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Experiments on the DIII-D tokamak have identified a novel regime in which applied resonant
magnetic perturbations (RMPs) increase the particle confinement and overall performance. This
work details a robust range of counter-current rotation over which RMPs cause this density pump-in
effect for high confinement (H-mode) plasmas. The pump-in is shown to be caused by a reduction
of the turbulent transport and to be correlated with a change in the sign of the induced neoclassical
transport. This novel reversal of the RMP induced transport has the potential to significantly
improve reactor relevant, three-dimensional magnetic confinement scenarios.

The tokamak, benefiting from good confinement due to
toroidal symmetry [1], is the leading candidate device for
the magnetic confinement of burning plasma for energy
production. Tokamaks can never be fully axisymmetric,
however, and always have some level of 3D fields whether
due to intrinsic asymmetries in the device construction
or purposefully applied. Small, core resonant error fields
(EFs, δB/B0 ≈ 10−4) can destroy confinement by lock-
ing magnetic islands and must be corrected with applied
resonant magnetic perturbations (RMPs) [2–9]. In so
doing, overall asymmetry is often amplified through the
non-resonant spectrum of fields (the spectrum not in-
ducing core islands). Reactor relevant high confinement
(H-mode, [10]) plasmas are subject to magnetohydrody-
namic (MHD) instabilities called Edge Localized Modes
(ELMs) that are also mitigated or suppressed by pur-
posefully breaking toroidal symmetry with RMPs [11–
18]. Until now, it has been widely accepted that this
breaking of the toroidal symmetry reduces particle con-
finement (referred to as “pump-out”). A reduction of
15-50% in confinement is common with the application
of RMPs [12, 13, 16], due in large part to the formation of
islands at the foot of the H-mode edge transport barrier
or “pedestal” [19, 20]. This level of density pump-out is
not necessary for core or edge stability, and much effort is
being spent on to minimize the degradation through com-
plicated quasi-symmetry optimizations [21] and real-time
control techniques [22] in order to maximize fusion effi-
ciency in the presence of RMPs. In contrast to these pre-
vious challenges, however, this report shows that RMPs
naturally and robustly increase the particle confinement
in certain rotation regimes of reactor relevant H-mode
scenarios.

This work is unique in that it reports an observa-
tion of particle confinement improvement with the ap-
plication of magnetic perturbations in H-mode plasmas.
This is accompanied by a correspondingly novel reduc-
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Figure 1. With constant NBI torque (a), the application
of n = 2 RMPs (b) in a discharge rotating (c) opposite Ip
(orange) causes a sharp rise in electron density (d) without
any correspondingly sudden change in plasma composition
(c). The effect is not present in co-Ip rotation (blue).

tion in edge turbulence with the application of RMPs.
Past tokamak experiments have reported confinement
improvements with applied non-axisymmetric fields fol-
lowing from changes to the plasma-wall interactions [23]
and stability of large transients [24]. Confinement has
also been shown to improve due to a sign change in trans-
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Figure 2. Measured electron density (a), ion density (b),
temperature (c), and rotation frequency (d) pedestal profiles
before (blue) and after (orange) the application of RMPs in
counter-Ip rotating shot 182639. The densities rise while the
temperatures and rotations are unaffected by the RMPs.

port across non-axisymmetric magnetic islands in certain
rotation conditions [25]. The transport changes reported
in this work, however, are independent of increased wall
interactions that are not sustainable in a reactor and not
reliant on large dynamic instabilities in the plasma. The
reported confinement improvement with RMPs is thus
the first applicable to tokamak reactor scenarios. It also
represents a novel physics regime in which axial asymme-
try actually improves confinement over the axisymmetric
case, which has important implications for all magneti-
cally confined plasmas (stellarators, in particular).

