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Advances of high intensity lasers have opened up the field of strong field physics and led to a
broad range of technological applications. Recent x ray laser sources and optics development makes
it possible to obtain extremely high intensity and brightness at x ray wavelengths. In this paper,
we present a system design that implements chirped pulse amplification for hard x ray free electron
lasers. Numerical modeling with realistic experimental parameters show that near-transform-limit
single-femtosecond hard x ray laser pulses with peak power exceeding 1 TW and brightness exceeding
4×1035 s−1mm−2mrad−20.1%bandwdith−1 can be consistently generated. Realization of such beam
qualities is essential for establishing systematic and quantitative understanding of strong field x-ray
physics and nonlinear x ray optics phenomena.

High-intensity high-brightness x-ray pulses from free
electron laser (FEL) have opened up many new routes of
research for strong field physics [1, 2], non-linear x-ray op-
tics, and many potential applications [3–12]. While the
past decade have witnessed many first demonstrations,
one major obstacle towards a quantitative, systematic
and application-oriented understanding of the subject
came from the stochastic temporal and spectral structure
of the pulses [13]. Production of Terawatt-femtosecond
(TW-fs) hard x ray pulses with full spatial and tempo-
ral coherence is therefore highly desired. This calls for
allround-improvement of the x ray beam quality, includ-
ing peak intensity, peak brightness, and a well defined
spatial temporal profile, which are mandatory for quan-
titative analysis and prediction of the nonlinear observ-
ables.

Currently, the peak power of a state-of-art free elec-
tron laser (FEL) can reach 100 GW scale [14] through
self-amplified spontaneous emission (SASE). To push
the peak power into TW scale, several enhanced-SASE
schemes [15–17] have projected terawatt-attosecond
(TW-as) output by using extremely high peak current. A
super-radiance based approach [18] was shown to be ca-
pable of delivering TW hard x-ray pulses with a sequence
of short electron bunches and electron and optical de-
lay devices. These approaches still inherited the rugged
temporal characteristics of SASE, while also requiring
electron beam parameters beyond the current state-of-
art. Self-seeding techniques were adopted to improve
the temporal coherence up on SASE [19–22] with impres-
sive peak brightness improvement. However, the narrow
bandwidth puts a limit on attainable pulse duration and
peak power. In this letter, we present the design and per-
formance evaluation of a hard x-ray chirped pulse ampli-
fication (CPA) setup, that can potentially deliver single-

∗ Physics Department, Stanford University, Stanford, California,
94305, U.S.A.
† Applied Physics Department, Stanford University, Stanford, Cal-
ifornia, 94305, U.S.A.
‡ dlzhu@slac.stanford.edu

femtosecond x-ray pulses with a clean temporal profile
and provide high peak power (> 1 TW) and high peak
spectral brightness at the same time.

At optical wavelength, CPA has revolutionized high
intensity pulse generation and its applications [23, 24].
The concept has been extended to the extreme-ultraviolet
wavelengths[25]. At Å wavelength, an earlier proposal
[26] used chirped electron bunches to generate chirped x
ray pulses before the compression by an optical compres-
sor. Detailed analysis [27] showed that, however, elec-
tron bunch manipulation alone cannot produce tempo-
ral chirp of sufficient magnitude and quality, leading to
limited compression ratio and low photon throughput at
the compressor. We overcome this limitation by a com-
plete CPA scheme consists of both optical stretcher and
compressor. This gave us precise control of the tempo-
ral chirp, realizing two seemingly competing quantities
in an FEL: a relatively wide bandwidth required by the
short final pulse duration and the long and uniform pulse
temporal profile during amplification to extract as much
energy from the electron bunch as possible, simultane-
ously. The system design is illustrated schematically in
Figure 1 (a), where bold green labels are used to indicate
the name of different parts.

