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Impulsive supernova feedback and non-standard dark matter models, such as self-
interacting dark matter (SIDM), are the two main contenders for the role of the domi-
nant core formation mechanism at the dwarf galaxy scale. Here we show that the impulsive
supernova cycles that follow episodes of bursty star formation leave distinct features in the distri-
bution function of stars: groups of stars with similar ages and metallicities develop overdense shells
in phase space. If cores are formed through supernova feedback, we predict the presence of such
features in star-forming dwarf galaxies with cored host halos. Their systematic absence would
favor alternative dark matter models, such as SIDM, as the dominant core formation
mechanism.

I Introduction. One of the most persevering small-
scale challenges [1] to the collisionless cold dark matter
(CDM) paradigm concerns the inner density profiles of
DM halos that host dwarf galaxies. Hints for constant
density cores observed in some dwarf galaxies [2–7]
appear to be at odds with the ubiquitous cusps predicted
by CDM N -body simulations [8, 9]. To reconcile the suc-
cess of the CDM paradigm at predicting the properties
of the large-scale structure of the Universe with these ob-
servations on the scale of low-mass galaxies, a physical
mechanism is required to remove the central DM cusps
predicted by CDM N -body simulations [8, 9]. A poten-
tial way to flatten the central density profile of halos is
through strong and impulsive fluctuations in the gravita-
tional potential caused by supernova-driven episodes of
gas removal [10–16]. For SNF to be effective, supernovae
must occur in quasi-periodic cycles and cause strong
fluctuations in the central potential on timescales
that are shorter than the typical dynamical time in the
galaxy, i.e., impulsively [11]. As the time between
the birth of a heavy (& 8M�) star and its type II
supernova explosion is less than ∼ 40 Myrs, such
quasi-periodic SN cycles can only be realized in
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galaxies with a bursty star formation history, i.e.
a star formation rate that shows order of magni-
tude fluctuations over less than a dynamical time
(see also [17]). Although there is evidence of bursty
star formation in dwarf galaxies at the high mass end
[18], the duration of star bursts in the intermediate and
low mass regime is far more uncertain [19, 20]. In cos-
mological simulations, SNF is most efficient at forming
cores on the scale of bright dwarfs [12–14], as long as
the simulated star formation history is bursty and
the gas dominates the binding energy in the inner
halo before being expelled by feedback, causing a
strong fluctuation in the total potential [15, 17].

In modern sub-resolution models of the inter-
stellar medium (e.g.[21, 22]), both the (average)
burstiness of star formation and the maximal den-
sities to which gas cools before forming stars can
be regulated via a single numerical parameter set
at the resolved scales in the simulations, the so-called SF
threshold nth, which gives the minimum density that gas
needs to reach before it is eligible to form stars [15]. In
an otherwise fixed, idealized (non-cosmological)
setup, adopting larger values of nth results in burstier
SF, more substantial potential fluctuations, and
thus more impulsive SNF, until eventually a threshold
for core formation is reached (see [16] for a discus-
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FIG. 1. Adiabatic and impulsive cusp-core transformation:
Spherically averaged radial DM density of three different
simulated dwarf-size halos after 3 Gyr of simulation time.
The solid blue line corresponds to the CDM simulation with
smooth star formation (nth = 0.1 cm−3), whereas the dashed
green line denotes the result of the CDM simulation with
bursty star formation (nth = 100 cm−3). The red dotted line
corresponds to the SIDM simulation with smooth star for-
mation (nth = 0.1 cm−3) and a self-interaction cross section
σT /mχ = 1 cm2g−1.

sion).

An adiabatic way to form a core is through
elastic scattering between DM particles. Self-
interacting DM (SIDM, [23–26]) redistributes energy
outside-in, leading to the formation of a ∼ 1 kpc size
DM core in dwarf-size halos, provided the self-interaction
cross section is σT /mχ ∼ 1 cm2g−1 on the scales of dwarf
galaxies [24, 27, 28]. Such value of the cross section also
evades current constraints [29–31], while for cross sec-
tions smaller by about an order of magnitude, SIDM is
indistinguishable from CDM [32]. Contrary to SNF,
SIDM causes the formation of cores in all haloes
below a certain mass and, thus, observations of
dwarf galaxies with cuspy host haloes (e.g. [31])
are more challenging to explain in SIDM (how-
ever, see [33] for a possible explanation).