In recent DIII-D experiments, the application of RMPs
consistently caused the density to rise in ELMing H-mode
discharges across a range of moderate counter-Ip rota-
tions. Ip is the toroidal plasma current such that counter-
Ip is the ion diamagnetic drift direction. The ELMs in
these plasmas are associated with proximity to the kink-
peeling stability boundary [26]. Experiments observing
this phenomenon pulsed 3.4-5.7 kA, 310◦ n = 2 (n is
the toroidal harmonic) perturbations using DIII-Ds mid-
plane error field correction (C-coil) array, which applies
a mix of non-resonant and resonant magnetic perturba-
tions [8, 27]. The amplitude of this RMP is below any
(as yet undiscovered) ELM suppression threshold that
may exist in these scenarios and above the 1 kA I-coil
equivalent n = 2 intrinsic error field [28]. The confine-
ment improvement is immediately observable in the line
integrated density measured by an interferometer chan-
nel directed through the core of the plasma, as shown
in figure 1. Detailed profile analysis in figure 2 shows
the RMPs raise the pedestal density with little change
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Figure 3. The change in line integrated density (a) and
normalized pressure (b). The observed improvements (blue)
and fractional changes (green) behave similarly, peaking at
moderate negative rotation and reversing when the rotation
becomes positive with respect to the plasma current. Upper
single null (N) and lower single null (H) data is shown.

to the temperature or rotation. The figure shows Thom-
son scattering (electron) and charge exchange recombina-
tion spectroscopy (carbon impurity assumed to be equi-
librated with the main plasma deuterium ion tempera-
ture) measurement data as well as a lines indicating the
Radial Basis Function fits from OMFIT [29, 30]. Quasi-
neutrality has been assumed to calculate the main ion
(deuterium) density and the profiles have been aligned
to enforce the physical ωE×B(ψN = 1) = 0 boundary
constraint (the normalized poloidal flux ψN is 1 at the
plasma separatrix). These detailed profiles confirm the
pump-in is in fact a confinement improvement impact-
ing all species and not just an influx of impurities that
increases the electron count.

The neutral beam injected torque was scanned between
discharges, and figure 3a shows the increase in density
when applying RMPs peaks at almost 6 × 1018 m−3,
amounting to a 15% increase in the density. The im-
provement is reduced at the most counter-Ip rotations
obtained in this experiment, the furthest of which is
complicated by being a Quiescent H-mode (QH-mode,
[31, 32]) with coherent edge MHD modes at counter-
current pedestal rotations below -80 km/s. Here, the
pedestal rotation is taken from charge exchange mea-
surements at ψN ≈ 0.89. No gas fueling feedback was
used during these shots and the line density (pedestal
collisionality, ν∗e ) naturally varies from 2.6 − 4.3 × 1019

m−3(0.17 − 0.37) prior to RMP applications. These pa-
rameters do not separate the pump-in and pump-out and
relative change overlays in figure 3 show these variations
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Figure 4. ELM characteristics for counter-Ip rotating shot
182639 without (blue) and with (orange) RMPs. Black error
bars show the mean and standard deviation of each dataset.
The RMPs increases the size of the ELM density (a) and en-
ergy (b) crashes but increase the ELM period (c), resulting in
no change to the average ELM particle flux (d). The observed
pump-in (separation of on/off points in the horizontal axis),
thus does not come from a change in ELM particle flux.

do not impact the observed rotation dependence. Fig-
ure 3b shows the density pump-in corresponds to a rise
in normalized pressure that peaks with an observation
of 13% improvement, consistent with the rise in density
at roughly constant temperature. Figure 3 also includes
data from typical lower single null ELM control target
plasmas reported in Ref. [28] (distinguished by H mark-
ers) during the application of 4-4.6 kA n = 2 C-coil cur-
rents or 1.5 kA n = 2 currents in the internal I-coils
(shown in [28] to have comparable resonant coupling to
4.6 kA of C-coil current). This data shows the usual den-
sity pump-out in positive rotations as well as hitherto
unnoticed indications of pump-in at the slightly negative
rotations obtained.

The extensive suite of edge and plasma boundary di-
agnostics of DIII-D do not detect any changes in the wall
particle source associated with the RMPs responsible for
the observed rise in density. The exhaust rate, propor-
tional to neutral pressure in the divertor region, is not
impacted when the n = 2 RMP is applied. The Deu-
terium Balmer α (Dα) emissivity from tangential camera
views [33] (proportional to the deuterium density) show
no qualitative changes with application of RMPs, indicat-
ing there is no change in particle sourcing. This is corrob-
orated by the fact that Zeff (the effective charge state
of the plasma) does not change at these times. Thus, we
conclude the RMPs are modifying fundamental particle
transport in the pedestal of these plasmas.

