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Abstract 15 

With the broadband (12-45 THz) multiterahertz spectroscopy, we show that stimulated 16 

Rayleigh scattering dominates the transient optical conductivity of cadmium arsenide, a 17 

Dirac semimetal, under an optical driving field at 30 THz. The characteristic dispersive 18 

lineshape with net optical gain is accounted for by optical transitions between light-19 

induced Floquet subbands, strikingly enhanced by the longitudinal plasma mode. 20 

Stimulated Rayleigh scattering with an unprecedentedly large refractive index change 21 

may pave the way for slow light generation in conductive solids at room temperature. 22 

 23 

Main text 24 

Light has opened various ways to reach interesting nonequilibrium phases of matter, such 25 

as light-induced superconductivity [1,2], charge density wave [3], and excitonic insulator 26 

[4]. The emerging field of Floquet engineering is accelerating new discoveries through 27 

the versatility of periodic driving to modify material properties [5,6]. Examples include 28 

control of band topology [7-10] and excitonic correlations [11,12]. Floquet engineering 29 

is also interesting from the viewpoint of nonlinear optics. Historically, the concept of 30 

photon-dressed states has provided an indispensable basis to understand the nonlinear 31 

optical response of discrete level systems [13]. Modern interest in Floquet engineering 32 

has extended the idea of dressed states to continuous bands in solids, revealing new 33 

aspects of nonlinear optics, e.g., in terms of topology [14]. It is thus natural to expect 34 

novel optical phenomena to emerge from light-induced Floquet states.  35 
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 36 

Despite remarkable progress in theory, experimental exploration of Floquet states is still 37 

limited. Time- and angle-resolved photoemission spectroscopy succeeded in directly 38 

observing electron population in photon-dressed Floquet-Bloch bands on a surface of a 39 

light-driven topological insulator [15,16]. Ultrafast transport measurement has recently 40 

demonstrated that irradiation by circularly polarized light transforms graphene into a 41 

Floquet topological insulator [7,17], which partly contributes to anomalous Hall effect 42 

[18]. Manifestations of the light-induced Floquet states in the optical response itself, 43 

however, remain unclear. Little has been known about fundamental optical properties of 44 

Floquet states in solids, except for the well-known ac Stark effect of discrete levels.  45 

Cadmium arsenide (Cd3As2), a three-dimensional Dirac semimetal, is an ideal material to 46 

investigate this problem, because it combines high-mobility carriers, a small scattering 47 

rate, and low-energy interband transitions [19], which allow for coherent dynamics with 48 

suppressed dissipation and laser heating. Moreover, Cd3As2 exhibits large optical 49 

nonlinearity in a broad frequency region ranging from terahertz to visible [20-25], which 50 

makes it a promising platform to search for novel functionality in nonlinear optics and 51 

optoelectronics from the perspective of Floquet engineering. 52 

 53 

Figure 1(a) shows the band structure of Cd3As2. Two Dirac nodes lie on the 𝑘𝑧 axis, 54 

which allow low-energy interband transitions [19,26]. The valence and conduction bands 55 

are expected to form Floquet states upon periodic driving by a light field, as shown in Fig. 56 

1(b). To explore the spectroscopic signature and optical functionality of the Floquet states, 57 

we measure transient optical conductivity of an epitaxially grown, (112)-oriented, 140 58 

nm-thick Cd3As2 thin film on a CdTe substrate [27], exposed to an intense multiterahertz 59 

electromagnetic pulse at room temperature. Figure 1(c) depicts the experimental setup. 60 

Our sample is unintentionally electron-doped so that the Fermi level is shifted to 58 meV 61 

above the Dirac nodes [25]. Despite the anisotropy in the low-energy band structure, the 62 

linear response in the infrared region is almost isotropic because of the quasi-cubic nature 63 

of the structural units that make up the unit cell [36,37]. Figure 1(d) shows the optical 64 

conductivity of the sample in equilibrium. It can be decomposed into the low-frequency 65 

