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Abstract

In quantum logic spectroscopy (QLS), one species of trapped ion is used as a sensor to detect the

state of an otherwise inaccessible ion species. This extends precision measurements to a broader

class of atomic and molecular systems for applications like atomic clocks and tests of fundamental

physics. Here, we develop a new technique based on a Schrödinger cat interferometer to address

the problem of scaling QLS to larger ion numbers. We demonstrate the basic features of this

method using various combinations of 25Mg+ logic ions and 27Al+ spectroscopy ions. We observe

higher detection efficiency by increasing the number of 25Mg+ ions. Applied to multiple 27Al+,

this method will improve the stability of high-accuracy optical clocks and could enable Heisenberg-

limited QLS.
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Experiments on quantum systems face a common challenge of state detection, which10

requires amplifying tiny, quantum signals above the background noise. In the case of atomic11

systems, including trapped ions, the typical approach to state detection is to observe photons12

scattered from a particular quantum state [1]. This approach works well on a limited number13

of atomic species that have a suitable internal structure; however, numerous other atomic14

species are compelling targets for specific applications but do not have suitable transitions15

for direct state detection. For example, some species of molecular ions [2, 3], highly-charged16

ions [4], and even antimatter particles [5], offer unique opportunities for testing fundamental17

physics [6].18

Quantum logic spectroscopy (QLS) enables state detection of otherwise inaccessible ions19

by introducing a co-trapped logic ion (LI). The internal state of the spectroscopy ion (SI)20

is transferred via a shared mode of motion to the LI where it can be detected via photon21

scattering. The first demonstration of QLS was with 27Al+ [7, 8], which now serves as a22

frequency reference in atomic clocks [9–12]. Variations on the QLS technique have been23

developed with several aims: to demonstrate Hz-level precision spectroscopy for atomic24

clocks [9–12], to perform correlation spectroscopy [13], to work far off-resonance from an25

optical transition [2, 14], or to operate in thermal motion [15, 16]. So far QLS has only26

been performed on up to two SIs [13] and the issue of scaling QLS techniques to larger ion27

numbers [17] is an open experimental question.28

In this paper, we propose and experimentally demonstrate a new method of QLS that can29

be scaled to larger ion numbers. Our protocol employs multiple LIs as independent sensors30

to detect a state-dependent driving force applied to the co-trapped SIs. This technique31

does not require ground state cooling or individual ion addressing, both of which become32

more difficult with larger ion ensembles [18, 19]. We apply the technique experimentally to33

ensembles of up to 3 LIs and 3 SIs. By scaling the number of LIs, we show that technical34

noise in the detection process can be suppressed.35

Our protocol relies on a Schrödinger cat state [20] of the LIs, which acts as an inter-36

ferometric sensor for the state of the SIs (see Fig. 1). Several schemes have been explored37

to create the Schrödinger cat states [20–23], including the σ̂φ-type interaction [22, 24] em-38

ployed here. To produce this, a bichromatic laser field is applied to the LIs with frequency39

components near resonance with the motional sidebands at frequencies ω0 ± ωM , where ω040

is the qubit resonance frequency and ωM is the frequency of a shared motional mode. In41
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FIG. 1. (a) An ensemble of spectroscopy ions (SIs, green dots) and logic ions (LIs, yellow dots)

confined within a linear ion trap. The arrows indicate spin-dependent displacements(SDD) pro-

vided by two bichromatic laser fields. (b)The energy levels involved in these experiments. (c-e):

Schrödinger cat interferometry sequence in motional phase space.

the Lamb-Dicke limit, the dynamics of a single LI driven by the laser are described by the42

interaction Hamiltonian [25],43

Ĥ =
~ηΩ0

2
σ̂φ(âeiφM + â†e−iφM ), (1)

where 2π~ is Planck’s constant, Ω0 is the Rabi frequency, and η is the Lamb-Dicke parameter,44

describing the coupling strength between the laser field and the motional mode of the ions.45

We use a rotated Pauli spin operator σ̂φ = e−iφS σ̂+ + eiφS σ̂− where σ̂±, â, and â† are ladder46

operators of the spin mode and the motional mode, respectively. The phases of the red (φr)47

and blue (φb) components of the laser field control the spin phase, φS = (φb + φr)/2, and48

the motional phase, φM = (φb − φr)/2.49

In the simplest case, consider a single LI prepared in a superposition state: |ψ〉L = |↓〉L =50

(|→〉L + |←〉L)/
√

2, where |↑〉L and |↓〉L are the energy eigenstates of the LI and |←〉L51

and |→〉L are the eigenstates of σ̂φ. Applying the bichromatic laser field realizes a spin-52
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FIG. 2. Quantum logic spectroscopy using a Schrödinger cat interferometer. Using one 25Mg+ as

a LI and one 27Al+ ion as a SI, the ground state probability of the LI (P↓,L) is modulated by the

geometric phase encoded in phase space when scanning the motional phase angle φM . Experimental

results (blue points) match the fit of Eq. (2) (solid line). (b) The duration of LI-SDD is scanned

with ions cooled to the Doppler limit (orange points) and after sideband cooling (blue points).

