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We report the creation and the study of the stability of a repulsive quasi-homogeneous spin-1/2 Fermi gas
with contact interactions. For the range of scattering lengths a explored, the dominant mechanism of decay is a
universal three-body recombination towards a Feshbach bound state. We observe that the recombination coef-
ficient K3 ∝ εkina

6, where the first factor, the average kinetic energy per particle εkin, arises from a three-body
threshold law, and the second one from the universality of recombination. Both scaling laws are consequences
of Pauli blocking effects in three-body collisions involving two identical fermions. As a result of the inter-
play between Fermi statistics and the momentum dependence of the recombination process, the system exhibits
non-trivial temperature dynamics during recombination, alternatively heating or cooling depending on its initial
quantum degeneracy. The measurement of K3 provides an upper bound for the interaction strength achievable
in equilibrium for a uniform repulsive Fermi gas.

Repulsive interactions in Fermi systems are at the heart of
some of the most interesting phenomena in quantum many-
body physics. For instance, the interplay between the spin
and orbital degrees of freedom gives rise to Stoner’s itiner-
ant ferromagnetism in the continuum [1] and to the complex
phases of the repulsive Hubbard model on a lattice [2].

The dilute repulsive spin-1/2 Fermi gas, where the interac-
tions between two spin states ↑ and ↓ are described by a posi-
tive s-wave scattering length a, is one of the most fundamen-
tal quantum many-body models [3–5]. Among its important
features, it is amenable to first-principle calculations in per-
turbation (for kFa � 1, where kF is the Fermi wavenumber).
In that limit, its properties (e.g. ground-state energy, Landau
parameters, etc.) are universal, i.e. they depend on a alone,
not on details of short-range physics [5–7].

Ultracold atomic gases have emerged as a powerful plat-
form for studying this model, because effective repulsion can
be implemented on the so-called ‘upper’ (repulsive) branch
using short-range attractive potentials [8–14]. This imple-
mentation is particularly interesting because it can realize the
regime of strong (kFa & 1) yet short-range (kFr0 � 1, where
r0 is the potential range) interactions, see e.g. [15, 16].

However, the repulsive Fermi gas with short-range attrac-
tive potentials is intrinsically metastable. This originates from
the existence of a universal bound state in the two-body prob-
lem for a > 0, with a binding energy εb = ~2

ma2 wherem is the
mass of the fermion. The pairing instability of the repulsive
branch of the many-body system towards the lower (attrac-
tive) branch of bound pairs, depicted in Fig. 1(a), is a complex
problem; it is expected to evolve from an instability driven by
universal three-body recombination for εb � EF [17, 18], to
many-body pairing effects when εb . EF [13, 17, 19, 20]
where EF is the Fermi energy.

This pairing instability has played a central role in the study
of the strongly repulsive Fermi gas and the search for the
itinerant-ferromagnet phase [16, 20–33]. Pioneering experi-
ments have shown decreased lifetime of the gas with increas-
ing interactions [8, 9] and larger initial rate of reduction of

repulsive correlations (possibly due to the ferromagnetic in-
stability) compared to the initial pairing rate [13, 14].

However, complex dynamics arising from the in-trap den-
sity inhomogeneity as well as the far-from-equilibrium nature
of the initial quenched states have hindered the study of the
homogeneous system’s stability [8, 13]. The advent of homo-
geneous gases prepared in optical box traps [34–37] has en-
abled the investigation of complex stability problems in clean
settings [38–40]. Here, we revisit the fundamental problem
of the stability of the repulsive Fermi gas by measuring the
three-body recombination law in a homogeneous atomic gas.

The experiment starts with a weakly attractive gas of 6Li
atoms in a balanced mixture of the first and third lowest Zee-
man sublevels (respectively labeled as ↑ and ↓), trapped in
a red-detuned optical dipole trap. The gas is evaporatively
cooled at a bias magnetic field B = 287 G. It is then loaded
in a blue-detuned (at a wavelength of 639 nm) cylindrical box
trap constructed by intersecting a ‘tube’ beam (produced with
a set of axicons) with two thin sheets, see Fig. 1(b). The mag-
netic field is then ramped toB = 597 G where the interactions
are weakly repulsive (a ≈ 500 a0, where a0 is the Bohr radius
[41]). At this stage, we typically have N↑ ≈ N↓ ≈ 6 × 105

atoms per spin state at T ≈ 0.3 TF withEF ≈ kB×0.5 µK and
a spin imbalance of N↓−N↑N↓+N↑

= 0.2(3)%. The interaction field
is then ramped to its final value over 100 ms, and left to settle
for an additional 25 ms. We then hold the atoms for a variable
duration thold. We image the gas near the zero crossing of a
(|a| ≤ 50 a0) by quickly ramping the field to B = 569 G, so
that trapped pairs are converted into tightly bound molecules
and thus detuned from the atomic imaging resonance [42, 43].