(<15 THz) intraband and high-frequency (>15 THz) interband contributions, by taking 66 

account of the low-frequency data outside the panel [25,38]. The narrowband pump pulse 67 

drives the interband transitions with a tunable frequency from 16 to 40 THz (66-165 meV 68 

in energy, 8-19 μm in wavelength) and with a variable bandwidth, while the probe pulse 69 

covers a broad frequency range from 12 to 45 THz (50-186 meV, 7-25 μm) with a 70 

duration of 30 fs. The probe pulse after transmitting the sample is spatially separated from 71 
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the pump pulse and is detected by electro-optic sampling to obtain response functions 72 

depending on the pump-probe delay time Δ𝑡 [27]. 73 

 74 

Figure 2(a) shows the transient optical conductivity measured by probe pulses polarized 75 

in the same direction as the pump, tuned to 29.4 THz. During the pump irradiation, a 76 

photoinduced absorption (blue) appears just below the pump frequency, while an opposite 77 

change (red) occurs on the higher-frequency side. The resulting dispersive lineshape is 78 

clearly seen in Fig. 2(b), which plots the optical conductivity at several delay times. This 79 

characteristic behavior is distinct both from spectral hole burning [39] and from photon-80 

assisted absorption bands [40], the two scenarios that have been theoretically considered 81 

so far. Note that net optical gain (𝜎1 < 0) develops from the suppressed absorption at 82 

around the maximum pump-probe overlap (Δ𝑡 ≃ 0 ps). The dispersive structure vanishes 83 

after the pump pulse leaves the sample, as visualized in Fig. 2(d). Upon changing the 84 

pump fluence, positions of the peak and the dip stay almost constant, as shown in Fig. 85 

2(e). We also plot in the same figure the fluence dependence of the peak and dip values 86 

along with the equilibrium values at 28.2 and 31.3 THz (open triangles). In the weak 87 

excitation limit (<0.1 mJ/cm2), both the peak and the dip grow linearly with the pump 88 

fluence, indicating a perturbative origin of the signal. We found that no dispersive signal 89 

appears when the probe is polarized perpendicularly to the pump [27], implying a 90 

coherent nature of the involved processes. In addition, Fig. 2(c) verifies that the position 91 

of the dispersive structure follows the center frequency of the pump, excluding the 92 

possibility that the signal could arise from some special points in the band structure or 93 

specific phonon modes.  94 

 95 

In the case of semiconductors, it is known that a dispersive absorption change appears in 96 

the early stage of photoexcitation as a result of excitonic effect [41,42]. In this mechanism, 97 

however, the absorption peak should lie on the higher energy side of the pump photon 98 

energy, which is opposite to the behavior observed here. Thus, excitonic effects are of 99 

minor importance in Cd3As2, consistent with recent predictions [43].  100 

 101 

From a phenomenological point of view, the dispersive absorption change in Cd3As2 can 102 

be understood in terms of stimulated Rayleigh scattering (SRLS). Suppose that 103 

application of the optical field primarily changes the real part of the refractive index. 104 

When the pump and probe beams spatially overlap, their interference creates a transient 105 

grating, which diffracts the pump beam into two directions; one is a new direction often 106 

studied in four-wave mixing experiments, and the other the propagation direction of the 107 
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probe, as shown in Fig. 3(e). The latter effect suppresses or enhances absorption of the 108 

probe beam depending on the phase of the diffracted wave. In case of a negative refractive 109 

index change, this process results in a photoinduced absorption (emission) for a probe 110 

frequency slightly lower (higher) than the pump, as seen in Fig. 3(a). This mechanism 111 

accounts for our experimental results, because interband excitation actually reduces the 112 

refractive index through a blueshift of the longitudinal plasma mode initially located at 113 

10 THz [25,27]. The blueshift is associated with increased density of charge carriers, 114 

since the squared plasma frequency is proportional to the carrier density. In nonlinear 115 

optics, light scattering by light-induced density fluctuations of gases and crystals is 116 

known as SRLS [13]. Therefore, the process described above also belongs to SRLS, 117 

which utilizes the collective plasma oscillation of charge carriers as a novel source of it. 118 