In this hypothetical setup, the undulator segments are
divided into two groups: the seed section and the ampli-
fier section. We use two electron bunches with nanosec-
ond time separation [28] to serve as the seed and amplifi-
cation gain media respectively. The seed electron bunch
is short with high peak current. The amplifier electron
bunch is longer and contains higher total charge. In the
seed section, the first electron bunch produces a short and
intense hard x ray pulse while the trailing amplifier elec-
tron bunch travels along a lasing-suppressed orbit. Exit-
ing the seed section, the seed pulse propagates through
a crystal-optic stretcher, and obtains a strong tempo-
ral chirp while expanding significantly in pulse duration,
matching that of the amplifier electron bunch. The elec-
tron bunches are diverted away from the stretcher optics
after the seed section with a magnetic chicane. The crys-
tal stretcher introduces a time delay to the seed x ray
pulse by the exact amount as the time spacing between
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FIG. 1. (a) Layout of the setup. The symbols C1 to C8 represent Bragg crystals to guide the trajectory of the x ray pulse.
(b) Schematics of the stretcher. (c) Schematics of the compressor.

the seed and amplifier electron bunches. This enables in-
teraction between the stretched seed x ray pulse and the
second electron bunch to achieve amplification in the am-
plifier section of the undulator, where the seed electron
bunch is directed to a lasing-suppressed orbit. Exiting
the amplifier section, both electron bunches are diverted
to the electron beam dump. The amplified, saturated,
and chirped hard x ray pulse propagates downstream to
a crystal optic compressor, where we remove the tem-
poral chirp to reach a much shorter pulse duration and
higher peak power.

To understand the potential performance envelop of
this CPA scheme, detailed numerical modeling is re-
quired. The chosen electron beam parameters for the
seed and amplifier bunches are summarized in Table I, all
of which have been demonstrated at many current FEL
facilities, such as LCLS. A total of 32 undulator segments
as currently installed at the LCLS-II hard x-ray beam-
line were assumed. We used Genesis [29] to predict the
electron lasing dynamics in both undulator sections. The
crystal optics is simulated with a homebuild beam prop-
agation program, the source code of which can be found
in Ref [30]. The 2-beam dynamical diffraction theory [31]
is used to describe the reflection, angular dispersion and
absorption of crystal optics and transmission optics. The
operation photon energy is chosen to be 9.5 keV.

1st electron bunch 2nd electron bunch

Bunch Charge 7.5 pC 200 pC
Bunch Length 0.375 um 20 um
Emittance 0.4 um 0.4 um
Energy Spread 3.49 GeV 2.06 MeV
Current Profile Flat-top Flat-top
Peak Current 6 kA 3 kA
Taper Flat Genesis-informed
K 2.4 2.4
Electron Energy 10 GeV 10 GeV

TABLE I. Beam parameters used in Genesis simulations.

The schematics of the stretcher is shown in Figure 1

(b). This is a direct analog of the corresponding device at
optical wavelengths [32]. The stretcher consists of 4 crys-
tals, C1 to C4, arranged in a mirror symmetric layout,
with asymmetric Bragg reflections. Due to the angular
dispersion of asymmetric Bragg reflections, x ray pho-
tons with different energies follow different trajectories
inside the stretcher, indicated by different colors in Fig-
ure 1 (b), which leads to a light path length difference.
Define θ to be the Bragg angle, α0 the asymmetry angle
of the Bragg reflection, d the gap size of the crystal pairs
C1/C2 and C3/C4, and E0 the reference photon energy.
With ray-tracing analysis, the energy dependence of the
path length inside the stretcher can be shown to be

δ(L) ≈ −8d
sin2 α0 sin2 θ

sin3 (α0 + θ)
× δE

E0
, (1)

where δE is the energy difference with respect to E0.
Note that higher energy x rays always have a shorter path
length. This thus always creates a negative temporal
chirp regardless of the sign of α0.

A large bandwidth and high reflectivity are desired,
in order to obtain higher seed pulse energy, and reduce
potential compressed pulse duration. We choose Si (111)
reflections for C1 to C4, with an asymmetry angle of 10◦

to produce the required angular dispersion and increase
the bandwidth. At E0 = 9.5 keV, the Bragg angle is
θ = 12.02◦. As shown in Figure 1 (b), the beam adopts
grazing incidence geometry on C1/C3, and grazing exit
geometry on C2/C4. The gap size d must be chosen to
match the stretcher delay to the time separation between
the two electron bunches, which can only be multiples
of 0.35 ns, determined by of the radio-frequency (RF)
of the accelerator [33]. Following geometric optics, the
relation between stretcher delay Tdelay and gap size d
can be shown to be

