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In the framework of quantum thermodynamics preparing a quantum system in a general state requires the
consumption of two distinct resources, namely, work and coherence. It has been shown that the work cost of
preparing a quantum state is determined by its free energy. Considering a similar setting, here we determine the
coherence cost of preparing a general state when there are no restrictions on work consumption. More precisely,
the coherence cost is defined as the minimum rate of consumption of systems in a pure coherent state, that is
needed to prepare copies of the desired system. We show that the coherence cost of any system is determined by
its quantum Fisher information about the time parameter, hence introducing a new operational interpretation of
this central quantity of quantum metrology. Our resource-theoretic approach also reveals a previously unnoticed
connection between two fundamental properties of quantum Fisher information.

Information-theoretic approach to quantum thermodynam-
ics and, more specifically, the resource-theoretic approach [1]
has proven to be extremely fruitful. This, for instance, has
lead to the discovery of new aspects of quantum coherence
in thermodynamics (See, e.g., [2–9]). In this approach one
studies the interconvertability of systems under a limited set
of operations, which presumably can be implemented with
negligible thermodynamic costs. A popular choice is the set
of thermal operations, i.e., those that can be implemented by
coupling the system to a thermal bath via energy-conserving
unitaries [10, 11].

From a thermodynamics point of view, preparing a general
quantum state requires consumption of both work and ener-
getic coherence, i.e., coherence between states with different
energies, which can also be understood as asymmetry with re-
spect to time translations [3, 12–14]. In the resource-theoretic
framework of quantum thermodynamics, it has been shown
that the work cost of preparing many independent and iden-
tically distributed (iid) copies of any quantum system is de-
termined by its free energy [11]. On the other hand, charac-
terizing the coherence cost of preparing quantum systems has
remained an open question [9, 15].

In this Letter we settle this question and show that the co-
herence cost of preparing a quantum system in a general state
is determined by the Quantum Fisher Information (QFI) [16–
19] of the system about the time parameter (See theorem 2).
More precisely, to prepare copies of the desired system in the
iid regime, the minimum rate of consumption of systems in a
fixed pure coherent state is determined by the ratio of QFI’s of
the desired system to the input pure system (See Fig.1). Inter-
estingly, a similar result does not hold for the reverse process,
called coherence distillation: for generic mixed input states
the rate of conversion to pure coherent states is zero [6].

Hence, our result reveals a novel operational interpretation
of QFI, which is the central quantity of quantum metrology
[20, 21]. Remarkably, our resource-theoretic approach also
clarifies a close connection between two different fundamen-
tal properties of QFI, namely QFI as a convex roof of variance
and QFI as the variance of purification of state. While QFI has
been extensively studied in quantum metrology, to our knowl-
edge this connection has not been appreciated before.

To focus on coherence as a resource independent of work,

one can supplement thermal operations with a battery or work
reservoir that can provide an unlimited amount of work (In
other words, one can make work a free resource). It turns
out [6, 22, 23] that in this way one can implement all and only
time-Translationally Invariant (TI) operations, i.e., completely
positive trace-preserving maps satisfying the covariance con-
dition,

e−iHoutt ETI(σ) eiHoutt = ETI
(
e−iHintσeiHint

)
, (1)

for all density operators σ and all times t [24–27]. Here, Hin
and Hout are, respectively, the input and output Hamiltoni-
ans. TI operations can not generate (energetic) coherence: to
prepare systems containing coherence via TI operations, one
needs an input that contains coherence. On the other hand,
preparing incoherent states, i.e., those that commute with the
system Hamiltonian, does not require consuming coherence.
In summary, to understand coherence as a resource indepen-
dent of work, we study state conversions under TI opera-
tions. It is worth noting that going beyond these operations
makes coherence a free resource: using any non-TI operation
it is possible to generate energetic coherence from incoherent
states, albeit this may require correlation between the input of
the operation and an auxiliary system [6].

TI operations and the notion of coherence cost also arise
in the study of quantum clocks. While coherent states and
non-TI operations should be defined relative to a background
reference clock, Eq.(1) means that TI operations can be
defined and implemented without access to such clocks
[6, 24, 25]. Suppose one does not have access to the reference
clock, but is given quantum clocks that are synchronized with
it. What is the minimum rate of consumption of quantum
clocks in pure states, that is needed to prepare copies of a
desired system (See Fig.1)? Again, we find that the answer is
given by the QFI of the system about the time parameter.