We note that this mechanism of SRLS is distinct from the conventional ones not only 119 

qualitatively – in its origin – but also quantitatively. The collective nature of the plasma 120 

mode enables a large refractive index change more than 1 [27], which far exceeds the 121 

known cases and thus leads to unprecedentedly strong SRLS. It is interesting that metallic 122 

response of solids with the plasma mode significantly enhances the coherent light-matter 123 

interaction. We will discuss a possible application of such a large refractive index change 124 

later. In the phenomenological model presented above, the separation between the peak 125 

and the dip decreases for increasing Δ𝑡  as shown in Fig. 3(b), consistent with the 126 

experimental result in Fig. 2(a). Such a narrowing is explained by the detection scheme 127 

in our experiment [27].  128 

 129 

We next consider the quantum mechanical aspect of this phenomenon and discuss its 130 

connection to the Floquet states. In Fig. 3(c), we plot the transient optical conductivity 131 

calculated by an effective two-band model for the low-energy band structure [27]. One 132 

can clearly recognize a dispersive lineshape. Knowledge of two-level systems helps us to 133 

interpret this result using a level diagram. In two-level systems, the well-known ac Stark 134 

effect is accompanied by a dispersive structure at the pump frequency, also called SRLS 135 

[13,27]. It originates from transitions between dressed states in resonance with the driving 136 

field. Extending this understanding to the continuous bands, SRLS in Cd3As2 is attributed 137 

to transitions between the Floquet subbands resonant to the pump frequency, as 138 

schematically shown in Fig. 3(f). Relatively small scattering rates in Cd3As2 justify such 139 

a Floquet state picture. A closer look at its origin, however, reveals the difference of light-140 

matter interaction responsible for SRLS in Cd3As2 and in two-level systems. In the latter, 141 

a usual coupling between electric dipole moments and the electric field, also called 142 

paramagnetic coupling, induces relatively weak SRLS, with a sign depending on detuning 143 
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[13]. As a result, SRLS in two-level systems tends to be cancelled out when integrated 144 

over continuous bands, leaving a spectral hole stemming from the ac Stark effect and 145 

Pauli blocking [39]. This consequence can be seen in the blue curve in Fig. 3(d), which 146 

plots the contribution from the paramagnetic coupling only. The dispersive structure in 147 

the total optical conductivity arises from a second-order or diamagnetic coupling with the 148 

electric field, which yields the red curve in Fig. 3(d) showing good agreement with the 149 

experimental result. This coupling causes a light-induced shift of the screened plasma 150 

frequency, so that the microscopic theory also supports the phenomenological picture 151 

presented above. In Supplemental Material, we derive the macroscopic model by 152 

analyzing the diamagnetic current in the microscopic model [27]. The derivation tells us 153 

that an intermediate frequency between intraband and interband transitions is preferable, 154 

because SRLS in this case requires combination of injection and acceleration of 155 

photocarriers. These findings renew the prospect of Floquet engineering for optical 156 

properties of matter, because importance of the diamagnetic coupling has not been 157 

recognized so far. Since the above discussion does not rely on details of the band structure, 158 

SRLS is expected to occur in general semimetals and narrow-gap semiconductors with 159 

low-energy interband transitions. 160 

 161 

Finally, from a perspective of Floquet engineering of optical functionality, we discuss the 162 

possibility of slow light generation in Cd3As2. Consistent with a general property of SRLS 163 