Tdelay =
2d

c

(1− cos 2θ)

sin (θ − α0)
. (2)

where c is the speed of light in vacuum. Therefore, the
available gap sizes are d ∈ {2.1 mm, 4.3 mm, · · · }. The



3

d = 2.1 mm is chosen in order to match the stretched seed
pulse duration to the amplifier electron bunch length,
which is limited to a maximum of ∼60 fs if we want
to maintain the optimal peak current of 3 kA. At d =
2.1 mm, simulation of 60 seed SASE pulses with a FWHM
pulse duration of 0.6± 0.6 fs at 9.5 keV yielded FWHM
pulse duration after the stretcher at 43.8± 11.3 fs.

FIG. 2. (a) The evolution of the x ray pulse energy along the
undulator sections for different configurations. The number
in the legend is the number of undulator segments assigned
to the seed section. The solid lines represent the averaged
pulse energy over 10 simulated pulses in each configuration.
The shaded area indicated the standard deviation of the pulse
energy of the 10 pulses. (b) The on-axis phase of x ray pulses
at the exit of the amplifier section. Each solid line represents
the phase of a single simulated pulse. The color scheme and
its meaning is the same as that of subplot (a). The grey
shadow indicate the power profile of all 70 pulses.

Using the stretcher parameters specified above, we
next optimize the distribution of undulator segments be-
tween the seed section and amplifier section. In total, 6
configurations are compared, from 7 to 17 undulator seg-
ments assigned to the seed section with increments of 2.
The rest undulator segments are assigned to the ampli-
fier section. For each configuration, 10 simulations of the
FEL pulse energy growth trajectory are summarized in
Figure 2 (a), with different colors representing different
undulator allocation schemes. One can see that when the
number of seed undulators reaches 13, the pulse energy
of the seed pulse after the stretcher saturates. Allocat-
ing additional seed segments would not increase the seed
power but rather would impose higher thermal load to
the first crystal of the stretcher. The on-axis phase of
each pulse as shown in Figure 2 (b), one sees the promi-
nent parabolic phase curves across all settings, indicat-
ing that the electron dynamics in the amplifier section
preserves the temporal chirp very well except for the 7-
seed-segment case, where the seed power is too low. The
compressor has a similar bandwidth as the the stretcher.
Therefore the weak parasitic SASE radiation will be fil-
tered out by the compressor. Reconciling the desire for
a strong seed pulse, low crystal thermal load, and the
preservation for temporal chirp, we choose the configura-
tion with 13 seed undulators. We then apply a Genesis-
informed taper optimization for this configuration. The
resulting average x ray pulse energy is 2.9 ± 0.8 mJ at

the exit of amplifier section for the simulation presented
below.

The four-bounce structure used in the stretcher cannot
generate positive temporal chirps. To generate a positive
chirp, we adopt the Martinez stretcher [34] scheme to the
hard x ray wavelengths. The layout of the compressor is
shown in Figure 1 (c). Crystals C5 to C8 are arranged
mirror-symmetrically with respect to two focusing lenses,
L2 and L3, in between. To match the bandwidth, C5 to
C8 also use silicon (111) asymmetric Bragg reflections.
The asymmetry angle of C5 and C8 is α1. The asymme-
try angle of C6 and C7 is α2 and α1 6= α2. Both focusing
lenses have the same focal length, f , and form a tele-
scope with a magnification factor of 1. Because α1 6= α2,
the crystal pair C5-C6 leads to a net angular disper-
sion, which is compensated by C7-C8. Between C6 and
C7, the telescope converts this angular dispersion into
spectral-temporal chirp. Assume that the path length
between the beam footprints within crystal pairs C5-C6
and C7-C8 is l1, the distance between crystal C6 or C7
and their adjacent focusing lens is negligible compared
with the focal length f . Then, the energy dependence of
the path length in the compressor can be attributed to
primarily two components:

δ(L) ≈ −8l1
sin2 α1 sin2 θ

sin2 (α1 + θ)
× δE

E0

+ 8f
sin2 (α1 − α2) sin4 θ

sin2 (α1 + θ) sin2 (α2 − θ)
× δE

E0
. (3)

The first term, resembling the energy dependence of the
stretcher, shows that the propagation within C5-C6 and
C7-C8 introduces negative temporal chirp. The second
term represents a positive temporal chirp proportional to
the focal length f . By choosing a proper set of f , α1, and
α2, a net positive temporal chirp can be generated. The
derivation of equation (3) is summarized in Appendix B.

