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In this Letter, an elastic twisted kagome lattice at a critical twist angle, called self-dual kagome
lattice, is shown to exhibit peculiar finite-frequency topological modes which emerge when certain
conditions are satisfied. These states are topologically reminiscent of the zero energy (floppy) modes
of Maxwell lattices, but they occur at a finite frequency in the band gap of the self-dual kagome
lattice. Thus, we present a completely new class of topological modes that share similarities with
both the zero frequency floppy modes in Maxwell lattices and the finite energy in-gap modes in
topological insulators. We envision the presented mathematical and numerical framework to be
invaluable for many technological advances pertaining to wave phenomena, such as reconfigurable
waveguide designs.

Introduction.—In the past few years, the concept of
topological mechanical/elastic systems [1–18] and other
bosonic systems [19–22] have led to a variety of in-
triguing development. In analogy to topological states
in quantum many-body systems, the nontrivial topol-
ogy structure from phonon bands grants these mate-
rials novel properties such as topologically protected
edge/surface/corner modes. In general, current stud-
ies about topological mechanical/elastic systems can be
classified into two categories. In the first category, the
dynamic matrix of an elastic system is mapped to the
Hamiltonian of an electronic system. Utilizing topolog-
ical classifications developed for electronic systems [23–
28], this mapping enables mechanical systems to achieve
the same type of topological phenomena, such as topolog-
ical edge states in quantum Hall (or spin-Hall or valley-
Hall) insulators [3–6, 10–15, 17]. The second category
is known as Maxwell systems [1, 2, 8, 9, 16]. For these
systems, the nontrivial topology is not coded in the dy-
namic matrix. Instead, it focuses on the connection
between elastic constraints and the degrees of freedom,
which maps the elastic problem into a superconductor
known as the BDI class [1, 25, 26]. From there, topo-
logical indices can be defined, which govern zero-energy
topological states at edges.

These two classes of topological mechanical systems
involve totally different concepts and theoretical descrip-
tions. More importantly, they exhibit distinct topolog-
ical phenomena. For topological systems in the first
category, the topological phenomenon has to manifest
itself as high-frequency physics, i.e., the topological
edge/surface/corner states can only arise between two
phonon bands (above the acoustic bands), and funda-
mental physics principles prevent such topological states
from emerging below the acoustic band. This is because
the acoustic band is the lowest phonon band, and thus if
mapped to electrons, topological indices are required to
be zero below the lowest available energy bands. For the

second category, on the contrary, topological states must
be at (or close to) zero energy, which is below the low-
est phonon bands, and fundamental physics principles
prohibit such topological states from arising above the
acoustic band. In other words, these two classes of topo-
logical phenomena are separated in frequency by funda-
mental principles. There is also an important difference
between these two categories regarding the dispersion of
edge modes. In the first category, topological edge modes
are typically disperse (usually connect the bulk bands
above and below the gap). In contrast, topological edge
modes in Maxwell systems are dispersionless (i.e., they
form flat bands).

Very recently, there arose a new progress in elasticity
called mechanical duality, where the mechanics of two
apparently different physical systems is related via math-
ematical mappings. If the system maps onto itself, then
it is called self-dual, and it shows remarkable proper-
ties. Recently, Fruchart et al. [29] found that the elastic
twisted kagome lattices show duality while transitioning
through their collapse mechanism [30] where two different
structural configurations, equidistant from a mechanical
critical point, have the same dynamic characteristics and
related elastic moduli. At the critical point, the twisted
kagome lattice is self-dual and has a two-fold degenerate
dispersion band structure. Later, Gonella [31] numer-
ically demonstrated the duality in twisted kagome lat-
tices by stitching together two dual configurations form-
ing a heterogeneous bi-domain structure. More recently,
Danawe et al. [18] observed peculiar (d-2)-dimensional
in-gap corner modes in self-dual kagome lattice occur-
ring at a finite in-gap frequency.