While no low-n MHD exists to be impacted in the
ELMing H-mode plasmas, figure 4 shows the ELMs be-
come slightly larger with the application of the n = 2
RMP to these plasmas while their frequency decreases.
The two effects effectively cancel when calculating the av-
erage ELM particle flux (the average rate at which ELM
instabilities are expelling particles from the plasma). The
difference in ELM fluxes with and without the RMP is
0.007± 0.365× 1019 m−2s−1, with a value much smaller
than the uncertainty. As the pump-in exceeds the statis-
tical variance in the density during the coil-free phases,
this rules out changes in the ELM behavior as the cause
of the pump-in.

Note, the RMP pump-in causes ELM changes that are
opposite of the widely observed “ELM mitigation” phe-
nomenon, wherein RMPs applied below the threshold for
ELM suppression result in smaller and more frequent
ELMs [34–36]. It is, however, consistent with the known
dependencies of ELM size and frequency with density
(x-axis) [37]. The rise in density results in the change of
ELM size and frequency, not the other way around.

The observed change in particle confinement is also dis-
tinct from the resonant island physics proposed for ELM
suppression [15, 38] and particle pump-out [39, 40]. The
pump-in plasmas have finite co-directional E × B and
electron diamagnetic precession frequencies (ωE×B and
ω∗e respectively) throughout the pedestal, shielding is-
lands and providing no inward resonant transport across
rational surfaces (which would require ωE×B/ω∗e < −1
in resistive MHD [25]). The absence of islands, deter-
mined by non-linear two-fluid MHD modeling using the
TM1 code [39, 40], means the transport mechanism re-
sponsible for the pump-in does not need to overcome the
common island induced pump-out.

Generalized Perturbed Equilibrium Code (GPEC, [41,
42]) calculations show the 3D-field-induced neoclassical
non-ambipolar ion transport changes in the pedestal re-
gion are correlated with the observed changes in the par-
ticle confinement. Here, the pre-RMP profiles from fig-
ure 2 were used to form a kinetically constrained equi-
librium from shot 182639 and the measured toroidal ro-
tation was artificially scaled within the GPEC model to
calculate it’s impact on the neoclassical transport. The
GPEC code is an equilibrium code and is not able to cal-
culate the time dependent impact of this instantaneous
flux. Simplified estimates of the modified density pro-
files using a constant effective diffusivity (Deff ) approx-
imation, non = −

∫
(Γoff − Γ3D)/Deffdr, are shown in

a black-red scale in figure 5b. The axisymmetric flux
Γoff and effective diffusivity are calculated solving for
power and particle balance using the ONETWO trans-
port code [43] given the profiles from figure 2 prior to
the RMP. The corresponding pedestal density change is
shown in figure 5a and is small (0.2-1% change). It is
always negative in this simple model because the edge
ωE×B , which is dominated by diamagnetic terms in the
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Figure 5. Magnetic perturbation induced, neoclassical ion
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not. Axes (b) shows the neoclassical ion flux profiles and
(c) shows corresponding linear estimates of the extreme case
density profiles, which are relatively small deviations from the
original (black) profile.

steep density gradient region, sets the sign of the mid-
pedestal transport. Nonlinear studies have shown, how-
ever, that similar levels of the non-ambipolar neoclassical
transport that changes sign at the top of the pedestal here
can couple to the primary transport mechanisms existent
in the symmetric state and result in the experimentally
observed levels of density change [44–46]. While neoclas-
sical model of torque reversals has been validated exper-
imentally [47], this is the first observation of the par-
ticle transport reversing in a tokamak plasma and thus
presents an opportunity for nonlinear modeling efforts to
assess any possible contribution of this mechanism here.