Pure states in the iid regime—We study systems with finite-
dimensional Hilbert spaces. Each system is specified by
its Hamiltonian H and density operator ρ. We assume the
systems under consideration have periodic dynamics with a
fixed but arbitrary period τ such that τ = inf{t > 0 :
e−iHtρeiHt = ρ}. Under TI operations, a system with pe-
riod τ can only be converted to systems with period τ/k, for
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FIG. 1: Preparing a quantum system in a general state requires con-
sumption of both work and coherence. Here, we study the coherence
cost of preparing state, when there are no limitations on work con-
sumption. Equivalently, we characterize the minimum rate of con-
sumption of quantum clocks that is needed to prepare a general state,
when one does not have access to the standard reference clock.

an integer k. In the following, we consider n copies of a sys-
tem with Hamiltonian H and state ρ, which means their joint
state is ρ⊗n and their total Hamiltonian is

∑n−1
j=0 I

⊗j ⊗H ⊗
I⊗(n−j−1).

Consider many copies of a system with Hamiltonian H1,
pure state ψ1 and period τ . Is it possible to convert these sys-
tems to many copies of another system with the same period
τ , in pure state ψ2 and Hamiltonian H2, using TI operations?
Since exact conversions are often impossible and physically
intractable, as usual we allow a vanishing error quantified,
e.g., in terms of the trace distance D(ρ, σ) = ‖ρ− σ‖1/2 (or,
equivalently, one minus fidelity [28–30]). In the following,
VH(ψ) = 〈ψ|H2|ψ〉−〈ψ|H|ψ〉2 denotes the energy variance
of pure state ψ with respect to HamiltonianH . In Supplemen-
tary Material (SM), we prove our first main result:

Theorem 1. Consider a pair of systems with pure states ψ1
and ψ2 and Hamiltonians H1 and H2, with equal periods.
Using TI operations the state conversion

|ψ1〉⊗n
TI−−→

εn≈ |ψ2〉⊗dRne as n→∞ , εn → 0 ,

with vanishing error εn in trace distance is possible if
rate R ≤ VH1(ψ1)/VH2(ψ2) and is impossible if R >
VH1(ψ1)/VH2(ψ2).

Hence, in the iid regime oscillators in pure states with the
same frequencies are equivalent resources, in the sense that
by adding or absorbing sufficient amount of energy their co-
herence content, or equivalently, their information content
about time, can be converted from one form to another. Note
that the maximal achievable rate from system 1 to 2, namely
VH1(ψ1)/VH2(ψ2), is the inverse of the maximal rate from
system 2 to 1. In this sense the process is reversible. Conse-
quently, in this regime the usefulness of a clock can be quan-

tified by a single number, namely its energy variance. In other
words, we can pick a standard clock-bit (coherence-bit) or c-
bit with period τ and quantify the amount of resource of a
general state relative to this standard. A convenient choice is
a two-level system with HamiltonianHc-bit = πσz/τ and state
|Θ〉c-bit = (|0〉+ |1〉)/

√
2, with the energy variance π2/τ2.

Theorem 1 strengthens and generalizes a previously known
result [25, 31, 32] in multiple ways. The common intuition
behind all these results, first discussed in [31, 32], is based on
the central limit theorem, which implies that the total energy
distribution of many copies of a state converges to a Gaussian
distribution, and hence is characterized by its variance and
mean, which are both additive. Then, as the mean energy can
be changed arbitrarily by TI operations, the conversion rate is
determined by the ratio of variances.

One aspect of this theorem that makes it stronger than the
previous result is the requirement of convergence in the trace
distance, whose significance arises from Helstrom’s theorem
[16, 29, 30]. According to this theorem states with vanish-
ing trace distance are indistinguishable and therefore equiva-
lent resources. To establish such convergence, in addition to
the standard results in the resource theory of asymmetry [25–
27, 33], we also apply local limit theorems in probability the-
ory [34–37]. Another new aspect of the above result is the rig-
orous upper bound on the achievable rate R. Since variance is
additive for uncorrelated systems and is non-increasing in ex-
act state conversions under TI operations, it is straightforward
to show that the rate R > VH1(ψ1)/VH2(ψ2) is not achiev-
able in exact state conversions [25]. However, this argument
fails in the presence of error εn: For a pair of output states
with trace distance εn, the energy variances can differ by or-
der εndRne2‖H‖2. Hence, the variance per copy can differ by
order εndRne‖H‖2, which does not necessarily vanish, even
if εn → 0 in the limit n → ∞. We overcome this complica-
tion and show that for R > VH1(ψ1)/VH2(ψ2), error cannot
vanish as n→∞ (See Eq.(4) below for the general result).

