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We consider monitored quantum systems with a global conserved charge, and ask how efficiently
an observer (“eavesdropper”) can learn the global charge of such systems from local projective
measurements. We find phase transitions as a function of the measurement rate, depending on how
much information about the quantum dynamics the eavesdropper has access to. For random unitary
circuits with U(1) symmetry, we present an optimal classical classifier to reconstruct the global
charge from local measurement outcomes only. We demonstrate the existence of phase transitions
in the performance of this classifier in the thermodynamic limit. We also study numerically improved
classifiers by including some knowledge about the unitary gates pattern.

Introduction. A recent breakthrough in our under-
standing of open quantum systems has been the discov-
ery of measurement-induced phase transitions (MIPTs)
in monitored quantum systems [1–4]. MIPTs have been
best characterized in random quantum circuits, but seem
to be a generic consequence of the competition between
chaotic dynamics and measurements [1–54]. The best-
studied MIPT, in random circuits, is a transition in the
properties of a quantum state conditional on a set of
measurement outcomes. It has multiple equivalent for-
mulations, of which the most relevant one for our pur-
poses is as follows [11]. When the measurement rate is
high, local measurements can rapidly distinguish differ-
ent initial states; in this “pure” phase, conditional on
the outcomes, an initially mixed state quickly becomes
pure. When the measurement rate is low, scrambling
dominates, so initially distinct states become indistin-
guishable by local measurements. In this “mixed” phase,
an initially mixed state remains mixed for times that
scale exponentially with system size [11]. Mixed-phase
dynamics forms a quantum error correcting code in the
sense that it protects initial-state information from local
observers [10, 11, 53]. Studying the MIPT as formulated
above requires repeated generation of the same set of
measurement outcomes, which in turn requires running
each circuit a number of times that grows exponentially
with system size and evolution time. Experimental stud-
ies of the MIPT have therefore been limited to very small
systems [36, 52].

In principle, the measurement outcomes in the pure
phase suffice to distinguish any two initial states. Thus
one would have a way around postselection if one could
initialize the system in a mixed state, run the circuit once
while recording the measurement outcomes, and use the
outcomes to predict some property of the resulting pure
state that can be measured in a single shot. In the orig-
inal random-circuit setting, this task is impractical, at
least on a classical computer: to distinguish the two ini-
tial states, one would need to time evolve both with the
specified measurement outcomes, and this is exponen-

tially hard even with full knowledge of the unitary evo-
lution operator and the measurement locations. (Similar
challenges arise in the problem of reconstructing infor-
mation from evaporating black holes [55–57].) Without
such knowledge, predicting any local property of the fi-
nal state is impossible: the space of possible unitaries
involves arbitrary single-site rotations, so the knowledge
gleaned from previous measurements is in a basis that is
effectively hidden from the predictor.

Here, we show that constraining the unitary dynamics
to have a single conserved charge (and measuring the lo-
cal charge density) makes it possible to accurately predict
an observable (namely the total charge) on a single run
of the circuit, even without knowledge of the gates. We
consider a one-dimensional system of L qubits with a con-
served U(1) charge Q =

∑
i qi, where qi = (Zi + 1) /2.

We initialize the system in one of two charge states |Q0〉,
or |Q1〉. We then evolve the system in time with a
brickwork of random unitaries, with each time step cor-
responding to two layers of gates acting on even and
odd sites. The gates are chosen to conserve the U(1)
charge, but are otherwise Haar-random [58, 59]. At each
timestep, we allow an eavesdropper (“Eve”) to measure
the local charge qi on each site of the system with inde-
pendent probability p. At some time tf that unless oth-
erwise specified we will take to be tf = L, Eve uses the
measurement record and a decoding algorithm to pro-
duce a guess of the charge of the initial state (Fig. 1).
Eve then shares her prediction and is told if it is correct.
Symmetric monitored quantum circuits exhibit a charge-
sharpening transition at p = p#, within the mixed phase,
that separates a phase where the final state conditional
on the circuit and measurement outcomes has a definite
charge from one where it does not [41, 42]. In the case
where Eve has unlimited resources, she can accurately
predict the outcome if p exceeds p# – the purification
transition will play no role in the following.

