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A reliable source of identical (indistinguishable) photons is a prerequisite for exploiting interference
effects, which is a necessary component for linear optical based quantum computing, and applications
thereof such as Boson sampling. Generally speaking, the degree of distinguishability will determine
the efficacy of the particular approach, for example by limiting the fidelity of constructed resource
states, or reducing the complexity of an optical circuits output distribution. It is therefore of
great practical relevance to engineer heralded sources of highly pure and indistinguishable photons.
Inspired by magic state distillation, we present a protocol using standard linear optics which can be
used to increase the indistinguishability of a photon source, to arbitrary accuracy. In particular, in
the asymptotic limit of small error ε, to reduce the error to ε′ < ε requires O((ε/ε′)2) photons. We
demonstrate the scheme is robust to detection and control errors in the optical components, and
discuss the effect of other error sources.

Introduction– Linear optical quantum computing
(LOQC) is an attractive paradigm for realizing fault-
tolerance, since photons in free space have extremely long
coherence times, and can be manipulated via high fidelity
linear optics which may not require the same level of cool-
ing as other approaches [1]. In LOQC, qubits are con-
structed out of photons which can exist in two modes,
common choices being spatial modes, or using the polar-
ization degrees of freedom. Fault tolerance can in prin-
ciple be achieved via the KLM protocol with sufficient
numbers of qubits and using error correction [2], or us-
ing cluster states in a measurement-based approach to
quantum computing [1, 3–8].

In order to make use of photons for computational pur-
poses requires a source of highly indistinguishable pho-
tons. The Hong-Ou-Mandel (HOM) effect [9] is the pro-
totypical example which shows fundamental differences
in which identical versus distinguishable photons inter-
fere (or do not). In this conceptually simple experi-
ment, two photons are incident upon a 50:50 beamsplit-
ter, which results in a bunching of the two photons in the
case they are indistinguishable. On the other hand, when
the input photons are distinguishable, the signal from an
HOM experiment (the HOM ‘dip’) is diminished by an
amount related to the infidelity of the two photons [10].

The HOM effect is a crucial ingredient for realizing
LOQC, for the interference between identical photons
can be used to create entanglement over computational
degrees of freedom [2, 11–13]. For example, fusion mea-
surements can be used to create large cluster states out
of primitive entangled states, such as Bell states or small
GHZ states [14]. However, the presence of distinguisha-
bility will generally result in less entanglement generated
over the computational degrees of freedom, compared to
the ideal state [15, 16].

Similarly, for specific applications of LOQC, such as
Boson sampling [17], multi-photon interference is the key
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Figure 1. Cartoon schematic of distillation scheme. n
copies of a noisy photon state with error rate ε (Eq. (3)),
incident upon n spatial rails, are used to distill a single photon
of lower error ε′ < ε. This is achieved upon post-selection of a
particular detection pattern of n−1 photons in the measured
rails. The black box is at this point unspecified but will be an
array of beamsplitters between the rails to enact interference.

ingredient to generate a computationally intractable dis-
tribution, which is reduced in complexity with distin-
guishability [18].

It is therefore necessary to be able to generate pho-
tons with as high an overlap as possible. In this Letter,
we present a technique inspired by magic state distilla-
tion [19], which is used to ‘distill’ indistinguishable pho-
tons from a photon source which outputs photons that
are partly distinguishable (or in other words, a source
with non-unit purity). This task can be phrased in a
few equivalent ways, and is related to state purification
[20, 21] and discrimination [22].

Commonly narrowband filters are used to generate her-
alded highly pure photons from pair sources, however in
practice the photon yield becomes prohibitively small at
high enough target purity [23]. Moreover, naive filtering
of a single photon source, whilst yielding highly pure pho-
tons, will be unheralded. Our scheme instead works un-
der a different paradigm, where independent single pho-
tons that are partly distinguishable are used to produce
a source of heralded and pure photons, utilizing multi-
photon interference.

A cartoon example of our general idea is shown in
Fig. 1, whereby n copies of a noisy photon state are used
to produce single photons, with a lower degree of distin-
guishability. Input photons to the circuit populate spa-
tial modes (horizontal lines), which we will often refer to
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as ‘rails’, and can be implemented physically via optical
fibres, for example. The black box is a circuit composed
of beamsplitters (and possibly other linear optical com-
ponents), and the output photon is conditioned on the
post-selection of a particular measurement outcome, i.e.
the detection of n−1 photons, in some configuration. The
key observation behind our scheme is that identical pho-
tons interfere in a fundamentally different manner than
partly distinguishable ones, which can be exploited using
beamsplitters, and ultimately used to reduce the distin-
guishability of noisy photon sources. The scheme works
so long as the initial purity is above around 60%.