[13], the dispersive structure in transient optical conductivity can be narrowed by 164 

reducing the pump bandwidth, as shown in Fig. 4(a). Such a narrow structure in 165 

absorption is necessarily accompanied with a rapid variation in the refractive index 𝑛 166 

with frequency 𝑓, so that the group refractive index 𝑛𝑔 = 𝑛 + 𝑓(𝑑𝑛/𝑑𝑓) may become 167 

large. The resultant slowing down of an optical wave packet is known as slow light 168 

generation [13,44-50]. In the present experiment, we directly evaluate the broadband 169 

refractive index as a complex quantity. The top panel in Fig. 4(b) shows that a narrow dip 170 

in the refractive index develops at, e.g., Δ𝑡 = −0.48 ps, leading to a group refractive 171 

index as large as 40 at 30 THz (bottom panel in Fig. 4(b)). This corresponds to 40 times 172 

deceleration of a wave packet, free from dissipation because of the negative extinction 173 

coefficient 𝜅 (middle panel in Fig. 4(b)). An even more interesting situation occurs when 174 

a metallic screening (𝜖1 < 0) by photoexcited carriers coexists with an optical gain (𝜖2 <175 

0), where 𝜖1 and 𝜖2 stand for the real and imaginary parts of the dielectric constant, 176 

respectively. The refractive index 𝑛 = [(√𝜖1
2 + 𝜖2

2 + 𝜖1) /2]
1/2

 then vanishes at the 177 

boundary between absorption and gain (𝜖2 = 0), which may further enhance the rapid 178 
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spectral variation in 𝑛 (top panel in Fig. 4(c)). The group index correspondingly exceeds 179 

300 at Δ𝑡 = −0.24 ps (bottom panel in Fig. 4(d)), where a metallic screening (𝜖1 < 0) 180 

develops with the help of the SRLS itself. Remarkably, the extinction coefficient 𝜅 =181 

(sgn 𝜖2) [(√𝜖1
2 + 𝜖2

2 − 𝜖1) /2]
1/2

 remains negative in this gain region (middle panel in 182 

Fig. 4(c)), so that a probe wave does not decay in spite of the metallic character in 𝜖1. An 183 

electromagnetic pulse therefore might be slowed down more than 300 times without loss 184 

under the present experimental condition. 185 

 186 

Most previous studies of slow light generation used electromagnetically induced 187 

transparency [44-46,49] and photonic-band engineering [50] as the origin of a refractive 188 

index change Δ𝑛, which typically amounts to ~0.01 and ~0.1, respectively. In our case, 189 

by contrast, Δ𝑛 > 1 is so large that 𝑛  even vanishes. A relatively large bandwidth 190 

Δ𝑓 ∼ 0.5 THz of the dispersion limits the achievable group refractive index here. This 191 

is not necessarily a disadvantage, because a broader dispersion allows a shorter pulse to 192 

be slowed down. In fact, photonic-band engineering emerged as a way to generate slow 193 

light with a broad bandwidth (~THz) [50], compared to a much narrower one (~kHz) 194 

achieved by electromagnetically induced transparency. Our experimental results show 195 

that lossless and broadband slow light generation is possible by simply shedding infrared 196 

light to a semimetal at room temperature. To avoid complication by transient effects, such 197 

as the temporal change from Fig. 4(b) to (c), continuous-wave or nanosecond CO2 lasers 198 

promise better choice as the pump light source, though optical heating should be 199 

suppressed by efficient cooling. We expect SRLS to be robust against excitation-induced 200 

dephasing and scattering even for such a long-lasting driving, because its coherence time 201 

is determined by the relatively long carrier lifetime 𝑇1 = 8 ps. The available bandwidth 202 

then becomes Δ𝑓 ∼ 1/𝑇1 = 0.13 THz, still keeping a relatively large value. We leave 203 

the implementation of slow light generation with this mechanism as a topic of future 204 

studies. 205 

 206 

In summary, we performed ultrafast pump-probe spectroscopy on a Cd3As2 thin film in 207 

the multiterahertz frequency region, to find SRLS to dominate the transient absorption 208 

spectrum in the pump-probe overlap. Macroscopically, it originates from a transient 209 

grating with a blueshifted plasma frequency in the interfering pump and probe fields. The 210 

characteristic dispersive lineshape can be further traced back to microscopic optical 211 

transitions between the light-dressed electronic bands, the Floquet subbands, assisted by 212 

a diamagnetic coupling with the optical field. The concomitant sharp dispersion in the 213 
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transient refractive index may be applicable to semimetal-based, lossless, broadband slow 214 

light generation at room temperature. These findings reveal a general aspect of light-215 

matter interaction and lay the foundation of Floquet engineering for optical response of 216 

continuous energy bands. The application of circularly polarized driving fields promises 217 

an interesting future direction because of its ability to manipulate band topology and 218 

magnetic symmetry [8-10,51,52].  219 
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Figures and figure captions 394 