The compressor parameters are determined by the bal-
ance between the bandwidth and reflectivity of Bragg
reflections with different asymmetry angles. Bandwidth
increase from the amplification process also needs to be
considered. To maximize the final peak power, we sur-
veyed the asymmetry angles α2 of C6 and C7 from 10◦ to
10.7◦ with a step size of 0.1◦ in the numerical simulation.
In each step, the focal length f is optimized with incre-
ments of 0.1 m to obtain the highest peak power. In this
process, we choose α1 = α2 + 0.2◦ to generate a non-zero
angular dispersion with C5-C6 for the telescope to gen-
erate the positive temporal chirp. This angle difference is
chosen such that f is neither too short such that the lens
loss becomes significant, nor too long such that the whole
setup cannot reside within the existing LCLS x ray trans-
port tunnel. In the simulation, the transmission function
of the two lens are calculated assuming a parabola shape
function with the actual complex refractive index of the
Beryllium. This optimization step yielded α1 = 10.7◦,
α2 = 10.5◦, and f = 31.5 m.

The angular dispersion introduced by C5-C6 varies
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FIG. 3. The subplots (a), (c), (e) and (g) show the power
profile (blue solid line) and the phase (red dashed line) on-
axis. The (b), (d), (f) and (h) show the spectrum profile (blue
solid line) and the phase (red dashed line) on-axis.

slightly for different incident angles. This will reduce
the compression ratio. To mitigate this effect, the ampli-
fied pulse is collimated before entering the compressor.
Specifically, after exiting the amplifier section, the am-
plified pulse propagates 280 m in free space, and passes
through a focusing lens, L1, with a focal length of 315 m.
After the collimation, at the position of C5 of the com-
pressor, the averaged FWHM angular divergence of the
pulse is 0.1±0.04 µrad, and the average FWHM pulse size
is 444.7± 52.4 µm, a beam condition where existing sil-
icon monochrometers have operated under similar beam
energy (3-4 mJ) without observable performance degra-
dation. Figure 3 shows the temporal and spectral evo-
lution of one typical simulation using this configuration.
The seed pulse had a FWHM pulse duration of 0.7 fs.
The stretcher extended the pulse to 47.5 fs in FWHM
with an energy efficiency of 59% within the bandwidth
of 9.498-to-9.502 keV, and 35% over the whole spectrum.

After the amplification, the FWHM pulse duration in-
creased to 62.3 fs. Finally, after the compression, the
FWHM pulse duration was reduced to 1.3 fs, with an en-
ergy efficiency of 52% through the compressor. The peak
power reached 1.2 TW.

FIG. 4. Power profiles of 10 simulated pulses at 4 different
stages indicated by their titles. Thins lines with different
colors (except blue) represent each single pulses. The thick
blue line represent the averaged beam profile of the 10 pulses.

The statistical distribution of 10 independent simula-
tions are shown in Figure 4. The incident FWHM pulse
duration was 0.6 ± 0.2 fs with a median value of 0.6 fs.
The stretched pulse duration was 46.9±9.2 fs with a me-
dian value of 47.8 fs, which resulted in a stretching ratio
of 79.1. The total energy efficiency of the stretcher was
24% ± 13% with a median value of 24% over the whole
spectrum. At the exit of the amplifier section, the aver-
aged pulse duration was 56.8±5.7 fs with a median value
of 59.7 fs. After the compression, the pulse duration was
reduced to 1.4±0.2 fs with a median value of 1.3 fs, which
corresponded to a compression ratio of 40.6. The total
energy efficiency of the compressor was 51% ± 2% with
a median value of 52%. Out of the 10 pulses, 7 of them
had peak power greater than 1 TW, and peak brightness
exceeding 4×1035 s−1 mm−2 mrad−2 0.1% bandwidth−1.
Besides, as shown in Figure 4 (d), all pulses except the
lowest two pulses feature a single main peak without any
pre-pulses, which can be easily removed from the dataset
by a simple pulse energy filter. This is of great impor-
tance for strong field physics studies, since signals from
weak pre-pulses can pose significant challenges in accu-
rate data interpretation.