Related Work– Whilst preparing this manuscript, we
became aware of a morally similar scheme proposed by
Sparrow and Birchall (SB) in Ref. [15], under the name
‘HOM filtering’. In this scheme, n ≥ 2 photons are inci-
dent upon n rails, which are post-selected upon bunching
in a single rail. Photon subtraction is then used to output
a single photon of a higher fidelity. This scheme is con-
ceptually elegant, and results in asymptotic scaling of the
error ε → ε/n. However, it is apparent that the scheme
becomes prohibitive for even modest n, as the proba-
bility to measure the desired outcome falls worse than
exponentially in n [[24]]; we compute in Supplemental
Information, SI A, the post-selection success probability
to be asymptotically (i.e. at error approaching zero)

P (SB)
p.s. ≤

n

2n

n∏
m=2

m

2m
=

n2(n− 1)!√
2n2+3n−2

, (1)

meaning huge numbers of photons are required to distill
a single purer one (for n = 2, 3, 4, 5, 6, one requires on
average 8, 42, 341, 4369, 93206 photons respectively).

Our scheme overcomes two issues identified by SB in
their protocol, namely we achieve higher success prob-
abilities (and therefore use fewer photons), and do not
require explicit multiple photon subtraction [[25]]. Even-
tually we believe a hybrid scheme can be invoked, as in
regimes of higher error, the SB scheme can outperform
the present approach, whereas at lower errors, our scheme
is most efficient. We will discuss this in the Results sec-
tion.

Theory– An arbitrary single photon state can be writ-
ten as a sum over modes [26, 27]:

|ψ〉 =
∑

s∈{h,v}

∫
dω cs,ω|s, ω〉 =

∞∑
i=0

ciâ
†
i |0〉 =

∞∑
i=0

ci|ψi〉.

(2)
The term after the first equals sign represents the explicit
representation over the polarization (s being e.g. hori-
zontal h or vertical v) and frequency (ω) domains, and
going to the second equals sign we have picked a count-
able orthonormal basis in the separable Hilbert space
to represent the continuous degrees of freedom (and ab-
sorbed the s index into the new sum). The state |0〉 is

the vacuum state, and â†i creates a photon in the i’th

mode, where for now we use the explicit state represen-

tation â†i |0〉 = |ψi〉. By construction, these basis states
are orthogonal 〈ψi|ψj〉 = δij , and the amplitudes ci ∈ C
square sum to 1:

∑
i |ci|2 = 1.

We now describe the model of a noisy photon source
which is used in this work. A non-ideal photon source will
output photons according to Eq. (2), but with realization
dependent coefficients ci (that is, they are different for
each generated photon). Without loss of generality we
can pick the basis so that the desired mode to populate
is the 0’th one, i.e. |ψ0〉 is the state which would be gen-
erated each time by a perfect photon source. We consider
fluctuations around this ideal by assuming the source can
generate photons in the 0’th mode with probability 1−ε,
i.e. 〈|c0|2〉 = 1− ε, where the angle brackets indicate the
realization average. We will similarly define pi := 〈|ci|2〉,
where

∑
i>0 pi = ε. We further make a random phase

approximation so that 〈cic∗j 〉 = 0 for i 6= j, which means
the photon source can be equivalently described as a de-
phased mixture:

ρ(ε) = (1− ε) |ψ0〉〈ψ0|+
∑
i>0

pi |ψi〉〈ψi|. (3)

This approximation amounts to the ‘error amplitudes’
cj>0 = |cj |eiφj receiving a random phase φj (indepen-
dent of the norm) on each realization. With this, we
can therefore interpret the photon source as generating
a photon in the ideal state |ψ0〉 with probability 1 − ε,
or with probability ε an orthogonal ‘error mode’ is pop-

ulated (i.e. from one of the â†i>0). We will similarly call
the |ψi>0〉 as an ‘error state’ (orthogonal to |ψ0〉).

We define the indistinguishability within our model as
the mean overlap of pure states generated by the source,
i.e. I := mean(|〈φ|ψ〉|). Under our assumptions, this is
equivalent to sampling pure states from ρ, from which it
is easy to show I = tr(ρ2), i.e. it is the purity. The aim of
this work is to maximise the indistinguishability/purity
by minimizing ε.