Here, we argue that if Eve only has access to the
measurement records, and has no knowledge about the
unitary gates that were applied in each circuit except
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FIG. 1. Setup. An eavesdropper (Eve) attempts to recon-
struct the global charge of a random quantum circuit from
local charge measurements using a classical classifier. Eve
can make exact predictions with success probability tending
to 1 in the thermodynamic limit above the success transi-
tion psuccess. The success transition of the classifier is lower
bounded by the charge sharpening transition p# of the sys-
tem. At p = ptails, the distribution of the probability of cor-
rect label changes shape (see text). For the qubit model con-
sidered in this letter ptails ' p#, but including neutral degrees
of freedom would increase p# towards psuccess [42].

their distribution (“eavesdropping” scenario), the opti-
mal decoding algorithm can be constructed by counting
charge configurations consistent with the measurement
outcomes the observer receives. This involves evaluat-
ing the partition sum of a classical statistical mechanics
model, a task that can be efficiently performed on a clas-
sical computer. We also show that knowledge of the dy-
namics in between measurements can be used to improve
the classifier (“learning” scenario), and discuss various
transitions associated with this learning problem.

Independent measurements estimate. For small
measurement probability p � 1, it is natural to assume
that the measurement outcomes {~m} are independent.
To estimate the charge, Eve can then simply use the av-
eraged charge Qestimate = L

M

∑M
n=1mn with M ∼ 2ptfL

the number of measurements, and determine whether it
is closer to Q0 or Q1. Assuming independent measure-
ments and using the central limit theorem, the proba-
bility of success (“accuracy”) of Eve to distinguish two
charges Q0 = L/2 and Q1 = L/2− 1 is

αlower bound =
1

2

(
1 + erf

√
ptf
L

)
. (1)

In general, measurement outcomes are correlated in in-
teresting ways that can be used to improve the charge
estimate, and this uncorrelated result lower bounds the
accuracy of other more effective classifiers.

Optimal classifier. Charge conservation and local-
ity induce correlations between measurement outcomes;
accounting for these correlations allows us to outperform
the independent-measurements estimate. For example,

measuring three out of four legs of a gate determines the
charge at the fourth, or measuring a charge q = 1 in one
of the incoming legs and q = 0 in one of the outgoing legs
fully determines the charges of the other two legs even if
they are not measured.

The constraints from charge conservation can be
turned into an efficient classifier. Intuitively, in the ab-
sence of information about the underlying physical dy-
namics, the best Eve can do is count charge configura-
tions compatible with the measurement outcomes, as-
suming that charges perform random walks with the
same diffusion constant as the quantum model. More
formally, marginalizing over the gates U , the probabil-
ity to observe the outcomes {m} for a given charge Q
is given by P ({m}|Q) = EUP ({m}|U,Q). Eve can then
use P (Q|{~m}) = P ({~m}|Q)/(P ({~m}|Q0) + P ({~m}|Q1))
to determine which charge is more likely given a set of
measurement outcomes {~m}. Performing the average
over U leads to an effective charge dynamics where at
each time step, charges can either hop or remain at the
same position with equal probability 1/2. This Markov
process of hard-core random walks is known as the (dis-
crete time) Symmetric Exclusion Process (SEP) [60] sub-
ject to quenched constraints from measurements, which
Eve could simulate efficiently on a classical computer.
In the supplemental material [61], we show that this is
indeed the optimal scheme, in the sense that it mini-
mizes the misclassification probability. Remarkably, the
same model also emerged in the context of measurement-
induced charge-sharpening phase transitions in the limit
of large onsite Hilbert space dimension [41, 42].

To efficiently compute P ({m}|Q), we use matrix-
product state (MPS) methods, and represent this
stochastic dynamics algebraically. The initial distribu-
tion over basis states in the Haar model is uniform over
all states of a fixed charge Q. Represent this initial prob-
ability distribution of charge possibilities by a vector of

size 2L: |φ(0)) = |Q) =
(
N
Q

)−1∑
i:Q(i)=Q |i), where we

use the ket-like notation |ψ) to denote a probability vec-
tor. The update to the probability distribution |φ(t))
due to the unitary at position i can be represented by
the application of the transfer matrix (Markov operator)
of the SEP

Ti =


1 0 0 0
0 1/2 1/2 0
0 1/2 1/2 0
0 0 0 1

 , (2)

to the probability distribution |φ(t)), written in the basis
{00, 10, 01, 11} for sites i, i+ 1. Every time the quantum
state is measured at a site k, the corresponding proba-
bility vector |φ(t)) must be modified such that all states
inconsistent with the measurement outcome on that site
have probability 0. This can be achieved by applying
the projector onto the correct measurement outcome. In
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applying the projector, the 1-norm of the probability dis-
tribution decreases, by an amount corresponding to the
fraction of trajectories that were inconsistent with that
measurement outcome.