To summarize, detailed feasibility study showed that
by extending chirped pulse amplification to hard x ray
wavelengths using crystal optics based pulse stretcher
and compressors, near-transform-limited TW-fs hard x
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ray pulses can be consistently generated, using electron
beam parameters well within the reach of existing free
electron laser facilities. The resulting high peak power
and brightness will greatly enhance the performance of
many current x ray FEL experiments such as nonlinear
x-ray spectroscopy based on various emerging nonlinear
x-ray optics phenomena [4, 5, 35–37]. This opens up
new opportunities to track, understand, and control elec-
tronic processes in molecules [38–42]. The relatively nar-
row bandwidth of x ray pulses and the resulting clean
temporal structure of the x-ray pulses will greatly facili-
tate the quantitative data interpretation of higher order
x ray nonlinear phenomena, a prerequisite for developing
future applications.

The proposed optical layout is flexible in optics pa-
rameters, can be tailored for different photon energies,

and optimized for different existing x ray FEL facility
infrastructures. Further advancement in electron beam
parameters, utilization of higher compression ratio, avail-
ability of additional undulator length, will enable another
leap in peak power and brightness. The proposed ap-
proach is also another example of a concerted-action be-
tween electron beam optics and x-ray optics for advanc-
ing x ray FEL performance. One can expect that, in the
near future, coherent interplay between crystal optics and
free-electron-laser can further enhance our capability to
control the lasing dynamics of high brightness electron
beams.

The authors thank D. Reis and G. Marcus for helpful
discussions. This work is supported by the U.S. Depart-
ment of Energy, Office of Science, Office of Basic Energy
Sciences under Contract No. DE-AC02-76SF00515.
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Appendix A: Ray-tracing analysis of the Stretcher

The ray-tracing analysis of the stretcher is presented
in this appendix. Symbols in bold font represent vectors.

Because the stretcher is mirror symmetric with respect
to its central plane, one only needs to analyze half of it.
The left half of the stretcher and variables required for
the derivation is visualized in Figure 5.

In Figure 5, k0, k1, k2 stand for the unit vector of
the propagation direction of the reference photon. The
p1 and p2 stand for the unit vector of the propagation
direction of a photon with a different photon energy and
the same incident direction. The Figure 5 shows the case
where p1 corresponds to higher photon energy with re-
spect to k1. The symbol l1 and s1 stand for the length
of the line section joining the two crystals C1 and C2.

https://doi.org/10.6084/m9.figshare.19335638.v1
https://doi.org/10.1103/PhysRevLett.127.096801
https://doi.org/10.1103/PhysRevLett.127.096801
https://doi.org/10.1103/PhysRevLett.127.237402
https://doi.org/10.1103/PhysRevB.69.155430
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FIG. 5. Schematics of the left half of the stretcher.

The path-length difference of p1 with respect to k1 is

δ (L) = 2s1 − 2l1 − 2 (s1p1 − l1k1) · k0. (A1)

Because both l1k1 and s1p1 are on the same reflection
surface of crystal C2, one can represent s1 with other
quantities:

s1 =
k1 · n1

p1 · n1
l1. (A2)

Therefore, one can simplify equation (A1) to

δ (L) = 2

(
(1− p1 · p0)

k1 · n1

p1 · n1
+ k1 · k0 − 1

)
l1. (A3)

The energy dependence enters equation (A3) through
p1. Define wave-vectors corresponding to k0, k1, p0 and
p1 as K0, K1, P0 and P1, then the following relation
holds:

ki = Ki|Ki|−1, i = 0, 1, (A4)

pi = Pi|Pi|−1, i = 0, 1, (A5)

pi = ki + δ(ki), i = 0, 1, (A6)

Pi = Ki + δ(Ki), i = 0, 1. (A7)

According to the dynamical diffraction theory [43],

K1 = K0 + h0 + ∆0n0, (A8)

|K1|2 = |K0|2. (A9)

where h0 is the reciprocal lattice of the C1 Bragg reflec-
tion.