 395 

FIG. 1. (a) Band structure of Cd3As2 around the Γ point [26]. (b) Schematic picture of the 396 

Floquet state formation by a periodic optical field. (c) Setup of the pump-probe 397 

experiment. (d) Optical conductivity of the sample. The model fitting (dotted line) takes 398 

into account the lower-frequency data outside the panel [25].  399 

 400 
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 401 

FIG. 2. (a) Change of the optical conductivity as a function of frequency (horizontal axis) 402 

and pump-probe delay time Δ𝑡 (vertical axis). Waveform of the pump pulse is shown on 403 

the left. The equilibrium optical conductivity is plotted on the bottom along with the pump 404 

power spectrum. Pump and probe pulses are collinearly polarized. (b) Transient optical 405 

conductivity at several delay times. The equilibrium spectrum is shown as a dotted line. 406 

(c), Optical conductivity at Δ𝑡 = 0.04 ps for different pump frequencies, i.e., 29.4 THz 407 

(the same as in (a), (b)) and 18.2 THz (with a fluence of 0.25 mJ/cm2, a peak electric field 408 

of 0.9 MV/cm). (d) Delay time dependence of the peak and dip values extracted from (a). 409 

Temporal profile of the pump intensity is shown as the shaded curve. (e) Top: Positions 410 

of the peak and the dip in optical conductivity at Δ𝑡 = 0.04 ps, as a function of pump 411 

fluence. Bottom: A similar plot for the conductivity values at the peak and the dip. 412 

Equilibrium values at 28.2 and 31.3 THz are added as open triangles.  413 
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 415 

FIG. 3. (a) Change of the optical conductivity Δ𝜎1 calculated by a phenomenological 416 

model. Theoretical details are given in Method. (b) Two-dimensional plot of Δ𝜎1 as a 417 

function of frequency (horizontal axis) and pump-probe delay time (vertical axis). (c) 418 

Transient optical conductivity calculated by a microscopic model. Theoretical details are 419 

given in Method. (d) Contributions from the paramagnetic (blue) and diamagnetic (red) 420 

currents in the total optical conductivity (black) at Δ𝑡 = −0.12 ps. (e) Geometric picture 421 

of stimulated Rayleigh scattering (SRLS) and four-wave mixing (FWM). 𝐤0 and 𝐤1 422 

denote wavevectors of the pump and the probe, respectively. (f) SRLS induced by Floquet 423 

states in continuous bands. Ordinary ac Stark effect corresponds to transitions between 424 

the topmost and bottom peaks, and between the intermediate peaks, in the density of states. 425 

 426 



15 

 

 427 

FIG. 4. (a) Transient optical conductivity for broader (thin) and narrower (thick) pump 428 

pulses. Pump power spectra are plotted on the bottom with their FWHM indicated in the 429 

figure. The broader pump is the same as in Fig. 2(a), while the narrower one has a pulse 430 

width of 0.88 ps, a fluence of 1.7 mJ/cm2, and a peak electric field of 1.2 MV/cm. (b) 431 

Refractive index 𝑛 (top), extinction coefficient 𝜅 (middle), and group refractive index 432 

𝑛𝑔  (bottom) measured at Δ𝑡 = −0.48 ps for the narrower pump in (a). Equilibrium 433 

spectra are shown as dotted lines. (c) The same data set for Δ𝑡 = −0.24 ps. 434 
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