In this Letter, we show that with the help of mechani-
cal duality, a new type of topological mechanical system
arises, which exhibits properties of both categories dis-
cussed above. Same as the first category, these topologi-
cal states arise at a high frequency above acoustic bands,
in band gaps between various phonon bands. However,
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FIG. 1. (a) A self-dual twisted kagome lattice and its unit
cell with three equal masses at lattice sites A, B and C in-
terconnected by bonds of stiffness k, e1 and e2 are the direct
lattice basis vectors. (b) The dispersion band structure of
self-dual kagome lattice with all free lattice sites (solid lines)
and pinned C lattice sites (dotted lines). The flat bands for
lattice with pinned C sites appear at Ω = 1 (in the band
gap of free lattice) and Ω =

√
3 (at Dirac point of free lat-

tice), where Ω = ω
√

m
k

. The first irreducible Brillouin zone
K − Γ−M −K is shown in the inset.

the origin and topological structure of these topologi-
cal states follow the same principle as Maxwell systems,
and the topological edge (or domain-wall) states are dis-
persionless. We demonstrate this new topological phe-
nomenon in the self-dual kagome lattice which satisfies
the Maxwell condition relating the degrees of freedom
and applied constraints. However, the finite frequency
topological Maxwell modes may also be observed in other
self-dual lattices.
Self-dual kagome lattice.—A kagome lattice is character-
ized by three equal masses m located at lattice sites A, B,
and C on the vertices of an equilateral triangle, as shown
in Fig. 1(a). The masses are interconnected by elastic
bonds of stiffness k. The self-dual kagome lattice has the
same types of bonds of the unit cell oriented perpendic-
ular to each other. For example, in Fig. 1(a), the two
CA bonds are at 90◦ to each other, and similarly, the two
CB bonds and two AB bonds are perpendicular to each
other as well. The mass at each node can translate in the
x− and y− directions, and the displacement of the `th

node can be represented by a 2D vector uT
` = (ux` , u

y
` ),

i.e., two degrees of freedom per node. By virtue of the
periodicity, the displacements of nodes 2-4 and 3-5 are
related and governed by Bloch’s theorem, such that:

u4 = eik·e1u2 = eiq1u2 (1a)

u5 = eik·e2u3 = eiq2u3 (1b)

where k is the Bloch wave vector, e1, e2 are direct lattice
basis vectors such that |e1| = |e2| =

√
2L (L is the bond

length) and q1, q2 are reduced (normalized) wave vectors
given by q1 = k · e1, q2 = k · e2. Thus there are total
six degrees of freedom (DOFs) per unit cell correspond-
ing to the three nodes 1, 2, and 3. The dispersion band

structure of a self-dual kagome lattice is shown in Fig.
1(b), having three doubly degenerate dispersion branches
(solid lines), i.e., for every wave vector k there are three
pairs of identical eigenfrequencies. Now, if the C sites of
the lattice are pinned, the unit cell is left with only four
DOFs, and the band structure reduces to two doubly de-
generate flat bands, as shown by dotted lines in Fig. 1(b)
(see Supplemental Material for more details [32]). Inter-
estingly, the flat bands at Ω = 1 (where Ω is normalized
frequency given as Ω = ω

√
m
k ) are in the band gap of

the lattice with all free sites and that at Ω =
√

3 passes
through the Dirac point of the free lattice band struc-
ture. For more details on band structure calculation of
twisted kagome lattice as a function of twist angle, see
Ref. [18], where the author demonstrated the existence
of corner modes in a self-dual kagome lattice which also
evidently happen to appear at Ω = 1 characterized by
zero deformation of same type of lattice sites as if they
are pinned. In this Letter, we further investigate the lo-
calized states near intentionally pinned sites of the same
type (A, B, or C) in the bulk of self-dual kagome lattice
with the reason for their existence and their topological
nature.
Finite-frequency localized modes.—What will happen if
some (but not all) of the C sites are pinned? For such
a partially pinned self-dual kagome lattice, it turns out
that an intriguing phenomenon emerges: no matter how
many C sites we choose and regardless of which C sites
are selected, each pinned C site always generates four
modes localized around this site, two at frequency Ω = 1
and two at Ω =

√
3 (see Supplemental Material for more

details [32]). In a lattice system, localized modes induced
by a pinned site are not uncommon. However, if we pin
two (or more) sites close to each other, these localized
modes will typically hybridize with each other, and thus
their frequency shall shift depending on the distance be-
tween these pinned sites. Such hybridization never arises
in the self-dual kagome lattice, and the frequencies of
these localized modes always remain exact Ω = 1 or

√
3,

even if two pinned C sites are right next to each other.
This absence of hybridization is a unique property of this
self-dual lattice and is one of the key results of this study.
The lack of hybridization results from the unique dis-
placement fields that characterize these modes (see sec-
tion Topology and analytic theory for more details).