If one change K0 to P0 = K0+δ(K0), then ∆0 changes
to ∆0 + δ(∆0). One can derive from equation (A9) that:

δ (∆0) =
(K0 −K1) · δ (K0)

K1 · n0
. (A10)

Therefore

δ (K1) = δ (K0) +
(K0 −K1) · δ (K0)

K1 · n0
n0. (A11)

In the following, we are only interested in the energy
change. Therefore, assume that

δ (K0) =
K0

|K0|
δE

~
= k0

δE

~
, (A12)

where ~ is the reduced Planck constant. Therefore

δ (K1) =
δE

~

(
k0 +

(k0 − k1) · k0

k1 · n0
n0

)
. (A13)

The dependence of p1 on the energy change δE can be
obtained from equation (A5) and (A13)

p1 ≈ k1 +
δE

E0

(
k0 − k1 +

(k0 − k1) · k0

k1 · n0
n0

)
. (A14)

With equation (A3) and (A14), one obtains an explicit
formula of the dependence of the path length on the en-
ergy δE. We use Mathematica to simplify the derivation.

The Bragg angle θ is defined through

k0 · k1 = cos 2θ. (A15)

When the asymmetry angle is α0, k0, k1 and n0 have the
following expression:

k0 = (1, 0), (A16)

k1 = (cos 2θ, sin 2θ) , (A17)

n0 = (− sin (θ − α0), cos (θ − α0)) . (A18)

With Mathematica, one can easily obtain the following
simplified expression for equation (A3):

δ (L) = −8
sin2 α0 sin2 θ

sin2 (α0 + θ)
l1 ×

δE

E0
(A19)

According to the geometry, when the gap size of the
channel-cut is d,

l1 =
d

sin (θ + α0)
(A20)

With equation (A19) and (A20), one obtains the equation
(1).

Appendix B: Ray-tracing analysis of the Compressor

We divide the light path difference of the compressor
between C5 and C7 into 3 parts. We use C5-C6 for the
path length between C5 and C6 shown in Figure 6 (b),
C6-C7 for the light path length between C6 and C7 and
C7-C8 for the light path length between C7 and C8.

The C5-C6 and C7-C8 follow the same analysis
method as that of the stretcher. Because there is a tele-
scope laying in between crystal C6 and C7, the C6-C7
is more complicated to analyze. To calculate C6-C7, we
borrow the idea of the first analysis of an optical system
of this kind [34]. We summarize the details in the next
subsection, B 1.

To facilitate the verification of the derivation, we di-
vide our analysis into 3 parts. In subsection B 1, we
show how we construct the image C5∗ and C6∗ with
Newton’s equation of thin lens. Then we present how
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FIG. 6. (a) Definition of variables for the 2f imaging system. (b) The C5∗ and C6∗ are the image of the crystal pair
C5-C6 produced by the telescope with mapping defined through equation (B1) and (B2). They are constructed by keeping
the direction along the telescope’s optical axis unchanged and applying central inversion along directions perpendicular to the
optical axis. The z1 and z2 are the distances of C6 and C7 with their adjacent focusing lens respectively. In the body text, we
have assumed that they are negligible.

we combine this imaging process with the analysis tech-
nique presented in Ref [34]. In subsection B 2, we give
the explicit definition of the variables we used to derive
the light path length difference of the compressor. In
subsection B 3, we present the derivation of the equation
3 with variables defined in subsection B 2.

1. Imaging

With Newton’s equation of thin lens, one can easily
verify that, for an object at position (u, z1), the image is
at position (v, z2)

v = −u (B1)

z2 = 2f − z1 (B2)

Definitions of these quantities are shown in Figure 6 (a).
According to the mapping equation (B1) and (B2), one

can construct the image of C5 and C6 on the right of the
telescope as C5∗ and C6∗, by keeping the direction along
the telescope’s optical axis unchanged and applying cen-
tral inversion along directions perpendicular to the opti-
cal axis. This imaging process is illustrated with Figure 6
(b).

This mapping with equation (B1) and (B2) provides
an extension of the technique described in Ref [34] to
analyze the light path length difference of a telescope
and two dispersive optics, which in our case are C6 and
C7.