To simplify the analysis, we can consider the small
error (small ε) limit. At sufficiently small ε it is unlikely
to observe more than one error state according to the
above statistical description; if we draw n samples from
distribution ρ [[28]], we either get n copies of |ψ0〉, or
n − 1 copies of |ψ0〉, and one copy of some orthogonal
error state |ψ⊥〉 (i.e. |ψ⊥〉 is one of the |ψi>0〉). Note, in
our subsequent analysis we will still take into account the
cases when more than one error mode is populated, but
for now we can work in the limit of only single errors, for
convenience. We can write the n photon state, to first
order as (see SI B)

ρ⊗n = (1−ε)n|Ψ0〉〈Ψ0|+ε(1−ε)n−1
n∑
k=1

|Ψk〉〈Ψk|+O(ε2),

(4)
where we have introduced notation |Ψ0〉 = |ψ0〉⊗n and
|Ψk〉 = |ψ0〉⊗(k−1)|ψ⊥〉|ψ0〉⊗(n−k). The error term O(ε2)
contains the states of n photons composed of n−2 copies
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of |ψ0〉, and two error states |ψi>0〉. The tensor structure
comes from the spatial mode representation, as in Fig. 1.
For now we write the error state generically as |ψ⊥〉, as
we will later see at first order it is unimportant for our
analysis which particular error mode i > 0 is populated
in state |Ψk〉.

In order to enact interference between photons of the
above form, we will utilise a beamsplitter. In our nota-
tion a beamsplitter is described by 4 parameters, and acts

on (spatial) mode creation operators â†, b̂† as follows:

â† → ei(φ0+φR) sin(θ)â† + ei(φ0+φT ) cos(θ)b̂†

b̂† → ei(φ0−φT ) cos(θ)â† − ei(φ0−φR) sin(θ)b̂†.
(5)

We assume the parameters {θ, φ0,R,T } are agnostic to the
impinging photons internal state [29], and therefore any
single photon incident upon such a beamsplitter will be
split in the same manner as any other. A 50:50 beam-
splitter refers to the case θ = π/4, where there is equal
transmission to the other mode (T ), or reflection to the
same mode (R). Throughout we use the the convention
for the phases φ0 = π/2, φR = −π/2, φT = 0.

Since we utilise optical components that are state-
agnostic, and any single photon in state |ψi>0〉 will not
interfere with the ideal state |ψ0〉 (by orthogonality), it
has no bearing on the output statistics of a circuit of
form Fig. 1 which particular error mode i > 0 is actually
populated when state |Ψk〉 is sampled from ρ⊗n. For this
reason we can write the single error state simply as |ψ⊥〉,
as mentioned above.

Now that we have described the basic components in
our construction, all that remains is to outline the post-
selection over detection events. We will require access
to photon number resolving detectors which we assume
are ideal; it will always detect the exact number of pho-
tons present (though it will in fact be enough to distin-
guish between 0,1,2,3 photons, which will be clear later).
The post-selection on a detection event of m photons
can be described by taking the partial trace of the mea-
sured rail(s) after applying a measurement operator on
the state [15, 30]. If before measurement the state is ρ,
and we place a detector at the k’th rail to detect m pho-

tons, the post-selected state will be Trk[Π
(m)
k ρΠ

(m)
k ]/N ,

where Π
(m)
k sums over all rank 1 projectors onto pure

states which contain m photons in the k’th rail. N is for
normalization.

Results– The central question we wish to answer is
whether one can engineer the schematic diagram Fig. 1
with a suitable number n of photons, and linear optical
components in the black box, so that the output state has
less error than Eq. (3), upon a suitable post-selection. If
one can do this, the process can be repeated indefinitely
until arbitrary accuracy (i.e. ε is arbitrarily small).

From our studies, this in fact defines a large class of
optical circuit of varying numbers of photons and linear
optical components. We however will focus our attention
on the ‘best’ performing that we found (where here best
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Figure 2. Three photon distillation scheme. A success-
ful measurement corresponds to a single photon registered
in each of the two measured rails (indicated by the ‘1’ sub-
script on the detectors). The vertical lines with black cir-
cles represent beamsplitters between the rails on which the
black circles intersect. The first and third beamsplitters are
50:50 (π/4 in the diagram), and the middle is asymmetric
with θ = tan−1

√
2 ≈ 0.955 (less likely to transmit). In the

asymptotic limit of small ε, the error is reduced by a factor
of 1/3, and post-selection succeeds with probability 1/3.

has a precise meaning, in terms of the number of photons
required to distill a photon to some particular accuracy).
Indeed, there is scope for the discovery of improved cir-
cuits. We will assume all components and detectors are
perfect, so that the only source of error is in the photon
generator, but discuss such errors in the SI.

The circuit of present interest is shown in Fig. 2, com-
posed of three rails (each taking one incident photon),
and three beamsplitters, two which are symmetric, and
one which is asymmetric, biased to higher reflectivity (to
stay in same mode). Note permutations of this circuit
also perform identically (keeping the angle of the middle

beamsplitter tan−1
√

2).
First let us consider the ideal input of three identical

photons in state |ψ0〉 sampled from ρ, which we will de-
note using occupation number (Fock) representation over
the rails as |1, 1, 1〉. This input occurs with probability
(1− ε)3. The output of the circuit, before measurement
is (up to a global phase)

1√
3
|1, 1, 1〉 −

√
2

3
(i|3, 0, 0〉 − |0, 3, 0〉+ i|0, 0, 3〉), (6)

which has probability of 1/3 to obtain the correct post-
selected state [[31]].