Lines are the results of numerical simulations without free parameters. (c) Spectroscopy of the

1S0 → 3P1 transition of one, two, and three 27Al+ SIs using equal number of 25Mg+ LIs. Insets on

the top of each figure are fluorescence images of the 25Mg+ ions (bright spots). 27Al+ ion positions

are marked in yellow circles based on theoretical calculations. The data (blue circles) are fit by

numerical simulations (orange line). Error bars represent one standard deviation of the LI quantum

projection noise. Note that for the case of 6 ions, the ion chain has formed a zig-zag geometry, but

we still observe a resonant response in the interferometer, although with reduced contrast.

dependent displacement on the LI (LI-SDD): Û(t) = D̂(+α)|→〉L〈→|L + D̂(−α)|←〉L〈←|L,53

where D is the motional phase space displacement amplitude and α(t) = −iηΩ0te
−iφM/2.54

This is analogous to the first “beam splitter” of an interferometer, creating the Schrödinger55

cat state shown in Fig. 1(c). Likewise, the second beam splitter in the interferometer (LI-56

SDD−1) can be produced by applying the same laser pulse, but shifting φM by π. If there57

is no additional displacement during the interferometer, this operation recombines the two58
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motional components, recovering the initial state of the LI. However, displacements that59

occur between the two interferometer pulses generally produce a geometric phase, which can60

be detected in the final state of the LI. Here, we consider a state-dependent displacement61

(SI-SDD) produced by another bichromatic laser field applied to a SI coupled to the LI62

through their collective motion at frequency ωM . For example, if the SI is prepared in the63

state: |ψ〉S = (|↓〉S + |↑〉S)/
√

2 = |→〉S it undergoes a displacement D̂(β) (marked as SI-64

SDD in Fig. 1(d)), which produces a geometric phase θ = 2αβ sinφM , rotating the state65

of the LI by e−2iθσ̂φ . Measurement of the LI population P↓,L after the second beamsplitter66

gives:67

P↓,L = [1 + cos(4αβ sinφM)]/2. (2)

The parameter β contains information about the interaction between the SI and the SI-68

SDD beams, which is detected interferometrically by the LI. We use this in two distinct69

ways. First, we perform spectroscopy directly on the |↓〉S ↔ |↑〉S transition, where the70

phase, duration and detuing of the SI-SDD pulse itself modulates β (Fig. 2). Second, we71

detect “clock transitions from |↓〉S to the long-lived clock state (|c〉S) using the fact that72

only the ions in state |↓〉S interact with the SI-SDD pulse. This allows for spectroscopy73

on a narrow clock transition and is analogous to the electron-shelving technique used in74

conventional fluorescence measurements (Fig. 3).75

Both protocols can be scaled to NL LIs and NS SIs. Assuming that all ions have nearly76

equal mode amplitudes and feel equal driving forces, all the LIs can be treated as independent77

sensors. The signal observed by the LIs increases linearly with NL [26]. In scaling NS, the78

force experienced by the ions during the SI-SDD pulse increases linearly with the number79

SIs in the state |↓〉S. By appropriate choice of parameters α and φM this provides a means80

to count the number of ions remaining in |↓〉S after a clock pulse on multiple SIs.81

We demonstrate this interferometer using 25Mg+ as the LI and 27Al+ as the SI con-82

fined in a linear Paul trap [12, 27]. The trap frequencies are approximately (ωx, ωy, ωz) =83