In addition, these localized modes also have some other
intriguing properties. Firstly, although only some of the
C sites are pinned, for all these Ω = 1 or

√
3 modes, all C

sites in the entire lattice exhibit zero displacement (i.e.,
all C sites are effectively pinned) similar to the corner
modes observed in Ref. [18]. Secondly, this phenomenon
is extremely robust and doesn’t exhibit any finite-size
or boundary effect. The same phenomenon and exact
frequencies are observed regardless of system size (from
a few unit cells to infinite lattices) or boundary conditions
(open or periodic). The location of the pinned sites (near
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FIG. 2. (a) Eigenfrequencies of a supercell with a pinned lat-
tice site in the bulk. The two doubly degenerate flat bands
appear at Ω = 1 and Ω =

√
3. (b) The mode shapes corre-

sponding to the flat bands at Ω = 1 and Ω =
√

3 localized
near pinned lattice site for q1 = 2π/10. The two modes, at
the same frequency, decay away from the pinned lattice site
in opposite directions with the same decay rate.

the edge or in the bulk) has no impact either.

Because these localized modes never hybridize with
each other, we can use them as the building block to
create more complicated structures. For example, if we
pin one row of C sites along a straight or zigzag line,
these localized modes will form a 1D waveguide, with
four 1D flat bands, two at Ω = 1 and two at Ω =

√
3. If

two rows of C sites are pinned, two such waveguides are
obtained. Even if the two waveguides are very close to
each other, the waveguide modes will not hybridize be-
tween the two waveguides. If we pin all the C sites, these
localized modes produce four 2D flat bands, as shown in
Fig. 1(b). To better demonstrate this effect, in Fig. 2(a),
we present the phonon band structure with one row of C
sites pinned down, calculated using the supercell shown
in Fig. 2(b). Two flat 1D bands at Ω = 1 and two at
Ω =

√
3 are obtained. These modes are localized near

the row of pinned C sites (except at q1 = 0, Ω =
√

3)
with exponentially decaying mode shapes away from the
pinned sites, as shown in Fig. 2(b). Note that the slightly
non-flat shape of the flat bands at Ω =

√
3 is due to the

finite size of the supercell and very low decay rate near
q1 = 0 (see Fig. 3(a)). The edge modes at Ω =

√
3

and q1 = 0 coexist with bulk modes corresponding to the
Dirac point (see Fig. 1(b))

Topology and analytic theory.— It turns out that these
robust features have the same topological origin as
the zero-frequency topological edge modes in Maxwell
systems, i.e., a topological winding number from the
Maxwell counting argument [1, 2, 8]. However, because
the topological modes here are at finite frequencies, a
new tool of localized basis needs to be introduced.

In a lattice system, any deformation can be character-
ized by the displacement field W = (uT

1 ,u
T
2 , . . . ,u

T
Ns

)T ,
where ui is the deformation vector of the ith lattice site.
This deformation vector has d × Ns-components, where
d is the space dimension, and Ns is the number of sites.

We define two special sets of deformation fields, W+
〈i,j〉,

and W−
〈i,j〉, which will serve as a basis of our topologi-

cal modes. Here, 〈i, j〉 represents a bond connecting two
neighboring sites i and j. For the deformation W+

〈i,j〉,

all other lattice sites exhibit zero displacement, except
sites i and j, which share the same displacement vector,
ui = uj = n〈i,j〉 with ni,j is the unit vector along the

bond 〈i, j〉. For W−
〈i,j〉, it is very similar except that i

and j have opposite displacements ui = −uj = n〈i,j〉.
Here, we focus on symmetric deformations W+, which

give eigenmodes at Ω = 1. The anti-symmetric ones
W− follow exactly the same physics, and they produce
eigenmodes at Ω =

√
3. Using symmetric deformations

W+, we can construct the following displacement field

WAB =
∑
〈Ai,Bj〉

A〈Ai,Bj〉W
+
〈Ai,Bj〉 (2)

This deformation is a linear superposition of W+, and
A〈Ai,Bj〉 is the coefficient/amplitude for each W+. Here,
we only use bonds connecting an A site and a B site, and
therefore all C sites have zero deformation. Similarly,
we can define WCA or WBC using CA or BC bonds,
respectively. Here, we shall focus on WAB, and the same
results can be easily generalized to WCA and WCB.