Define T (~mt) to be the linear operator that updates
the probability vector from time t to t+1, given the con-
straints represented by the measurements. After time tf ,

we have a state |φ(tf )) =
∏tf

t=1 T (~mt)|Q) representing
the uniform distribution over all charge trajectories that
are consistent with both the measurement outcomes and
the charge Q. The 1-norm of the state represents the
fraction of all possible trajectories of the charges in the
Haar-random circuit that are compatible with the con-
straints – and can be found by the dot product of the
probability vector with the (unnormalised) uniform dis-
tribution over all states |1) =

∑
i |i),

P ({~m}|Q) = (1|
tf∏
t=1

T (~mt)|Q). (3)

Efficiency. This probability can be found for a given
circuit realisation by explicitly evolving the state |Q)
using a full representation of the probability vector.
Naively, this algorithm scales as O(poly(2L)). We can
do better by noticing that the circuits and measurements
(since they are not determined by properties of the time
evolving state, but by the separate dynamics in the Haar
circuit) represent a set of predetermined linear opera-
tions applied to the initial state. Instead of applying
them to the (highly entangled) state |Q) , we can apply
them in reverse to the (weakly entangled) state |1) as

(ψ(tf )| = (1|∏tf
t=1 T (~mt). Because of the non-unitary of

the SEP dynamics, the entanglement growth generated
by the transfer matrix is significantly lower than that in
the Haar circuit, and so the system can be represented by
an MPS with a bond dimension that grows sublinearly in
time. This allows simulation of systems up to large sizes
using MPS algorithms like TEBD [62, 63].

The state |Q) cannot be efficiently represented on a
classical computer, and so we cannot efficiently compute
the dot-product in Eq. 3. We can however, efficiently
sample from (ψ(tf )| (since it has a low bond dimension
MPS representation) to produce an estimate of P (Q).
We also note that this statistical mechanics problem has
positive Boltzmann weights, and could be simulated effi-
ciently using Monte Carlo methods.

Success transition. In order to probe the perfor-
mance of the classifier, we consider its performance on
N = 40, 000 random Haar measurement records. While
we generate this data using a classical computer and are
thus limited to modest system sizes (L ∼ 20), we empha-
size that our classifier can be run efficiently on measure-
ment records generated by quantum processors on much
larger systems. Half the records are generated from
initial state |Q0〉 = |L/2〉, defined to be the uniform su-

perposition over bitstrings at half filling, the other half
from |Q1〉 = |L/2− 1〉.

The task assigned the classifier is determining which
state the record was generated from. Given the probabil-
ities P (Q1|{~m}), P (Q0|{~m}) from the stat. mech. model,
the classifier chooses the Q such that P (Q|{~m}) is max-
imal. The accuracy α of this classifier as a function
of measurement rate and system size is presented in
Fig. 2b). The classifier gets better at solving the task
as the measurement probability increases, as expected.

To get a better sense of the distribution of the classi-
fier predictions across different measurement outcomes,
we define the ‘probability of correct label’ Pcorr as fol-
lows. Suppose the initial state has charge Q∗ (unknown
to Eve). Eve begins with no information about the
charge, then updates her probabilities based on the ob-
served measurement outcomes. Her posterior probabil-
ity for the correct charge label Q∗ is denoted Pcorr: i.e.,
Pcorr = P (Q∗|{~m}). Note that since Eve is told the value
of Q∗ at the end of each run, Pcorr is measurable for each
run, so Eve has access to the entire probability distribu-
tion P (Pcorr), plotted in Fig. 2a). In terms of Pcorr, the
accuracy (Fig. 2b) is P (Pcorr > 0.5).

The entropy of the binary distribution {Pcorr, 1−Pcorr}
corresponds to the confidence of the classifier in its deci-
sion – irrespective of the ground truth label. The binder
ratio [64] of the entropy has a crossing at psuccess ≈ 0.2,
which corresponds to a “success transition”. Above
psuccess, Eve can reconstruct the charge of the system
exactly (i.e. with success probability tending to 1 as
L → ∞). Note that while Eve succeeds whenever
Pcorr > 1/2, we need Pcorr → 1 to guarantee that the
measurement record uniquely identifies the charge. In-
terestingly, this success transition in the classifier also
has an interpretation as a charge-sharpening transition
in a charge-conserving model with large on-site Hilbert
space [41], and its critical properties are Kosterlitz-
Thouless-like [42]. In general, we have the constraint
p# ≤ psuccess, with p# ' 0.09 for qubit systems [41]:
classifiers can only make systematic, exact predictions
above the sharpening transition.