Theorem 1 only applies to pure states. In the rest of this
paper we consider a variant of this scenario where the outputs
are mixed. But, first we discuss the interpretation of the
energy variance in this theorem.

Quantum Fisher Information (QFI) – Consider the family of
states {e−iHtρeiHt}t corresponding to the time-evolved ver-
sions of a system in the initial state ρ and HamiltonianH . The
QFI relative to the time parameter t for this family of state is

FH(ρ) = 2
∑
j,k

(pj − pk)2

pj + pk
|〈φj |H|φk〉|2 , (2)

where ρ =
∑
j pj |φj〉〈φj | is the spectral decomposition of ρ.

Equivalently, QFI can be expressed as the second derivative
of the fidelity of states ρ and e−iHtρeiHt with respect to the
parameter t [38]. According to the standard interpretation of
this quantity in quantum estimation, FH(ρ) determines how
well one can estimate the unknown parameter t, by measur-
ing n � 1 copies of state e−iHtρeiHt: the mean squared
error 〈δt2〉 for any unbiased estimator satisfies the Cramér-
Rao bound 〈δt2〉 ≥ [nFH(ρ)]−1, which is attainable in the
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asymptotic regime [16–18, 39]. QFI has found extensive ap-
plications beyond quantum metrology (See, e.g. [13, 40–50]).
In particular, it has been studied as an example of measures of
asymmetry and (unspeakable) coherence [33, 51–53] (skew
information [27, 54–56] and the relative entropy of asymme-
try [57, 58] are two other well-known examples). However,
prior to this work, the operational interpretation of QFI as the
coherence cost, which distinguishes this measure of coherence
from the others, was not known.

QFI has various nice properties, including (i) Faithfulness:
It is zero if, and only if, state is incoherent. (ii) Mono-
tonicity: It is non-increasing under any TI operation ETI,
i.e., FH(ETI(ρ)) ≤ FH(ρ). In particular, it remains invari-
ant under energy-conserving unitaries. (iii) Additivity: For a
composite non-interacting system with the total Hamiltonian
Htot = H1 ⊗ I2 + I1 ⊗ H2, QFI is additive for uncorrelated
states, i.e., FHtot(ρ1⊗ρ2) = FH1(ρ1)+FH2(ρ2). (iv) Convex-
ity: For any p ∈ [0, 1] and states ρ and σ, FH(pρ+(1−p)σ) ≤
pFH(ρ) + (1− p)FH(σ).

For pure states, QFI reduces to the energy variance, namely
FH(ψ) = 4VH(ψ). Therefore, theorem 1 means that in
the iid regime, the maximal rate of conversion between
pure states is determined by the ratio of their QFI’s. This
interpretation suggests that to generalize the result to mixed
states, the role of variance should be replaced by QFI. As
we show below, this conjecture is partially correct, namely
when the output states are mixed but the inputs are still pure.
On the other hand, [6] shows that this conjecture fails for
generic mixed input states. It is also worth noting that the
state conversion described in theorem 1 requires coherent
interactions between the input and output: unless ψ2 is an
energy eigenstate, it is not possible to achieve a positive rate
R > 0 with a vanishing error, using measure-and-prepare
(i.e., entanglement-breaking) TI operations [6]. This again
suggests that the operational interpretation of QFI in the
context of parameter estimation cannot fully explain the
special role of variance in theorem 1.