We show in Fig. 2(a) examples of time evolution of the
atom number N per spin state for different values of a, nor-
malized to the initial atom number N0. Qualitatively, the gas
lifetime decreases with increasing a, even though N0 also de-
creases (because of losses during the interaction field ramp
and the settling time [43]). The average kinetic energy per par-
ticle εkin, measured after time-of-flight expansion and shown
in Fig. 2(b), also slowly decreases with thold.
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FIG. 1. A homogeneous repulsive Fermi gas prepared in an optical
box. (a) Sketch of the two lowest energy branches of a Fermi gas
with a positive scattering length a; the ‘upper’ (repulsive) branch is
shown in red, the ‘lower’ branch (a gas of fermion pairs) is shown
in blue. The red dashed line is the repulsive Fermi gas energy up to
second order in kFa [3, 4]; the red shaded area depicts the energy
width associated with the finite lifetime of the upper branch. (b) In-
situ imaging of the box-trapped Fermi gas. Gravity, here oriented
along −ŷ, is compensated by magnetic levitation. The image on the
left is the column-integrated optical density (OD). The plots on the
right are cuts along the white dashed lines of the image. The solid
lines are derived from the fit used to extract the volume of the box;
V = 7.3(6) × 10−4 mm3. The slanted profile in the horizontal cut
is caused by the slightly conical shape of our cylindrical box [43].

The origin of the decay is model-independently revealed by
plotting the atom loss rate Ṅ/N0 versus N/N0 (Fig. 2(c)).
The examples shown follow a scaling relation of the rate
Ṅ ∝ −Nγ (fits are shown as solid lines, and fitted values
of γ are in legend). We observe that γ ≈ 1 at weak interac-
tions (a � 103 a0) where the losses are caused by density-
independent collisions with the residual background gas. For
stronger interactions, we observe γ ≈ 3, consistent with an
atom loss rate per unit volume

ṅ = −L3n
3 (1)

due to three-body collisions, with a constant loss coefficient
L3 and a uniform density n = N/V , where V is the volume
of the box.

Now that we have established a range over which losses
are dominated by three-body recombination, we quantitatively
characterize the process. The event rate per unit volume for
each type of event is Ω ≡ K3n

3 (= Ω↑↑↓ = Ω↑↓↓) where K3

is the recombination coefficient; K3 can be studied through
losses, since K3 = L3/d, where d is the average number of
atoms lost per event (either because their release energy from
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FIG. 2. Decay of a uniform repulsive Fermi gas. (a) Evolution of
atom numbers for different interaction strengths, normalized to the
initial atom numbers N0. The solid blue, yellow, and red lines are
fits to a three-body loss model that includes a one-body loss rate de-
termined from the green-line fit [44]. The three-body loss fits are
limited to the region where εkin changes by less than 20% of its ini-
tial value, indicated by solid circles; open circles are not used in the
fit. The same marker style is used in (b) and (c). Dotted lines are
extensions of the fits beyond the fitting range. (b) Evolution of the
average kinetic energy per particle during atom losses. (c) Scaling
relation between atom loss rate and atom number. Solid lines are
power law fits and the extracted exponents γ are listed in the legend.

recombination exceeds the trap depth or because they form
molecules that are optically detuned). We obtain L3 by fitting
N(t) to the solution of Eq. (1) [44] (solid lines in Fig. 2(a)).
To ensure that L3 is approximately constant with thold, the fits
are restricted to a range where εkin changes by at most 20% of
the initial value, see solid points in Fig. 2 (the consistency of
this analysis is discussed in [43]).
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FIG. 3. Threshold law for the recombination of three spin-1/2 fermions. (a) Scaling relation between L3 and the (time-averaged) kinetic
energy ε̄kin. All three data sets are fitted with a common exponent λexp and with independent prefactors. For visual clarity, the data sets are
rescaled by factors b (see legend) so that the power law fits are a single line (solid line). The dashed line is the fit assuming λ = 1 [43]. (b)
Temperature evolution during three-body losses. The dashed lines are theoretical predictions without adjustable parameters, given the initial
measured (T/TF)0 (see legend). The solid lines are linear fits to extract θ3b; the dotted lines show estimates on the uncertainties on θ3b, see
panel (c). (c) Temperature-change coefficient θ3b versus T/TF. The solid line is the theoretical prediction [43]. The vertical dashed line marks
the critical (T/TF)∗ at which θ3b changes sign, and the horizontal dashed line shows the asymptotic value of θ3b in the classical limit.