2π× (6.7, 6.3, 2.5) MHz for a single 25Mg+. The qubit states of the 25Mg+ ions are encoded84

in |↓〉L ≡ |2S1/2, F = 3,mF = −3〉 and |↑〉L ≡ |2S1/2, F = 2,mF = −2〉. Doppler cooling and85

state detection of 25Mg+ relies on resonance fluorescence from the |↓〉L ↔ |2P3/2, F = 4,mF = −4〉86

cycling transition driven by a circularly-polarized 280.4 nm laser beam.87

A pair of perpendicular 279.6 nm laser beams, referred to here as red Raman (RR) and88

blue Raman (BR) respectively, with wavevector difference ∆k along the trap z-axis are89
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used to generate Raman sideband pulses [27], and the LI-SDD. The BR beam consists of90

two frequency components, which are separated by 2ωM . For the 27Al+ ions, the qubit91

states are encoded in |↓〉S ≡ |1S0,mF = −5/2〉 and |↑〉S ≡ |3P1,mF = −7/2〉. A circular-92

polarized, bichromatic 266.9 nm beam line is applied at a 45◦ angle with the trap z-axis93

for the qubit manipulation and the SI-SDD. Both the 266.9 nm and the 279.6 nm laser94

beams are intensity stabilized using photodiodes before entering the trap to generate carrier95

Rabi rates of approximately 300 kHz. When trapping one 25Mg+ ion and one 27Al+ ion,96

the Lamb-Dicke parameters of the 2.5-MHz center-of-mass (COM) mode along the z-axis97

are ηL = 0.18 for the LI and ηS = 0.10 for the SI, respectively. We use this mode to drive98

both the LI-SDD and the SI-SDD as the mode amplitudes z0 are nearly the same for ions in99

different positions. In addition, the motional phases of both SDDs need to be equal for all100

the ions and controllable between species, which can be satisfied using a bichromatic laser101

field [26]. When scaling to multiple number of ions, those Lamb-Dicke parameters decrease102

since the ground-state wavefunction size z0 ∝ (MωM)−1/2, where M is the total mass of the103

ion chain.104

We first prepare a pair of 25Mg+ and 27Al+ to demonstrate features of the interferometer.105

The 25Mg+ ion is optically pumped to the |↓〉L state, while the 27Al+ ion is rotated to106

|→〉S = (|↓〉S + |↑〉S)/2 using a π/2-carrier pulse. In order to control the geometric phase107

enclosed in the interferometer, it is necessary to maintain the relative phases between the LI-108

SDD on the 25Mg+ ions and SI-SDD on the 27Al+ ions. To accomplish this, we produce the109

red and blue tones for the two bichromatic laser beams by mixing radio-frequency signals110

that are used to drive two acousto-optic modulators (AOMs) from a single source [26].111

The long-term phase coherence can be observed between these two pairs of laser beams by112

scanning their relative phase φM (Fig. 2(a)). In this experiment, we have calibrated 4αβ = π113

and the solid line is a fit based on Eq. (3). In the following experiments we set φM = π/2114

to maximize the geometric phase.115

By scanning the duration of the SI-SDD (Fig. 2) we observe how the detection signal116

varies as a function of β. We include experimental results when the ions are cooled close117

to the Doppler limit and with 1.25 ms of additional sideband cooling (SBC). Both cases118

are affected by higher-order terms in the Hamiltonian beyond the Lamb-Dicke limit, which119

appears as a loss in contrast of the detection signal as a function of the SI-SDD pulse time.120

Due to higher temperature, this effect is more significant for the Doppler-cooled case.121

6



FIG. 3. Scaling the number of LIs to improve the detection efficiency of a single SI. (a) Transitions

between |↓〉S and |c〉S control the output of the interferometer resulting in quantum jumps in

the fluorescence of the LIs. Each of the data points is an average of 20 measurements where

a single measurement takes 1.8 ms. The histograms on the right show the full distribution of

these data (1500 data points, Prob.: probability density). (b) Observed error rate estimate comes

from the comparison of two consecutive detection sequences during the detection. Error bars are

symmetric, based on the standard variance of a Poisson distribution. The black solid line represents

the lifetime-limited error probability due to the spontaneous decay of the |c〉S state.

We use this interferometer to perform spectroscopy of the 1S0 → 3P1 transition of up to122

three 27Al+ ions co-trapped with the same number of 25Mg+ ions. The duration of both LI-123

SDD and SI-SDD pulses are calibrated on resonance to make the geometric phase enclosed124

within the interferometer 2NSαβ = π/2. The detuning between the 266.9 nm laser beam125

and the 1S0 → 3P1 transition (δs) is scanned over a range of 300 kHz. Additional SBC126

pulses are applied for all the cases to suppress the coupling outside the Lamb-Dicke regime.127

We note that when δs 6= 0, the 27Al+ ions and the collective motion undergo a complicated128

evolution, resulting in a complex line shape shown in the simulation results [26].129