Coherence cost—Consider a system with state ρ and Hamil-
tonian H with period τ . We define the coherence cost CTI

c (ρ)
of this system as the minimal rate at which c-bits with period
τ (i.e., two-level systems with state |Θ〉c-bit = (|0〉+ |1〉)/

√
2

and Hamiltonian Hc-bit = πσz/τ ) have to be consumed for
preparing copies of this system in the iid regime, i.e.,

CTI
c (ρ) = inf R : Θ⊗dRnec-bit

TI−−→
εn≈ ρ⊗n as n→∞, εn → 0 ,

where the vanishing error εn is quantified in the trace dis-
tance. This quantity can be thought of as the counterpart of
the entanglement cost in entanglement theory [59] (Note that
a different notion of coherence cost for speakable coherence
is previously studied in [15, 60]). Our second main result is

Theorem 2. (Operational Interpretation of QFI) The co-
herence cost of a system with Hamiltonian H , state ρ, and
period τ is proportional to its QFI about the time parameter.

That is

CTI
c (ρ) = FH(ρ)

Fc-bit
= ( τ2π )2 × FH(ρ) . (3)

The lower boundCTI
c (ρ) ≥ FH(ρ)/Fc-bit is a special case of

a more general result, which is of independent interest: Con-
sider a pairs of systems with states ρ1 and ρ2 and Hamiltoni-
ans H1 and H2. If there exists a sequence of TI operations
converting copies of system 1 to 2 with rate R(ρ1 → ρ2) and
with a vanishing error in the trace distance (in the sense de-
fined above), then

R(ρ1 → ρ2) ≤ FH1(ρ1)
FH2(ρ2) . (4)

Although this might be expected from the monotonicity and
additivity of QFI, as we discussed in the case of variance, in
the presence of a non-zero vanishing error these properties
do not necessarily imply Eq.(4). In SM, we prove this bound
using the connection between QFI and Bures distance. At
the end of this Letter we sketch the proof of the other side
of theorem 2. But, first we discuss how QFI appears in the
single-copy regime.

QFI in the single-copy regime– A natural way to quantify the
coherence content of a mixed state ρ is to find the minimum
QFI of a purification of ρ. More precisely, consider an auxil-
iary system A with Hamiltonian HA and let |Φρ〉SA be a pure
joint state of SA, with the reduced state TrA(|Φρ〉〈Φρ|SA) =
ρ. What is the minimum possible energy variance, or, equiv-
alently the QFI of such pure states with respect to the total
Hamiltonian of systems S and A?

Theorem 3. QFI of system S with state ρ and Hamiltonian
HS , is four times the minimum energy variance of all purifi-
cations of ρ with auxiliary systems not interacting with S, i.e.

FHS (ρ) = min
Φρ,HA

FHtot(Φρ) = 4× min
Φρ,HA

VHtot(Φρ) , (5)

where Htot = HS ⊗ IA + IS ⊗HA, and the minimization is
over all pure states |Φρ〉SA satisfying TrA(|Φρ〉〈Φρ|SA) = ρ,
and all Hamiltonians HA of system A.

This is closely related to the result of [61, 62] in the
context of metrology (See SM for further discussion). SM
presents two different proofs of theorem 3; one is based
on the Uhlmann’s theorem [29, 30] and the connection be-
tween fidelity and QFI (which is similar to the argument of
[61]) whereas the second proof is via direct minimization.
The latter approach implies that for purification |Φρ〉SA =∑
j

√
pj |φj〉S |φj〉A of state ρ =

∑
j pj |φj〉〈φj | the minimum

in Eq.(5) is achieved for Hamiltonian

HA = −2
∑
j,k

√
pjpk

pj + pk
|φj〉〈φk|HS |φj〉〈φk| . (6)

For this Hamiltonian FHS (ρ) = 4(VHS (ρ)−VHA(ρ)) and the
QFI of A is non-zero, provided that the QFI of S is non-zero
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and ρ is full-rank. This has a remarkable implication: even
though A carries a non-zero QFI, by discarding this subsystem
one does not loose QFI.

Does this theorem determine the coherence cost of ρ? From
theorem 1 one may expect that purification Φρ can be ob-
tained by consuming c-bits at rate (τ/2π)2FHtot(Φρ), which
in turn would imply ρ can be obtained with this coherence
cost. And the above theorem implies that FHtot(Φρ) can be as
low as FHS (ρ). However, there is an issue with this argument:
theorem 1 applies to periodic systems, whereas in general,
the dynamics of Φρ under Hamiltonian Htot is not periodic.
Imposing the requirement of periodicity, in general increases
the minimum variance of purification. For instance, suppose
for the same purification Φρ instead of Hamiltonian in Eq.(6)
one chooses HA = −H∗S , that is the complex conjugate of
HS in the basis {|φj〉}. Then, the period of the joint system
will be generally τ . But, now the energy variance is equal to
2WHS (ρ) ≥ FHS (ρ), where WHS (ρ) = −Tr([√ρ,HS ]2)/2
is another quantifier of coherence and asymmetry, named
skew information [27, 54–56].