The technique described in Ref [34], goes as the follow-
ing. First propagate the reflected ray from C6 along its
negative direction to the focal plane on the left of the first
lens (FPL) and calculate the negative value of this path
length. Then apply an central inversion of the ray on

FPL, which gives the light field on the focal plane to the
right of the second focusing lens (FPR). Then calculate
the negative path length between FPR and C7. These
backwards propagation of C6-FPL and FPR-C7 are il-
lustrated with dashed lines in Figure 7 (a) with the FPL
and FPR explicitly defined in the plot. It is proved in Ref
[34] that the path length difference for different photon
energies between the two dispersive optics, C6 and C7, is
the same as the corresponding difference of summation of
the two negative path lengths, i.e. C6-FPL and FPR-C7.

To combine the negative path length technique with
the imaging of the telescope, one can verify that the
mapping described in the previous paragraph (also the
one in Ref [34]) is a special case of the mapping with
the telescope represented with equation (B1) and (B2),
where z1 = f . Therefore, the total negative path length
of C6-FPL and FPR-C7 is the same as the negative path
length connecting C6∗ and C7 along the negative prop-
agation direction of the image beam reflected from C6∗,
as is illustrated in Figure 7 (b) with dashed lines.

According to the mapping equations (B1) and (B2),
the light path C5-C6 is the same as C5∗-C6∗ in the image
region. Combining this with the analysis of C6∗-C7 pre-
sented above, we can conclude that to calculate the light
path length difference for photons with different energies
in this system, we only need to calculate the path length
difference in among C5∗-C6∗-C7-C8, which is shown in
details in Figure 7 (c).

2. Definition of variables

Previously, we have shown that, one only needs to ana-
lyze the C5∗-C6∗-C7-C8 light path shown in Figure 7 (c).
In this section, we present the definition of the quantities
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FIG. 7. (a) Illustration of the negative path length technique described in Ref [34]. The dashed lines are for the backwards
propagations from C6 and FPR to FPL and C7 respectively. (b) Illustration showing that the summation of C6-FPL and
FPR-C7 is equivalent to the path length connecting C6∗ and C7 along the negative propagation direction of the image beam
reflected from C6∗. The dashed lines stand for these negative propagation paths. (c) The C5∗-C6∗-C7-C8 region with all
variables defined for the concrete calculation. The concrete meaning of these variables are specified in subsection B 2. The
dashed lines stand for negative propagation paths. The green lines are for the reference photon energy and blue lines are for a
different photon energy to be calculated.

defined in Figure 7 (c), which will be used to perform the
concrete derivation in the next subsection.

In Figure 7 (c), ki, i = 0, 1, 2, 3, 4, are unit vectors
for propagation directions of the reference photon, li,
i = 1, 2, 3, are light path lengths of the reference pho-
ton between different crystals, and pi, i = 0, 1, 2, 3, 4,
and si, i = 1, 2, 3, are the corresponding quantities for
another photon with the same incident angle and a differ-
ent photon energy. The ni, i = 0, 1, 2, 3, are the normal
directions of reflection surfaces of different crystals.

Define the Bragg angle of the reference photon for C5∗

and C6∗ as

k0 · k1 = cos 2θ1, (B3)

k1 · k2 = cos 2θ2. (B4)

We define these Bragg angles because the asymmetry an-
gles α0 6= α1 6= α2, and the asymmetry angle changes the
Bragg angle [43] slightly and therefore, strictly speaking,
θ 6= θ1 6= θ2. In the main body of the derivation, we keep
these strict definition to ensure an accurate estimation of
the path length difference. We only use the approxima-
tion, θ ≈ θ1 ≈ θ2, in the end to derive the equation (3)
in the body text.

To simplify the calculation, the x-axis is aligned with

k2. In this case, the vectors ki, i = 0, 1, 2, in Figure 7
(c) can be explicitly defined as:

k0 = (cos (2θ1 − 2θ2), sin (2θ1 − 2θ2)) = k4, (B5)

k1 = (cos (2θ2), − sin (2θ2)) = k3, (B6)

k2 = (−1, 0) . (B7)

The normal directions ni, i = 0, 1, 2, 3, have the expres-
sion:

n0 = (sin (θ2 − α1), cos (θ2 − α1)) = −n3, (B8)

n1 = (sin (θ2 − α2), cos (θ2 − α2)) = −n2. (B9)

In the numerical simulation, we set l1 = l3 for the central
wave-vector. Therefore, we make the same assumption
here. According to the geometry, l2 = 2f − z1 − z2.