In general, WAB is not an eigenmode of the dynamic
matrix. However, it is straightforward to verify that for
the self-dual lattice, WAB becomes an eigenmode with
frequency Ω = 1 if the following constraint is obeyed: all
C sites stay at their equilibrium positions (pinned or at
force balance). Therefore, to study the Ω = 1 modes,
we can use the linear space of WAB, where the num-
ber of degrees of freedom is the number of AB bonds
Ndof = NAB. At the same time, without pinning, the
total number of constraints is Nc = 2NC, because the x
and y components of the total force on each C site need
to remain zero. Remarkably, for a kagome lattice, these
two numbers coincide, Ndof = Nc, and thus the system
is at the Maxwell point.

Same as in topological mechanics, here we can define
an effective compatibility matrix to connect the degrees
of freedom and the constraints.

F = CeffA (3)

Here, F = (F1,x, F1,y, F2,x, F2,x . . .)
T is a Nc component

vector, where Fi,x and Fi,y are the x and y components of
the total force on the ith C site. A is a Ndof dimensional
vector composed of the coefficients A in Eq. (2).

In analogy to Maxwell topological mechanics, the null
space of the Ceff matrix (i.e. all modes obeying CeffA =
0) corresponds to W+ modes at Ω = 1. For a lattice
with periodic boundary conditions and without any pin-
ning sites, Nc = Ndof , and thus Ceff is a square ma-
trix. As shown in the Supplemental Material [32], here
detCeff 6= 0, and thus the null space is empty, indicating
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the absence of any Ω = 1 modes. However, once some C
sites are pinned, Ceff is no longer a square matrix. In-
stead, the number of degrees of freedom now exceeds the
number of constraints Ndof > Nc, and thus the null space
shall contain Ndof −Nc independent modes. It is easy to
realize that for every pinned C site, Nc reduces by 2 and
thus Ndof −Nc increases by 2. This is the reason why we
obtained two Ω = 1 modes for every pinned C site. The
same approach and conclusions also apply to W− modes
at Ω =

√
3, except that we have bulk W− modes at zero

wave-vector corresponding to the Dirac point.
Same as in Maxwell topological mechanics, a topo-

logical index can be defined for this Ceff matrix,
which dictates the number of topologically protected
edge/domain-wall modes [1, 2, 8, 16]. To define this in-
dex, we need to switch to the momentum space, where
the Ceff becomes (See Supplemental Material [32])

Ceff = k

(
1
2 + 3

4 (eiq1 + eiq2)
√
3
4 (e−iq1 − e−iq2)

−
√
3
4 (eiq1 − eiq2) 1

2 + 3
4 (e−iq1 + e−iq2)

)
(4)

For each value of q1, a topological winding number can
be defined as

n =

∮
dz

2πi
tr
(
C−1eff∂zCeff

)
(5)

where z = eiq2 . Using the gauge-invariant integral con-
tour introduced in Ref. [16], (i.e., the unit circle on the
complex z plane and remove the residue at z = 0 or
z = ∞), we can obtain two integer topological indices.
For a line of pinned C sites (Fig. 2), at each q1, these two
topological indices dictate the number of topologically-
protected modes localized above and below the pinned
line, respectively (i.e., with a negative or positive decay
rate). For the Ceff matrix here, both the two indices are
unity, which means that for each q1, we have two modes
at Ω = 1 localized near this 1D line, one above and one
below, in full agreement with numerical simulations.