The nonlinear interplay between the 3D induced trans-
port and existing transport mechanisms is observed ex-
perimentally in the mitigation of turbulent fluctuations
coincident with the applied fields. Doppler back scat-
tering (DBS) [48] analysis for a one of the peak pump-
in pulses in figure 6b shows the density fluctuations
with intermediate wavenumbers (k⊥ = 4 − 6 cm−1 or
k⊥ρs = 0.5 − 1.5) change quickly with the application
of the fields. The density then rises on a transport
time scale within this suppressed turbulence state. The
fast decrease in fluctuations, followed by the slower rise

0.900 0.925 0.950 0.975
ψN

1

2

3

4

5

̃n e
,R

M
S 

(a
.u

., 
po

in
ts

)

a)

Coil Off
Coil On

3.45 3.60 3.75 3.90 4.05
Density (1019 m-3)

1

2

3

4

5

̃n e
,R

M
S 

(a
.u

.)

b)

2.3 2.8
Time [s]

0

1

2

D
en

si
ty

 (
10

19
m

-3
)

Figure 6. DBS density fluctuation measurements in dis-
charge 182639. The fluctuations decrease across the entire
pedestal when coils are applied (a), and has a causal influ-
ence on the observed density rise (b). The corresponding
deuterium density model (a, dashed line) is comparable to
the experimental rise in the profiles (a, solid lines).

in density establishes a causal relationship between the
RMP induced turbulence changes and the pump-in. A
correspondingly sharp decrease in the measured phase
velocity indicates that the decrease in the density fluctu-
ation level is associated with a transition of the dominant
inter-ELM turbulence from the ion-mode to the electron-
mode at the pedestal top, while the steep gradient region
remains dominated by ion-mode turbulence. Note, this
decrease in turbulence is opposite previous observations
of turbulence enhancement with RMPs [36, 49, 50] and
the underlying reason the turbulent transport is reduced
is not yet known.

The inter-ELM fluctuation profile measurements in fig-
ure 6a show this turbulence reduction is a robust fea-
ture across the entire pedestal in these scenarios. Previ-
ous DIII-D measurements show that this enhanced inter-
ELM edge turbulence measurement is highly correlated
to increased particle transport [51]. A simple estimate of
the ion density profile modification due to the change in
turbulence is presented in figure 6a using the constant
Deff approximation. Here, the 3D-induced flux pro-
file is approximated assuming linear dependence on the
turbulence amplitude Γ3D = Γoff (Aon − Aoff )/Aoff ≈
0.3− 1× 1019 m−2s−1 in the outer radii where both am-
plitudes are available and assumed zero inside of this.
Note, this is an order of magnitude larger than the mod-
eled neoclassical particle flux and comparable to the
4 − 6 × 1018 m−2s−1 values of edge flux computed from
the experimental profiles using dn/dt = ∇ · Γ3D during
the pump-in. Accordingly, figure 6a shows the associated
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density change (calculated as in figure 5) corresponds to
a rise in the deuterium pedestal density comparable to
the one experimentally observed. A direct measurement
of cross-field flux (currently not possible on DIII-D due to
a lack of perturbed velocity measurements), is highly de-
sirable for future qualitative studies of this phenomenon.
It is clear, however, that this is an important mechanism
for the observed pump-in.

In summary, DIII-D experiments have found a new
regime in which RMPs like those planned for use in fu-
ture H-mode reactors increase the particle confinement.
A reduction in the turbulent particle transport with the
application of RMPs is the dominant causal source of
the pump-in. The neoclassical particle transport induced
when breaking the toroidal symmetry also changes sign
at the top of the pedestal, and should be modeled in
more detail to determine the full extent of it’s role (if
any) in the observed pump-in. Both transport changes
are distinct from the cross-island transport that causes
pump-out in L and H-modes as well as any previously
observed changed through sourcing or instabilities in L-
mode plasmas. It is our hope that these new observations
inspire 3D peeling mode model development to further
understand the path to this stable rise in pedestal pres-
sure. Future experimental work should test the relative
diffusion and pinch transport terms in these regimes us-
ing gas puff modulation as well as test the compatibil-
ity between this confinement improvement and no ELM
plasma regimes. While the pump-in regime dos not have
the ωE×B zero crossing thought to be required for ELM
suppression in DIII-D, the improvements are uniquely
compatible with the use of RMPs in a reactor to cor-
rect error fields or support ELM free scenarios such as
Quiescent H-modes.
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