We examine this assumption more carefully by studying the
relationship between L3 and εkin. We control εkin by varying
the box depth at an intermediate evaporative cooling stage,
keeping the final box depth Ubox the same. As shown in
Fig. 3(a) for three different values of a, we observe that L3

scales as a power law of εkin averaged over time, ε̄kin.
Theoretically, K3 ∝ ελkin, where the exponent λ is de-

termined by the three-body threshold laws, which crucially
depends on the symmetries imposed by the quantum statis-
tics of the collision participants [18]. For instance, for three
distinguishable particles or indistinguishable bosons, there is
no energy dependence (λ = 0); for three indistinguishable
fermions, λ = 2 [45, 46]. The generic process in the spin-
1/2 Fermi gas corresponds to the previously-unverified case
of collisions involving two indistiguishable fermions. The
three-body event rate in a unit volume ω3 depends on the mo-
menta k1 and k2 of the indistinguishable fermions, and is in-
dependent of the third participant’s momentum k′ [47]:

ω3(k1,k2,k
′) ∝ (k1 − k2)2. (2)

Integrating Eq. (2) over the phase space density of the three
participants, one finds λ = 1. Experimentally, we measure
λexp = 1.36(14) [48] (solid line in Fig. 3(a)), in reasonable
agreement with the theoretical prediction.

The dependence of ω3 on momentum has interesting im-
plications on the temperature dynamics of the gas during de-
cay. In Fig. 3(b), we show T/T0 versus N/N0 (where T0 is
the initial T ). Depending on T/TF, the system either cools
down or heats up. This effect results from an interplay be-
tween Fermi correlations and the momentum dependence of
ω3. The cooling effect from the preferential removal of par-
ticles with large momenta (without spatial selectivity) [43],
strongest for T � TF, competes with the heating from the
perforation of the Fermi sea, which dominates in the deeply
degenerate regime [49]. A theoretical model describing this
interplay, shown as colored dashed lines in Fig. 3(b), yields

good agreement with the observed evolution of the tempera-
ture for N/N0 & 0.7 [43]. The discrepancy at late times for
low (T/TF)0 might be due to additional cooling from plain
evaporation.

Quantitatively, we define the coefficient θ3b ≡ N
T

(
∂T
∂N

)
V

under this rarefaction [43], and measure it at thold = 0 for
various T/TF (Figs. 3(b)-(c)). We observe that the transi-
tion from heating to cooling occurs at a critical degeneracy
(T/TF)∗ ≈ 0.7. The measurements are in excellent agreement
with the theoretical prediction (solid line in Fig. 3(c)) [43],
which establishes the crossing at (T/TF)∗ = 0.71 (vertical
dashed line). It is worthwhile to note that θ3b - and conse-
quently (T/TF)∗ - is governed only by the momentum depen-
dence of ω3 (Eq. (2)); it is independent of the a-dependent
prefactor of ω3 [43]. For T � TF, θ3b approaches 2/9,
where the cooling effect is most pronounced. Note that for
all T , θ3b < 2/3, so that this process does not increase
the quantum degeneracy of the gas (see related scenarios for
bosons [50, 51], and fermions near a narrow Feshbach reso-
nance [52]).

We now turn to the dependence of L3 on interactions. In
Fig. 4(a), we display γ versus a; the solid points are data
where losses are three-body dominated (see Fig. 4 and cap-
tion). We subsequently extract L3 for all interactions by fix-
ing γ = 3 and taking one-body decay into account [44]; to
factor out the effect of the threshold law, we display L3/ε̄kin,
see Fig. 4(b). We observe that over more than four orders
of magnitude, L3/ε̄kin follows a power law of a. Fitting the
data in the three-body-dominated region (solid blue points in
Fig. 4(b)), we find L3/ε̄kin ∝ a6.1(2) (solid blue line).

The fact that L3 scales precisely as a6 is strong evidence
for the universality of this process. Indeed, should three-body
recombination be universal, i.e. be independent of short-range
physics, the threshold law implies the scaling of K3 with in-
teraction strength [53]. Specifically, if K3 ∝ ελkin, then on
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dimensional grounds, K3 ∝ ελkin
mλ−1

~2λ−1 a
4+2λ. For two iden-

tical fermions, one finds K3 ∝ a6, in excellent agreement
with our measurements. Compared to the bosonic case, where
K3 ∝ a4 [54–56], an additional factor εkin/εb, ∝ (kFa)2 at
low T , can be interpreted as a suppression factor due to Pauli
blocking, which arises as two identical fermions need to come
within ≈ a of each other to form a final bound state.