In addition to the number of modes, the Ceff matrix
also dictates their localization length and mode shape,
the same as Maxwell zero mode [1, 2, 7, 8, 16, 33]. For
a given q1, the equation detCeff = 0 has a complex q2
solution, and its imaginary part is the decay rate

Imq2 = ln

(
14 + 6 cos q1 −

√
142 + 96 cos q1 + 18 cos 2q1
12 cos q1

2

)
(6)

As shown in Fig. 3(a), this analytic prediction perfectly
agrees with the decay rates measured from supercell sim-
ulations.
Loosely pinned waveguides.—Instead of complete pin-
ning, loosely pinning the lattice sites using an elastic
foundation of finite spring stiffness (here 4k) results in
eigenfrequency solutions of supercell as depicted in Fig.
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FIG. 3. (a) The decay rate of edge modes obtained from the
compatibility matrix formulation compared with the decay
rate from supercell simulations. (b) The mode shape of a
infinite ribbon with pinned row of A lattice sites for q1 = π
at which the decay rates approach −∞ resulting in the highly
localized edge mode near the the pinned row of lattice sites.

4(a). The flat bands appearing in the band gap of su-
percell with pinned lattice sites (Fig. 2(a)) are not flat
in the case of a supercell with loosely pinned sites; how-
ever, they are still two-fold degenerate. The non-zero
group velocity allows transmission of wave energy along
the row of loosely pinned lattice sites, whereas the bulk
of the lattice remains isolated due to the band gap. We
demonstrate this selective wave propagation in a finite
lattice by loosely pinning lattice sites forming a zigzag
shape waveguide, as shown in Fig. 4(b). The time snap-
shots and RMS of the displacement field show that the
disturbance at the middle of the zigzag-shaped waveguide
travels symmetrically in either direction along the row of
loosely pinned lattice sites (see Supplemental Material for
animations [32]). The loosely pinned waveguide is recon-
figurable by simply pinning and unpinning lattice sites
which is not so trivial in the case of quantum spin-Hall or
valley Hall systems. Moreover, by controlling the pinning
stiffness, the wave speed along the loosely pinned waveg-
uide can be tuned for faster or slower transmission. Note
that, unlike quantum Hall systems, the wave propagation
along the loosely pinned waveguide is not unidirectional
and thus does not offer protection against backscattering.
However, the new topological phenomenon avoids un-
wanted hybridization (interference) between two neigh-
boring waveguides and offers reconfigurability and tun-
ability of waveguides which may have a significant impact
on wave propagation applications.

Previously, duality in kagome lattices was experimen-
tally demonstrated using LEGO bricks [29]. Also, floppy
modes of Maxwell lattices were realized in experiments
using near-to-ideal hinges [9]. Moreover, 3D printing [34],
bi-stable structures [35], and nano-particle self-assembly
[36] have also been used in previous studies to real-
ize kagome or topological kagome lattices. Thus, in
principle, similar setups can be used to experimentally
demonstrate the observed topological modes in the cur-
rent study. Nonetheless, designing a proper experimen-
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The time snapshots are taken at different instances indicated
in terms of time period, T, of harmonic oscillation.

tal setup to validate the present topological phenomenon
would be part of our future work, along with exploring
non-hermitian effects [37–39] on these modes.

Conclusions.—In this work, we analyzed a new type of
topological state in a self-dual kagome lattice, which ex-
ists at two specific frequencies Ω = 1,

√
3 localized near

pinned sites of a sublattice. These states appear at
Maxwell point, where the number of degrees of freedom is
equal to the number of constraints. Although analogous
to topological mechanics in Maxwell lattices, the Maxwell
relation obtained for self-dual kagome lattice is funda-
mentally different, and the modes are at finite frequency
instead of zero frequency floppy modes, but they retain
their dispersionless (flat band) behavior. These modes
exhibit special deformation fields, which are character-
ized by equal deformation of two lattice sites along the
bond connecting them while the deformation of the rest
of the sites is zero. For a row of pinned sites of a sublat-
tice, the topological modes are localized near the pinned
sites while decaying exponentially in bulk. The decay
rate is obtained from the determinant of the effective
compatibility matrix, and it is compared with supercell
simulations with excellent agreement The topological in-
dex for these modes is the same as that for zero-frequency
modes in Maxwell lattices, and it corroborates the exis-
tence of two topological modes at frequencies Ω = 1 and√

3.
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