In this Letter we use a suite of hydrodynamical simula-
tions of an isolated dwarf galaxy to demonstrate that im-
pulsive SNF produces distinct, shell-like kinematic signa-
tures that appear in the phase space distribution of stars
in dwarf galaxies – and argue that the systematic absence
of such features across star-forming dwarf galaxies with
confirmed cores, and in particular in dwarfs with
recent starbursts, would point to an adiabatic core
formation mechanism, such as SIDM.

II Simulations. The results presented here are de-
rived from a suite of 16 high-resolution (with a DM
particle mass mDM ∼ 1.3 × 103M� and a typical
baryon mass mb ∼ 1.4× 103M� [34] simulations of an
isolated dwarf galaxy with a total baryonic mass of

FIG. 2. Gas distributions of resulting galaxies after 3 Gyr of
simulation time for two simulations with different star forma-
tion thresholds. We show face-on (left column) and edge-on
(right column) projections of the gas density for the CDM
simulation with smooth (top row) and bursty (bottom row)
star formation. The side-length of the field of view is 20 kpc
in each panel and we defined a coordinate system such
that the z-axis is perpendicular to the gas disc. Notice
how central gas is vertically expelled out of the disc plane
in the simulation with bursty star formation. Such galactic
outflows are characteristic of violent and impulsive events of
supernova-driven energy release.

Mb = 7.2× 108 M� and structural properties similar to
those of the Small Magellanic Cloud (see [21, 22, 35],[36]).
We use the formalism described in [37] to generate ini-
tial conditions of a system in approximate hydrostatic
equilibrium. We then simulate the evolution of the iso-
lated system, using the ISM model SMUGGLE [22] for the
cosmological simulation code AREPO [38], along with the
SIDM model presented in [24], for 16 different com-
binations of the star formation threshold nth and the
SIDM self-interaction cross section σT /mχ. In Fig. 1,
we demonstrate that nearly identical constant den-
sity DM cores can form adiabatically in SIDM sim-
ulations with smooth star formation histories (low
values of nth) and σT /mχ ∼ 1 cm2g−1 and through im-
pulsive SNF in CDM simulations with bursty star
formation histories (high values of nth). While iden-
tical cores can form through SIDM and impul-
sive SNF, the phase space distribution of baryons is
distinctly different between simulations with or with-
out impulsive SNF, irrespective of whether DM
is self-interacting. Hereafter, we illustrate this differ-
ence by comparing the results of the CDM runs with
nth = 0.1 cm−3 (representative of smooth SF and thus
adiabatic SNF) and nth = 100 cm−3 (representative of
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FIG. 3. Average metallicity distribution (top panels) and mass-weighted distribution function (bottom panels) of star particles
calculated after 3 Gyr of simulation time for two different simulations, projected into the radial phase space (R − vR). Star
particles are subject to a cut in stellar age, only stars which are 0.8 − 0.9 Gyr old are shown in these plots.Averaged stellar
metallicity (mass-weighted distribution function) is color-coded according to the scale on the right of each panel. For scale, we
show a third of the escape velocity as a function of radius as black dashed lines. The left (right) column corresponds to the
CDM simulation with smooth (bursty) star formation. Smooth star formation results in a smooth metallicity gradient with the
enriched/younger starts in the centre. Bursty star formation results in an overall weaker gradient, along with the presence of
a shell of stars with high metallicity that intersects a low metallicity population at R ∼ 2kpc. This shell appears as a distinct
overdense region in the mass-weighted distribution function.

bursty SF and thus impulsive SNF).
Projections of the gas distribution after 3 Gyr of sim-

ulation time are shown in Fig. 2 for both benchmark
simulations. The gas distributions of the two runs look
strikingly different, in particular towards the centre of
the galaxies. In the simulation with bursty SF – and
thus with impulsive SNF – the central gas density
is lower than in the immediate surroundings due to a
supernova-driven gas outflow extending out of the galac-
tic disc, which can be clearly appreciated as a nearly
spherical bubble in the edge-on projection. In contrast,
in the simulation with smooth SF, the edge-on projec-
tion of the gas appears rather regular and the face-on
projection has no distinct features.

