cylindrical speckles, the thermal conductiv-
ity is only affected in the direction perpendicular to the
laser k-vector (k), so only the perpendicular conductivity
κ⊥ is modified: q = κ⊥k× (∇Te × k). According to the
above discussion, we would therefore expect a reduction
in the effective thermal conductivity in the NIF Laser
Entrance Hole region by a factor of ≈ 20.

We have so far neglected processes that can signifi-
cantly alter the characteristics of the speckles and in-
duced fields, notably the refraction of speckled light at
oblique incidence [24] and thermal filamentation [8, 25].
The latter effect can enhance the scattering rate substan-
tially. The ponderomotively-induced electrostatic field
(E ≈ Fp/e) associated with an average laser intensity of
1015Wcm−2 and speckles of radius R0 = 3µm has RMS
magnitude ≈ 107Vm−1, which is the field strength ex-
pected in the absence of filamentation. The field asso-
ciated with density perturbations driven by filamenta-
tion is |E| = −∇Pe/ene ≈ (δne/ne)Te/Re, where R is
the speckle radius after filamentation. Considering the
typical density perturbation associated with a speckle
(δne/ne ≈ 0.1) is approximately doubled during filamen-
tation (δne/ne ≈ 0.2) so that R ≈ R0/2, and assuming
the number of filaments approximately doubles as the
beam breaks up, results in an increase in the RMS field
strength by a factor of ≈ 25. The electron-speckle col-
lision rate (∝ E2/R) therefore increases by a factor of
≈ 103, which makes it comparable to the Coulomb col-
lision rate for a CH plasma at I = 1015Wcm−2. The
dashed red line in Fig.2 corresponds to the OMEGA laser
conditions but with the inclusion of this estimate for the
enhancement caused by filamentation.

Speckles are also a common feature of laser-matter in-
teractions at relativistic intensities [27, 28] and in many
ways they are unavoidable due to the difficulty of main-
taining perfectly smooth targets and beams throughout
the pulse. They invalidate the plane wave approxima-
tion, but their effect has until now been unexplored the-
oretically in this regime. Using the relativistic formula
derived in the Appendix for the case of λ0 = 1µm, I =
1018Wcm−2 and an electron with momentum p = mc, we
find a collision time of just ν−1

p,s,rel ≈ 8fs, which is compa-
rable to the laser period. The large magnitude of this col-
lisionality indicates the perturbations induced by speck-
les on the electron trajectory are non-negligible. Particle-
In-Cell simulations of electron acceleration in the under-
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Figure 3. The electric field (Ex) that results from the inter-
ference of an incident Gaussian plane wave (moving in the
z-direction) reflecting off a non-uniform critical surface.

Figure 4. (a) Average electron energy as a function of time and
(b) final electron energy spectrum for two interfering 300fs

pulses with peak intensity 4× 10
17Wcm−2 and λ0 = 1µm.

dense plasma frequently show energetic (E . 1MeV)
electrons undergoing stochastic motion in the corona
(see, e.g. [16]) and this behavior is consistent with our
8fs estimate for the collision time. The collisions have
the undesirable effect of increasing the electron beam di-
vergence angle, which is a key metric for most applica-
tions (e.g. x-ray backlighting) and a crucial parameter
in the Fast Ignition approach to inertial fusion [29]. The
decreased scattering rate of the higher energy electrons
predicted by our theory may explain why higher energy
electrons are emitted with reduced divergence angle [30].