3. Light path length calculation

In this section, we implement the calculation describe
in subsection B 1, with the variables define in the previous
subsection.

The path length of the blue lines in Figure 7 (c) with
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respect to the reference green line can be expressed as:

δ(L) = s1 − s2 + s3 − (s1p1 + s2p2 + s3p3) · k4

− l1 + l2 − l3 + (l1k1 + l2k2 + l3k3) · k4 (B10)

In equation (B10), the si, i = 1, 2, 3 can be represented
with pi, ki and li:

s1 =
k1 · n1

p1 · n1
l1, (B11)

s2 =
(l1k1 + l2k2) · n2 − s1p1 · n1

p2 · n2
, (B12)

s3 =
(l1k1 + l2k2 + l3k3) · n3 − (s1p1 + s2p2) · n3

p3 · n3
.

(B13)

Then, the energy dependence enters equation (B10)
through pi, i = 1, 2, 3. The C6∗-C7 crystal pair does not
change the wave-vector. Therefore, p3 = p1. We need to
find the energy dependence of p1 and p2.

The energy dependence of p1 is the same as that in
equation (A14) in Appendix.A.

p1 = k1 +
δE

E0

(
k0 − k1 +

(k0 − k1) · k0

k1 · n0
n0

)
. (B14)

To derive the expression for p2, define K1 and K2

to be the wave-vector corresponding to the propagation
direction k1, k2, and P1 and P2 for p1 and p2. Then

P1 = K1 + δ (K1) , (B15)

P2 = K2 + δ (K2) . (B16)

According to equation (A13),

δ (K1) = δ (K0) +
(K0 −K1) · δ (K0)

K1 · n0
n0, (B17)

δ (K2) = δ (K1) +
(K1 −K2) · δ (K1)

K2 · n1
n1. (B18)

Besides, the following definitions hold:

ki = Ki|Ki|−1, i = 0, 1, 2, (B19)

δ (K0) = k0~−1δE. (B20)

Together, one can show that

δ (K2) =
δE

~

(
k0 −

(k1 + k2) · k0

k2 · n1
n1

+
(k0 − k1) · k0

k1 · n0

(
n0 −

(k1 + k2) · n0

k2 · n1
n1

))
. (B21)

Because

p2 = − K2 + δ (K2)

|K0|+ |δ (K0)|
. (B22)

The linear approximation with respect to δE is:

p2 = k2 −
δE

E0

(
k2 + k0 −

(k1 + k2) · k0

k2 · n1
n1

− (k0 − k1) · k0

k1 · n0

(
n0 −

(k1 + k2) · n0

k2 · n1
n1

))
.

(B23)

Now, with the help of Mathematica, one can combine
the concrete expressions of n0, n1, k0, k1, k2 and equa-
tion (B10) to get the explicit dependence of the path
length on the photon energy

δ(L) = − l1 × 8c21
sin2 (α1 + θ2)

× δE

E0

+
(2f − z1 − z2)× c22

4 sin2 (α2 − θ2) sin2 (α1 + θ2)
× δE

E0
(B24)

where

c1 = sin (θ1) sin (α1 − θ1 + θ2), (B25)

c2 = 2 cos (α1 − θ1 + 2θ2) sin(θ1 − α2)

+ sin (α1 + α2) + sin (α1 − α2 − 2θ1)

− 2 sin (α1 − α2). (B26)

In the numerical simulation, z1 = z2 = 10 cm � f =
31.5 m. Therefore, we assume that 2f − z1− z2 ≈ 2f . In
the numerical simulation, θ = 12.0167◦, θ1 = 12.0185◦

and θ2 = 12.0182◦. Numerical calculation confirms that
these tiny differences do not have significant confluence
on the coefficient of δE/E0 in equation (B24). Therefore,
in the body text, we assume that θ ≈ θ1 ≈ θ2. In this
way, the equation (B24) reduces to equation (3).
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