Now that we established L3 ∝ εkina
6, we can extract the

dimensionless constant A in L3 = dAεkina
6/~, predicted to

be universal. As some or all products of the recombination
can be lost, d, the link between losses and recombinations,
depends on the box depth Ubox and εb. To gain insight into
this link, we implement a second imaging protocol where we
image the atoms directly at the interaction field (see label ‘4B’
in the top left inset of Fig. 4(b)); in our range of a, molecules
and atoms are optically unresolved [42]. The measurements
are displayed as red circles in Figs. 4(a)-(b).

At low a, L3 measured by both imaging methods coincide,
as d = 3 in both cases. The separation at a & 1300 a0 occurs
close to the condition εb/3 ≈ 2Ubox at which the molecules
remain trapped (see cartoons at the bottom of Fig. 4(b)) [57].
For larger a, d < 3 for the ‘interaction field’ imaging.

For the ‘zero-crossing’ imaging (see label ‘4A’ in the top
left inset of Fig. 4(b)), d = 3 still holds; the a6 scaling ex-
tends up to the point where 2εb/3 < Ubox, beyond which
all recombination products may be trapped [17, 58, 59]. The
maximum of L3(a) is located marginally beyond this thresh-
old. Fixing d = 3, we fit L3/ε̄kin (solid blue points) and find
A = 143(16)stat.(24)sys.. To examine more closely the qual-
ity of the a6 scaling, we extract A without free parameters
from (~L3/(3ε̄kin)/a6 (Fig. 4(c)). Our measurements are in
excellent agreement with the theoretical prediction A = 148
for the mass-balanced three-fermion problem [17].

The range over which the a6 scaling law applies is sur-
prisingly large. First, it extends even at large a where the
measured γ is only marginally close to 3 (see open circles
in Fig. 4). Secondly, at the highest a for which we observe
a6 scaling, εkin & kB × 0.5 µK is only slightly smaller than
εb ≈ kB× 1.2 µK, even though the condition for the universal
scaling is expected to be valid for εkin � εb [17].

Finally, our measurement of K3 provides an important in-
gredient for assessing the limits of equilibrium for a strongly
interacting repulsive Fermi gas. To ensure equilibrium, Γ3 ≡
3K3n

2 [60] must be significantly smaller than Γ2, the two-
body elastic collision rate. The largest interaction strength
for which Γ2 = Γ3 is kFa ≈ 1.0, and it is reached for
T ≈ 0.85 TF [61, 66]. This limit is close to the predicted point
for the ferromagnetic transition, kFa = π/2 in the mean-field
approximation [67] and ≈ 1 in quantum Monte Carlo simula-
tions [20, 28, 30].

In conclusion, we studied the stability of the repulsive
Fermi gas with short-range interactions. We measured the
universal recombination law for three particles of equal mass
involving two identical fermions. This work paves the way for
the study of complex stability problems of Fermi systems in
clean uniform settings, e.g. multi-component gases [68–70],
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FIG. 4. Universality of three-body recombination. (a) Atom-loss
scaling exponent γ. Blue and red circles are respectively imaged near
the zero crossing of a or directly at the interaction field. Data in the
three-body dominant region, selected by |γ − 3| ≤ 0.5 (blue band)
and with a relative uncertainty≤ 20%, are shown by solid points and
left open otherwise, in all panels. (b) Universal scaling of L3 with
a. The experiment sequence is shown in the upper insets. The blue
line is the power law fit to the solid blue points. Vertical grey dashed
lines mark the threshold values of a such that εb/3 = 2Ubox and
2εb/3 = Ubox, and the bands include average over initial energies
[43]. Bottom cartoons depict imaging and trapping regimes after
recombinations for the atoms and molecules. (c) Universal constant
A. Data points are the experimental values of A = ~L3/(3ε̄kina

6),
and the solid purple line is derived from a global a6 fit to the data in
(b) (not shown). The systematic error from the volume calibration is
shown by the light purple band [43].

mass-imbalanced mixtures [71–75], and molecules [76, 77].
A future work could leverage uniform Fermi gases to explore
the regime εb . εkin, where K3 ∝ εkina

6 should no longer
hold; in that regime, many-body pairing mechanisms are ex-
pected to take over at low temperature [19, 20]. To access the
shorter time scales expected, fast state preparation and prob-
ing techniques such as internal state manipulation could be
useful [13, 14].
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mann, Phys. Rev. Lett. 100, 010401 (2008).

[72] E. Wille, F. Spiegelhalder, G. Kerner, D. Naik, A. Trenkwalder,
G. Hendl, F. Schreck, R. Grimm, T. Tiecke, J. Walraven, et al.,
Phys. Rev. Lett. 100, 053201 (2008).

[73] G. Barontini, C. Weber, F. Rabatti, J. Catani, G. Thalham-
mer, M. Inguscio, and F. Minardi, Phys. Rev. Lett. 103, 043201
(2009).
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