To study electron energy gain at relativistic intensi-
ties, we consider a Gaussian plane wave reflecting off a
non-uniform critical surface, which generates a speckled
reflected wave. The electric field (Ex) in this scenario
is plotted in Fig. 3. The wavelength is λ0 = 1µm, the
peak incident intensity is 4×1017Wcm−2, and the critical
surface is assumed to generate a speckled beam (mov-
ing in the -z direction) with Gaussian statistics whose
mean radius is 1µm. For illustrative purposes, the Gaus-
sian envelope on each beam in Fig. 3 has a relatively
short full-width half-max length of 10µm, and the en-
velopes on the incident and reflected waves are centered
on z = −5µm and z = 5µm, respectively. The oscilla-
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Figure 5. Hot electron energy scaling with intensity from
simulations with 300fs pulses (black dots). The ponderomo-
tive scaling is shown in red, alongside our analytic expression

E ≈ 1.44
(

I/1018Wcm
−2

)1/2
MeV in blue and recent experi-

ments (green).

tory energy of electrons in the incident plane wave can be
thermalized by the interaction with the reflected, speck-
led beam, resulting in a non-adiabatic interaction of the
electrons with the beams. The speckles can be thought
of as introducing a stochastic force, and the presence of
even small stochastic forces is well known to lead to en-
ergy transfer at high intensity [31]. Although the case
of two plane waves interacting does lead to absorption
due to the non-linearity of the interaction [32] at inten-
sities & 1018Wcm−2, accounting for speckles leads to
much greater energy gains even at relatively low intensity
(& 1017Wcm−2). We have studied this process numeri-
cally by integrating the electron equations of motion in
the laser interference fields. We do not include the elec-
trostatic field generated by the plasma in order to clearly
demonstrate large energy gain can be produced by the
laser fields alone. An example of the energy gained is
shown in Fig.4(a) for the case of two Gaussian pulses
each with FWHM pulse length of 300fs and intensity
I = 4 × 1017Wcm−2, initially separated by a large dis-
tance, interacting with electrons initially located at the
midpoint of the two beams with temperature 16keV. For
comparison, the case of two uniform beams is also shown.
The average energy gained by the electrons is ≈ 0.22MeV
for the case with speckles, significantly above the pon-
deromotive scaling [27] (Tpond ≈ 0.07MeV) and a factor
of ≈ 6 greater than the case with uniform beams. Quasi-
thermal electron energy spectra are generated, shown in
Fig.4(b) with a comparison to Tpond. In Fig. 5 we show
the hot electron energy scaling from these simulations
for a range of intensities, along with recent experimental
measurements at relatively low intensity [16, 17].

In order for electrons to gain energy from a pump
wave via electron-speckle scattering, the deflection has
to occur on timescales comparable to or shorter than
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the oscillation period in the pump [10]. This becomes
the case at relativistic intensities for small scale speckles
(R ≈ λ0). The thermal energy gain scaling can be es-
timated by considering the simplified scenario in which
an electron is moving in the direction of the pump, so
that the pump oscillation time is long compared with
the speckle interaction time and the collision can be as-
sumed to be instantaneous. We decompose the electron
momentum w into components w = p + u, where p

is the thermal momentum and u is the oscillatory mo-
mentum in the pump, and consider the square change
in thermal momentum ∆

(

p2
)

in time ∆t when scatter-

ing through angle θ: ∆
(

p2
)

/∆t = 2u.w (1− cos θ) −
uw sin θ cosφ sin θ′, where θ′ is the angle between u and
w and φ is the azimuthal angle. The term in φ can be
neglected due to symmetry. The scattering angle is ex-
pressed in terms of the impact parameter θ (b) and as
above we integrate over all impact parameters, assuming

v ≈ c, ∆
(

p2
)

/∆t = 2u.w
∫ R

0
(1− cos θ (b))ns2πvbdb =

2
(

u2 + 2up cosχ
)

nsI1v, where ns =
(

4πR3/3
)−1

is the
density of speckles, χ is the angle between u and p, and

I1 =
∫ R

0
(1− cos θ (b)) 2πbdb , follows a similar form to

the non-relativistic case I1 ≈ πR2/
(

1 + 12v̄4
)

, with v̄2 ≈
w/uosc and uosc = e

√

2I/cε0/ω0 the peak oscillatory mo-
mentum in the speckle at intensity I (assumed equal to
the pump intensity). Averaging over all solid angles gives
∆
(

p2
)