The full distribution of Pcorr (Fig. 2a)) reveals a richer
structure. For low p < ptails ' 0.1, the measurement rate
is insufficient for the observer to fix the charge, result-
ing is an approximately Gaussian distribution of Pcorr.
Around p = ptails, the tails of distribution of Pcorr em-
pirically change from Gaussian to power-law like. This
apparent transition in the tails of the distribution can
also be detected from the Binder ratio [64] of Pcorr (inset
of Fig. 2b)), and from the power-law shape of the dis-
tribution of Pcorr, see inset of Fig. 2a). Note that even
though the quantity 1 − E(Pcorr) (where E(. . .) denotes
an average) is itself an order parameter for the success
transition [61], the heavy-tailed distribution allows its
Binder ratio to cross at a measurement rate that is dif-
ferent from psuccess. It would be interesting to analyze
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FIG. 2. Optimal classifier. a) Probability distribution of the ‘probability associated with the correct charge label’, Pcorr for
L = 20. Inset: Weight in lower tail of distribution of Pcorr, ε = 0.4. The distribution changes through three distinct regimes:
approximately Gaussian for 0 < p < ptails ' 0.1, power-law for p = ptails, exponential for p > ptails. b) Accuracy of the
classifier. Inset: The Binder ratio shows a crossing at ptails ' 0.1. c) The mean entropy as an order parameter for the success
transition, above which Eve can systematically make accurate predictions in the thermodynamic limit. Inset: the Binder ratio
has a crossing at psuccess ' 0.2.
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FIG. 3. Biased classifier. (a) The success transition is low-
ered by including information about the hopping probabilities
in the classifier (biased model), while the accuracy transition
remains unchanged. The color code is the same as in Fig. 2.
(b) The classifier accuracy α is improved by including infor-
mation about the hopping probabilities in the classifier.

these tail transitions further in future work.

Biased classifier. While the above classifier is op-
timal without additional knowledge about the circuit,
it can be improved if Eve has some information about
the underlying dynamics of the system (learning sce-
nario). Let us assume now that for each run of the ex-
periment, Eve receives the set of measurement outcomes
and locations {~m, ~x}, and the details of the unitary gates
{Uit}∀i,tthat were applied to generate this measurement
record.

There is a trivial, optimal, exponentially classically
hard algorithm – the observer can run the circuit start-
ing from |Q0〉, and |Q1〉, measure the charge in the loca-

tions specified and count how many times the measure-
ment record ~m arises. We expect this algorithm to suc-
ceed above the charge-sharpening transition (p > p#).
A more interesting task is to find an efficient classical
algorithm that improves on the zero-knowledge classifier
above. Define the hopping amplitude of a unitary h(U) =

|〈01|U |10〉|2. This has the properties h(U) = 1
2 , where

the overline indicates average over Haar, h(SWAP) = 1
and h(I) = 0. We can then modify the classifier above
using the disordered hopping probabilities:

Ti(t) =


1 0 0 0
0 pit 1− pit 0
0 1− pit pit 0
0 0 0 1

 (4)

and three classifiers – unbiased, with pit = 1
2 , biased, with

pit = 1 − h(Uit), and antibiased, with pit = h(Uit). The
unbiased model is the same as before, the biased model
has hopping amplitudes that match the Haar-random cir-
cuit, and the antibiased model has hopping amplitudes
that are opposite to the biased one. The performance
of the biased classifier are summarized in Fig. 3. As ex-
pected, the biased model improves the accuracy of the
classifier, although it does not change the location of the
accuracy transition. The biased model has a lower suc-
cess transition at psuccess ' 0.15, closer to the fundamen-
tal sharpening bound p# ' 0.09 . Additional results on
the antibiased classifier are presented in the supplemental
material [61].

Discussion. When the measurement rate p is high
enough, the history of measurement outcomes suffices to
distinguish any two initial states, and quantum informa-
tion in the system is unprotected from its environment.
Even if the environment contains this “which-state” in-
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formation, extracting it and predicting the state of the
system naively requires (a) full knowledge of the circuit,
and (b) eL resources for a chain of length L. We showed
here that, for local dynamics with a conservation law,
one can extract which-state information with polyno-
mial overhead and with no knowledge of the gates in
the circuit, by exploiting hydrodynamic correlations be-
tween measurements at different times. The threshold
for in-practice extractability, psuccess, exceeds that for in-
principle extractability, p#. An interesting open question
is whether, between these thresholds, the charge can be
extracted given full knowledge of the circuit but only
polynomial resources on a classical computer.

Our setup is analogous to the problem in black-hole
physics where Alice drops a qubit into an old black hole
and Bob attempts to reconstruct it from the emitted
radiation [55]. The question addressed here is distinct
(but in a sense “dual”) to the problem of finding opti-
mal decoders in the volume-law phase of the standard
MIPT [10, 11, 53]. There, the measurement record con-
tains no information about the encoded qubit, but is in-
stead used to find a unitary operation on the circuit that
unscrambles the input qubit. In our setup, the input
qubit has leaked into the environment, and the task is
instead to unscramble the environment. It would be in-
teresting to extend our results to this decoding problem
in symmetric circuits, and to explore consequences for
covariant error correction [65, 66].
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