If on the other hand a single error state is present, i.e.
one of {|Ψk〉}3k=1 is sampled (each occurring with prob-
ability ε(1 − ε)2), the output in the relevant subspace

before measurement, is 1√
27

∑3
k=1 |Ψk〉, up to a phase.

The post-selection therefore succeeds with total proba-
bility 1/9, and the outputted (unmeasured) photon is
ideal |ψ0〉 with post-selected probability 2/3 (see SI C
for more information).

The key observation behind the scheme is that the ideal
input is successfully post-selected upon three times as
often than the case where an error is present (1/3 Vs 1/9),
which allows the errors to be filtered out, approximately
at a rate of 1/3 error reduction per round.
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One can produce an upper bound on the error reduc-
tion (see SI C), ε→ ε′ under the scheme:

ε′ ≤ ε

3

1 + 2ε

1− 2ε+ 3ε2 − ε3 =
ε

3
+

4ε2

3
+O(ε3). (7)

The reason this is a bound, instead of equality, is that
the error reduction depends on the specifics of the dis-
tribution of errors in Eq. (3). In SI C we also produce

a lower bound on the error, ε′ ≥ ε
3 + 2ε2

3 + O(ε3). The
scheme can be used to reduce errors (ε′ < ε) so long as
the initial error ε is below around 43%.

The error reduction capabilities of our scheme is shown
in Fig. 3, where we also compare to the SB protocol for
n = 2 which as we will see is the most efficient SB pro-
tocol, and n = 3 (same number of photons per round as
the present approach). We see our scheme outperforms
SB for n = 2 for errors less than around 15%, and that
our scheme converges with SB n = 3 at around 5% er-
ror. Note, for the SB scheme we plot the best case error
reduction, whereas in reality it may perform worse than
this, depending on the distribution of error modes, see
Ref. [15] (though for small ε the difference becomes neg-
ligible).

In SI C we compute the probability of obtaining a valid
post-selection measurement outcome (i.e. detection of a
single photon at each of the two detectors), which scales
as (1−2ε)/3 +O(ε)2. Fig. 2 of SI C compares this to the
SB n = 2, 3 protocols which have a lower post-selection
probability, leading to a greater resource requirement.
Since our scheme consumes 3 photons per use, we require
around 9 photons to distill a single purer one to 1/3 the
error. In comparison to SB for n = 2, 3, around 8 and
42 photons are required respectively to obtain 1/2, 1/3
error respectively. In the asymptotic error limit (which
practically is for ε . 0.05), one can compute the number
of photons required to distill a photon to target error ε′

as O(( εε′ )
2) [[32]]. In comparison to SB n = 2, 3, 4, the

exponent is 3, 3.4, 4.2 respectively. This implies in the
asymptotic limit our scheme is the most efficient.

Lastly, we wish to mention we also discovered an n = 4
photon circuit (see SI D), which is essentially a general-
ization of the presented n = 3 circuit (though with only
50:50 beamsplitters), which can reduce errors by ε/4, at
the expense of a lower success probability – asymptoti-
cally 1/4 – meaning around 16 photons are required on
each iteration, and still O(( εε′ )

2) photons to distill to er-
ror ε′.

Discussion– We briefly comment here that the scheme
has some attractive properties for experimental imple-
mentation, which is discussed in more detail in SI E.
In particular, there is a natural robustness to detection
errors, as well as control errors. We also mention the

protocol can also be trivially implemented in the case
where the individual photons come from different physi-
cal sources [[28]]. For example, single photons of modest
purity and reasonably high production rate could be gen-
erated from heralded filtered SPDC pairs [33], and then
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Figure 3. Error reduction comparison of our scheme
(‘Present’), and those of SB for n = 2, 3. Given a photon
source with error ε (Eq. (3)), the post-selected output has
error ε′ (non-asymptotic Eq. (7) used for the upper-bound).
The shaded region indicates the upper and lower bound on
the error reduction of our scheme, as discussed in the main
text (and SI C). For SB, we use the best case error reduction,
Eq. (7.11) in Ref. [15] (also see Eq. (C6) in SI C). Inset: Zoom
in on region ε < 0.1.

boosted to a high target fidelity via distillation, which
crucially, are still heralded.

Overall, in realistic scenarios, various errors will limit
the upper bound on the indistinguishability that can be
reached by our scheme, and a natural follow up can in-
vestigate robustness to these in practical settings. Addi-
tionally, the techniques presented here, we believe, have
a diverse range of application, and can be utilized di-
rectly in resource state generation to construct circuits
that are naturally resilient to distinguishability and loss
errors, using similar mechanisms.
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