/∆t = 2u2nsI1c. For electrons with initially low

energy w/uosc ≪ 1, the cross section is I1 ≈ πR2, i.e.
the speckles are effective scatterers. In the time ∆t, as-
sumed short in comparison to the relatively long oscilla-
tory time in a relativistic pump, the oscillatory momen-
tum gained from the pump averaged over all laser phases
is u ≈ eE0∆t/2 (see Appendix), where E0 =

√

2I/cε0
is the peak electric field of the pump. Considering a de-
flection timescale equal to the speckle crossing time R/c,
and a speckle size R = λ0, the thermal energy gain is
E ≈

√

∆(p2)c =
√

3/2πa0mc2 per interaction, where
a0 = eE0/mcω0 is the normalized vector potential of
the pump. Once the energy gained is of this order, the
speckle cross section decreases rapidly and the heating is
cut off. Expressed in terms of intensity for λ0 = 1µm,

the energy gained is E ≈ 1.44
(

I/1018Wcm−2
)1/2

MeV,
which is close to the well known relativistic scaling [33]

E ≈ 1.5
(

I/1018Wcm−2
)1/2

MeV observed in a variety
of simulations and experiments [14–18]. The stochastic
nature of the acceleration is expected to give rise to quasi-
thermal electron spectra, and in Fig. 5 we show our an-
alytic scaling alongside the simulation results, with good
agreement in the relativistic regime. Electron-speckle
scattering therefore offers an alternative explanation for
the hot electon temperatures observed at high intensity.

In summary, we have shown that the ponderomotive
force generated by laser speckles can scatter electrons in
much the same way as electron-ion Coulomb scattering.
The scattering rate, ν ∝ I2/R, can exceed the Coulomb
scattering rate in some important laser-plasma interac-

tion applications and this will lead to significant correc-
tions to plasma transport properties. At intensities ap-
proaching relativistic, I & 1017(λ0/1µm)2Wcm−2, elec-
tron scattering in speckles results in large energy gains
with characteristic hot electron temperature scaling as

E ≈ 1.44
(

I/1018Wcm−2
)1/2

MeV.
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APPENDIX ON THE AVERAGE OVER THE

SPECKLE INTENSITY DISTRIBUTION

The analysis in the main text considers electrons in-
teracting with speckles of fixed intensity, but in reality
a beam contains a statistical distribution of intensities,
which can be described by a probability (P ) density func-
tion dP/du = p (u), where u = I/I0 is the speckle inten-
sity normalized to the beam average I0. We use a slightly
modified form of Garnier’s expression [6] for the prob-
ability density: p (u) = Aeuc−u

(

20u2 − 36u+ 3
)

/2u1/2

with
∫∞

uc
p (u) du = 1 and A =

(

3
(

7
√
66 + 57

))−1/2
. The

modification simply excludes negative values of the prob-
ability, which only occur at low intensities u < uc =
(

9 +
√
66
)

/10 ≈ 1.7. This introduces negligible error
in our calculations because the higher intensity speck-
les, in the range 2 . u . 7, dominate the scattering.
When the number density of speckles is expressed as a
probability, the rates are given by integrals over u in the
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form υ (v) =
∫

G (v, u) p (u) du because the number den-
sity of speckles within du of u is dnA = A−1

sp p (u) du,

with Asp = πR2 the speckle cross-sectional area. To
carry out this integral, the approximate rates ν̃i are first
expressed in terms of u and w by using vosc = u1/2v0
and w = v̄/u1/2, where v0 is the value of vosc when
u = 1 (i.e. v0 is the oscillatory velocity when I = I0)
and v̄ = v/v0. The intensity-weighted momentum-loss

collision rate is given by ν̃p,c (v̄) =
∫ ν̃p,c(v̄,u)

nA
dnA =

∫∞

uc
ν̃p,c (v̄, u) p (u) du, where the function in the inte-

grand f (v̄, u) = ν̃p,c (v̄, u) p (u) is

f (v̄, u) =
2Aeuc−uu3/2

(

20u2 − 36u+ 3
)

v̄v0A
−1
sp R

3 (20v̄4 + u2)
(3)