III Stellar phase space shells. Fig. 3 shows (for
both benchmark CDM runs) the metallicity distribution
and the mass-weighted distribution function of mono-age
stars which are 0.8−0.9 Gyr old projected onto the R−vR
plane at the end of the simulation. For the simulation

with smooth SF, we observe a steady decrease of the av-
erage metallicity of stars with increasing cylindrical ra-
dius, a natural consequence of the centrally concentrated
star-forming gas. Statistically, more stars form in envi-
ronments with higher gas densities, i.e., towards the cen-
tre of galaxies. Thus, the subsequent SNF cycles cause
a metal enrichment of the ISM that is larger in the cen-
tral regions. Therefore, stars of subsequent generations
(like the ones shown in Fig. 3)acquire a negative metal-
licity gradient. Moreover, the radial velocities of stars
are rather small in magnitude, vR ∼ 25 km s−1 at most.
A different picture emerges in the centre of the galaxy
with impulsive SNF. Instead of a monotonic stellar
metallicity gradient, a pattern of several shells in R− vR
space emerges in the metallicity distribution – and the
mass-weighted distribution function – of stars with sim-
ilar ages. The shells are comprised of star particles with
high metallicities, some of which move at radial speeds
of more than 50 km s−1. These high metallicity shells
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intersect phase space regions inhabited by more metal-
poor star particles whose radial speeds are smaller on
average. Such features are transient for a given group of
stars, but occur at various times in the evolution, and
are not unique to the CDM run with nth = 100 cm−3; we
find them also in other simulations (both in CDM and
SIDM), as long as the SF histories in these simula-
tions are bursty – and SNF is impulsive. For our
choice of initial conditions and fixed SMUGGLE
parameters, the transition from smooth to bursty
SF – and thus to impulsive SNF – happens around
nth = 10 cm−3 (see [16]). Notice that shells appear
in all simulations in which SNF is impulsive – re-
gardless of whether the DM is self-interacting or
not.

To quantify the difference between the final stellar dis-
tributions in the bursty SF case and in the smooth SF
case shown in Fig. 3, we estimate the likelihood of ran-
domly finding, in the smooth SF case, an overdensity sim-
ilar to that associated with the clear shell in the bursty
SF simulation. We take the normalized, cumulative
stellar mass distribution of the smooth SF simu-
lation as a target distribution for random sam-
pling and construct 107 re-sampled distributions,
each time drawing as many radii as there are stars
in the original distribution. For each re-sampled
distribution, we then search a pre-defined “signal
range” for the largest spherical overdensity that
arises as a result of Poisson sampling [39]. We
also calculate the overdensity at the position of
the shell in the bursty SF simulation. From these
values, we create a distribution of global (signal
region) and local (shell area) overdensities. Com-
parison against the measured shell overdensity in
the bursty SF simulation reveals that the shell
has a global (local) significance of more than 5σ
(3.3σ) compared to the smooth SF case. These are
conservative estimates for the significance of the shell-
like feature since they are based on the stellar density
distribution only and do not take into account informa-
tion on the metallicity of stars. Finding an overdensity
of such amplitude, combined with the observation that
the overdensity consists mainly of high-metallicity stars,
would be a smoking gun signature of an impulsive SNF
cycle following an episode of bursty SF.

To determine how the shell-like features appear in the
line-of-sight phase space of galaxies that are observed
edge-on, we projected the distributions shown in Fig. 3
into |x| − vy space (using the coordinate system de-
fined in Fig. 2, [40]). In the featureless smooth SF
case, the emerging distribution of stars tracks the rota-
tion curve of the galaxy, with a monotonic decrease of
(average) metallicity with distance. In the bursty SF
case, we observe two isolated overdense clusters consist-
ing mainly of high metallicity stars, at a distance to the
galaxy’s centre of ∼ 2 kpc, similar to the radius at which
the phase space shell appears in Fig. 3. We explicitly con-
firmed that those clusters consist of the same stars as the

phase space shell.We emphasize again that similar
differences between the phase space distributions
of stellar particles in galaxies with or without im-
pulsive SNF emerge when SIDM simulations are
considered.

IV How shells are created. The shell-like features
shown in Fig. 3 arise in the aftermath of starburst events
– which are closely followed by impulsive episodes of SNF.
Reference [41] showed that young stars born in
a turbulent ISM inherit the orbits of the star-
forming gas and can be born with significant ra-
dial motion. The orbits of these stars are then
further heated by subsequent feedback episodes,
leading to sustained radial migration. The shells
presented here form from such groups of stars,
which are born during starburst events in a tur-
bulent ISM. Such groups of stars constitute orbital
families[16, 42] – sets of orbits defined by similar
integrals of motion[43]. Moreover, they are born
with similar metallicities and – as outlined above
– with some initial amount of radial motion.