Now we introduce the SI clock state (|c〉S) encoded in the |3P0,mF = −5/2〉 state which130

has a lifetime of approximately 20.6 s [28]. Precision measurement of the |↓〉S ↔ |c〉S131
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transition is the basis for Al+ optical clocks. We use a single 27Al+ ion and vary the number132

of 25Mg+ ions from 1 to 3. The 27Al+ ion is driven periodically by a weak 267.4 nm laser133

that is close to resonance with the clock transition resulting in infrequent state changes.134

These “quantum jumps” are clearly observed (Fig. 3(a)) since the SI-SDD, and hence the135

fluorescence of the 25Mg+ ions is gated by the state of the 27Al+ ion.136

We select the number of measurement repetitions via an adaptive Bayesian process [8].137

The detection error probability is determined by comparing the results of two consecutive138

detection sequences (Fig. 3(b)), counting one detection error if they disagree. This assumes139

that the probability of two consecutive detection errors can be ignored, which is true for140

small, uncorrelated error probabilities. We expect this to be valid for shorter detection times141

(the initial slopes in Fig. 3(b)), but errors due to spontaneous decay at longer detection142

times will violate the assumption of uncorrelated errors [29]. We observe that increasing the143

number of 25Mg+ ions increases the measurement efficiency. In addition to the improved144

signal-to-noise ratio, given the same confinement conditions, the Lamb-Dicke parameters145

are also reduced with more LIs, improving the contrast by suppressing imperfections due to146

higher-order processes.147

In Fig. 3(b), we also compare the efficiency of detection at the Doppler limit versus148

after sideband cooling the z-COM mode to near the motional ground state. Although the149

single-shot fidelity is lower with only Doppler cooling, the 1.25 ms additional duration of150

the sideband cooling sequence makes it less efficient.151

We demonstrate the detection protocol with two 27Al+ and two 25Mg+ ions (NS = NL =152

2). We introduce the number states |NS,↓〉 to represent the number of SIs remaining in153

state |↓〉S, where |NS,↓〉 ∈ {|0〉, |1〉, |2〉}. In Fig. 4(a), we show expected fluorescence levels154

for each of these three cases as a function of the SI-SDD duration. Choosing the SI-SDD155

duration to be t1 = 14 µs results in an interferometer phase of θ = π/2 for the case NS,↓ = 2,156

corresponding to both logic ions flipping from bright to dark. However, for NS,↓ = 1 there157

is a 50 % transition probability for both LIs, and for NS,↓ = 0 both LIs remain bright. In158

Fig. 4(b) we prepare these states probabilistically by scanning the frequency of the 267.4 nm159

laser over the resonance frequency of the |↓〉S → |c〉S transition. The final determination160

of the number state uses the same adaptive Bayesian process described earlier, yielding the161

spectroscopy of the 1S0 → 3P0 transition as shown in Fig. 4(c). We calculate projection noise162

limits as a function of both NL and NS in [26]. Ideally, technical noise σNS in determination163
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FIG. 4. (a) 25Mg+ fluorescence when scanning the duration of the SI-SDD pulse. The observed

fluorescence for NS = 2 is plotted along with the expected signal for NS = 1 and 0. All lines come

from numerical simulations using measured experimental parameters. (b) Three-level “quantum

jumps” using two 25Mg+ and two 27Al+ ions. Each data point is an average of 100 measurements.

(c) Quantum logic spectroscopy of the 1S0 ↔ 3P0 transition of two 27Al+ SIs. All experiments in

this figure are done after 1.25 ms sideband cooling. Error bars represent one standard deviation of

the mean.

of NS,↓ is negligible compared to the fundamental quantum projection noise limit.164

The choice of α and β allow the efficiency of the detection sequence to be optimized and165

adapted to different measurement bases. For example, if we choose αβ = NSπ/2 (t = t2 in166

Fig. 4 (a)), even-parity SI states will result in all LIs bright, whereas odd-parity SI states will167

result in all LIs dark. This provides an efficient means for performing QLS at the Heisenberg168

limit [30].169

In summary, we have demonstrated a method of performing QLS based on the Schrödinger170
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cat interferometer that allows for scaling both the number of spectroscopy ions and logic171

ions. This technique operates with ions in thermal motion and is insensitive to the position172

of the ions in the array. Technical improvements to the current experiment including higher173

laser power to address all ions equally and improved background gas pressure will allow this174

protocol to be scaled to longer ion chains. As shown in the supplemental material [26], the175

projection noise in a single detection cycle using this protocol depends on the number of176

logic ions in addition to the number of spectroscopy ions. In the future, this technique could177

allow quantum logic spectroscopy in even larger ion ensembles, where some of the same178

capabilities used here have already been demonstrated [31, 32].179
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