This function can be approximated in the low velocity
“L” (v̄ ≪ 1) and high velocity “H” (v̄ ≫ 1) limits by re-
placing the denominator term with 20v̄4 + u2 ≈ u2 and
20v̄4 + u2 ≈ 20v̄4, respectively, giving functions in both
limits: fL = 2Aeuc−u

(

20u2 − 36u+ 3
)

v̄v0A
−1
sp R/3u1/2

and fH = Aeuc−uu3/2
(

20u2 − 36u+ 3
)

v̄−3v0A
−1
sp R/30.

Carrying out the integrals of these approximate func-
tions gives the total collision rate in the low (“L”) and
high (“H”) velocity limits: ν̃p,c (v̄)L = (4/3) v̄v0 and

ν̃p,c (v̄)H = (Bc/1500) v̄
−3v40 where Bc = 308

√
66 −

793 + 220euc

√

5
(

57− 7
√
66
)

πErfc (uc) and Erfc (x) is

the complementary error function. Since the approxi-
mations ν̃p,c (v̄)L and ν̃p,c (v̄)H have the same functional
form w.r.t. v̄ as does ν̃p,c (w) w.r.t. w, we can use the
same technique as shown in the main text to combine
both limits in a single approximate function again of the
form g (v̄). This yields:

ν̃p,c (v) =
4

3πR

v

1 + ac (v/v0)
4 (4)

where ac = 2000/(308
√
66 − 793 +

220euc

√

5
(

57− 7
√
66
)

πErfc (uc) − 793) ≈ 1.1. We

have numerically verified good accuracy of Eq.4 in the
v ≪ 1 and v ≫ 1 limits.

A guide to the parameters used in the main text to
calculate the scattering angle is shown in Fig.6.

APPENDIX ON THE AVERAGE OVER A

MAXWELLIAN

The expression Eq. 1 can be aver-
aged over a Maxwellian velocity distri-

bution 4π
(

2πv2t
)−3/2

exp
(

−v2/2v2t
)

, where

vt =
√

Te/me to obtain the thermal collision

rate νp,c,M =
√
2HKv40/

(

3π3/2acRv3t
)

, where
HK = (π − 2Si (K)) sin (K) − 2Ci (K) cos (K),
K = v20/

(

2
√
acv

2
t

)

, the sine integral is

Figure 6. Schematic diagram showing the key parameters
in the analytic treatment of an electron interacting with a
speckle of radius R.

Si (x) =
∫ x

0 t−1 sin (t) dt and the cosine integral is

Ci (x) =
∫ x

0
t−1 cos (t) dt . In most experimental

regimes of interest, K ≪ 1 so this can be simplified to
νp,c,M ≈ 2

√
2 ln

(

K−1
)

v40/
(

3π3/2acRv3t
)

. Note that this
is a similar form to the Coulomb scattering rate, but
with the replacement Z2ni ln Λ → I2R−1 lnK−1.

APPENDIX ON RELATIVISTIC THEORY

In the ultra-relativistic limit (Lorentz factor γ ≫ 1),

the ponderomotive force is F p = −
(

c/
√
2
)

∇posc, where
posc = eE0 (r) /ω0 is the oscillatory momentum [34].
This allows us to write the ultra-relativistic pondero-
motive potential as ϕp = poscc/

√
2. The equation

of motion of an electron interacting with this poten-
tial is therefore dp/dt = −∇ϕp, with p = γmdr/dt.
We make the simplifying assumption, common in rel-
ativistic mechanics, that the Lorentz factor is approxi-
mately constant during the interaction γ ≈ γ0, so that
d2r/dt2 = −

(

c/
√
2mγ0

)

∇posc. We again assume a
parabolic potential profile, and if we define a new ve-

locity variable uosc =
(

4posc,0c/
√
2mγ0

)1/2
, the equation

of motion becomes identical to the non-relativistic case
with the replacement vosc → uosc. The solutions are
then x (t) = − 1

2 (e
ωt + e−ωt) x0 + 1

2 (e
ωt − e−ωt) px0Rω

posc,0c

and y (t) = 1
2b (e

ωt + e−ωt), where ω = 21/4

R

√

posc,0c
γ0m

.