Instead of causing a coherent net expansion,
subsequent impulsive fluctuations in the gravita-
tional potential discontinuously change the (gravita-
tional) energy of a star (particle) by an amount that de-
pends on its orbital phase [11, 42]. As a consequence,
they can split an initially phase mixed orbital family,
i.e., create a distribution that is unmixed [16].
The phase space shells we observer are therefore
signatures of the early stages of phase mixing
[44, 45]. To compare this to the smooth case,
we note that in dynamical systems in which orbits are
regular and stars act as dynamical tracers of the grav-
itational potential, the average metallicity of stars can
only depend on their actions [46]. We can therefore
generally assume orbital families to be well approx-
imated by groups of stars with similar ages and metal-
licities. Across our simulation suite, we find that in
simulations with impulsive SNF (following bursty SF),
the energy distribution of orbital families is wider than in
simulations with smooth SF [47], a direct result of the
period, SNF-driven heating of stellar orbits (see
[42]). The shell-like signatures of early-stage phase
mixing observed here are thus a direct consequence of
impulsive SNF.

V Discussion and outlook. Finding stellar shells
similar to the ones presented here in nearby
dwarfs would imply a prior episode of impulsive
SNF without necessarily establishing SNF as the
dominant core formation mechanism. In cosmolog-
ical halos, we expect that diffusion caused by the halo’s
triaxial shape will erase the shells within∼ 1 dynamical
time [42], implying that galaxies without recent bursty
star formation (e.g. quenched galaxies) are fairly bad
targets to look for phase space shells. Nevertheless, it is
instructive to evaluate the potential of detecting such sig-
natures of bursty SF in the Milky Way satellites, in par-
ticular Fornax [48–50], since it has been claimed to have
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a core [5] (albeit this remains controversial, see [51]) and
information on line-of-sight kinematics, metallicity [48],
and age [49] is available for a sub-sample of its member
stars. Unfortunately, we find that the ages of individual
stars carry uncertainties which are too large (∼ 1 Gyr)
to conclusively identify orbital families. Ideal future
targets to look for impulsive SNF signatures are star-
forming field dwarfs in the vicinity of the Local Group
(see [4]). At the current time, the number of re-
solved stars with known ages and metallicities in
these galaxies is too small. Within the next decade,
however, the Roman Space Telescope will provide pre-
cise photometric data of individual stars in dwarf galaxies
within the Local Volume [52]. Combined with spectro-
scopic data from the ground, this will enable the pre-
cision needed to determine the ages, metallicities, and
kinematics of a sufficient number of stars to conclusively
establish whether the characteristic shell-like signatures
of impulsive SNF presented here – or rather their pro-
jections into the space of line-of-sight velocity vs
projected radius [53] – are ubiquitously present or
systematically absent. Further in the future, new
generations of extremely large telescopes (ELTs)
may even provide sufficiently precise data on the
3d motions of stars in nearby dwarfs to allow for
a search of shells directly in R− vR space [54].

The significance of a (potential) non-detection
of such shells in dwarf galaxies with a core also
depends on how robust our results are to changes
in the initial setup or the stellar evolution model.
Apart from the host halo’s triaxiality, two effects
that we do not explicitly test for may be signif-
icant. First, SF histories in real dwarf galaxies
may be bursty, but starbursts may occur away
from the galaxy’s center. However, SNF needs to
impulsively change the central potential to be a
feasible core formation mechanism (see [11, 16]).
The non-detection of kinematic signatures would
then require starbursts to occur mainly in the
center of dwarfs, but exclusively off-center at late
times; a possible but unlikely scenario (see [41]).
Second, stellar clusters (i.e. orbital families) born
in starburst events need to contain a sufficient

number of stars to allow us to identify shells
formed from them. Based on our re-sampling
routine [55], we estimate that a shell needs to
contain a few hundred stars to be significant at a
2σ level (notice that this implies that future ex-
periments need to provide precise age and metal-
licity information for O(104) stars if we assume
a constant average SF rate). In a detailed high-
resolution study of the impact of different kinds
of stellar feedback, [56] found that clusters of such
size formed in all simulations in which SNF was
included. At this time, we are unaware of any
study in which no clusters of at least ∼ 100 stars
form, while SNF is modeled self-consistently and
found it to be a feasible core formation mecha-
nism.

We thus infer that the conclusive, systematic ab-
sence of signatures of impulsive SNF across all isolated,
star-forming field dwarfs with confirmed cores would give
strong support to alternative DM models, such as SIDM.
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