We have verified that the assumption γ ≈ γ0 is good
by comparing this analytic solution for the trajectory
to fully-relativistic numerical calculations. Following
along the non-relativistic derivation, but with these new
variables, we find ν̃p,s ≃ πR2nuoscv̄/

(

1 + 12v̄4
)

, where
v̄ = v/uosc, which characterizes the electron momen-
tum relative to the oscillatory momentum, since v̄2 =
(v/uosc)

2
=

(√
2/4

)

(v/c) (px0/posc,0) ≈ px0/posc,0. The
integral over the intensity distribution is similar to the
non-relativistic case except that we take into account the
fact that the scaling with u is now uosc = u1/4u0 and
w = v̄/u1/4. These changes lead to the relativistic colli-
sion rate
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ν̃p,s,rel (v) =
3

4R

v

1 + as (v/u0)
4 (5)

with as ≈ 3.0.

The solutions to the equations of motion of an electron
in a plane electromagnetic wave have been obtained by
many authors in terms of the proper time (e.g. [35, 36]).
To obtain useable expressions for the electron momen-
tum u, valid for times short compared to the oscillation
period, we Taylor expand Yang’s [36] expressions in time
to first order, which results in:

ux ≃ ux0 − a0∆c (6)

uz ≃ 1 + u2
x0 − 2a0ux0∆c

2α0
− α0

2
(7)

where ux is the momentum in the direction of laser po-
larization in units of mc (initially = ux0), uz is the mo-
mentum in the direction of laser propagation in units of
mc (initially = uz0), α0 = γ0 − uz0, γ0 =

√

1 + u2
x + u2

z,
∆c = t (ω0 − kvz0) sin (kvz0), vz0 = uz0/γ0, a0 =
eE0/mcω0 is the normalized wave amplitude and k is
the wavenumber. Note that here the symbol u refers to
the normalized momentum. The square change in mo-
mentum ∆

(

u2
)

= (ux − ux0)
2
+ (uz − uz0)

2
after time t

is

∆
(

u2
)

= a20t
2 (ω0 − kvz0)

2
sin2 (kvz0) +

{

1 + u2
x0 − 2ux0a0t (ω0 − kvz0) sin (kvz0)

2α0
− α0

2
− uz0

}2

(8)

Assuming the electron momentum distribution func-
tion is initially isotropic in the x-z plane, we adopt a po-
lar coordinate system u0 =

√

u2
x0 + u2

z0, ux0 = u0 sin θ,
uz0 = u0 cos θ and average ∆

(

u2
)

over all angles θ to
obtain

∆
(

u2
)

=
a20t

2
(

1 + 2u2
0

)2
sin2 (ϕz0)

1 + u2
0

(9)

where ϕ0 = −kvz0 is the initial phase. We carry out
the trivial average over all initial phases ϕ0, assuming
electrons are initially evenly distributed along the wave
axis. Further assuming an initially thermal distribution
characterized by a thermal momentum ut, of the form

f (u0) =
√

2
πu

−3
t exp

(

−u2
0/2u

2
t

)

we can calculate the av-

erage
〈

∆
(

u2
)〉

=
∫∞

0
∆
(

u2
)

f (u0) u
2
0du0:

〈

∆
(

u2
)〉

=
a20t

2

4u3
t

{√
2πErfc

(

1√
2ut

)

+ 4u3
t − 2ut

}

(10)

If the electrons are initially cold, ut ≪ 1, then we ob-
tain the scaling

√

〈∆ (u2)〉 ≃ a0t/2, which agrees well
with numerical simulations for short times. Note that a
similar scaling can be found for exponential energy distri-
butions. This scaling is used to estimate the energy gain
of a cold isotropic distribution of electrons in a wave.
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