To overcome this issue, we use a different approach for
preparing ρ: we consider ensemble of pure states with den-
sity operator ρ. Interestingly, there exists an optimal ensemble
whose average QFI is equal to the QFI of ρ.

Theorem 4. QFI is four times the convex roof of variance,
i.e.,

FH(ρ) = min
{qk,ηk}

∑
k

qkFH(ηk) = 4× min
{qk,ηk}

∑
k

qkVH(ηk) ,

(7)
where the minimization is over ensembles of pure states
{qk, ηk} satisfying

∑
k qk|ηk〉〈ηk| = ρ. Furthermore, assum-

ing the dynamics of ρ underH is periodic, the optimal ensem-
ble can be chosen such that each ηk is either an eigenstate of
Hamiltonian H or its period under H is an integer fraction of
the period of ρ under H .

In analogy with the entanglement theory, the right-hand
side of Eq.(7) can be called coherence of formation [63]. The
first part of this theorem was originally conjectured by Toth
and Petz [64] and was later proven by Yu [65]. Since then this
result has found various applications in quantum metrology
(See, e.g. [66]). Note that the convexity of FH implies that
if
∑
k qk|ηk〉〈ηk| = ρ then FH(ρ) ≤

∑
k qkFH(ηk). Achiev-

ability of this bound was proved in [65].
Our resource-theoretic approach reveals a deep connection

between this property of QFI and its property studied in the-
orem 3, which results in a simple proof of theorem 4: Let
|Φρ〉SA and HA be, respectively, an optimal purification of
ρ, and the corresponding Hamiltonian of the auxiliary system
A satisfying Eq.(5). Let {|Ek〉} be an eigenbasis of Hamil-
tonian HA. By measuring A in this basis, one obtains the
average joint state σSA =

∑
k qk |ηk〉〈ηk|S ⊗ |Ek〉〈Ek|A,

where qk is the probability of observing |Ek〉 and |ηk〉S =
〈Ek|Φ〉SA/

√
qk is the corresponding state of S. Then,

FHS (ρ) ≤ FHtot(σSA) ≤ FHtot(Φρ) . (8)

Here, both bounds follow from the monotonicity of QFI

under TI operations: State ρ of system S can be obtained from
σSA by discarding system A, and σSA is obtained from Φρ,
by measuring A in the energy eigenbasis; both operations are
clearly TI. Then, the fact that FHtot(Φρ) = FHS (ρ), implies
that both bounds hold as equality. Finally, since energy
eigenstates {|Ek〉} have zero QFI and are orthogonal, QFI of
σSA is equal to the expected QFI of the ensemble {qk, |ηk〉},
i.e.,

∑
k qkFHS (ηk) = FHtot(σSA) = FHS (ρ). Thus, Eq.(7)

holds with |ηk〉 = (
∑
j Ukj

√
pj |φj〉)/

√
qk, and probability

qk = 〈Ek|ρ|Ek〉 =
∑
j pj |Ukj |2, where Ukj = 〈Ek|φj〉 are

the matrix elements of the unitary that diagonalizes HA in
Eq.(6) in the eigenbasis of ρ. In summary, the fact that QFI is
the minimum variance of purifications (Theorem 3) implies
that QFI is also the convex roof of variance (Theorem 4). The
second part of theorem 4 is shown in SM.

Sketch of Proof of Theorem 2– By combining theorems 1 and
4 with the standard typicality arguments (e.g., in [15, 67]),
we show that the coherence cost of any state is determined
by its QFI. Let (qk, |ηk〉) : k ∈ S be the optimal ensemble
satisfying Eq.(7). As we saw in the above proof, S is a finite
set. Then, ρ⊗m =

∑
k qk|ηk〉〈ηk|, where k = k1 · · · km, qk =

qk1 · · · qkm and |ηk〉 = |ηk1〉 · · · |ηkm〉. For any k ∈ S let
nl(k) be the number of occurrence of state |ηl〉 in |ηk〉. Then,
for δ > 0 define typical strings as those for which the relative
frequency of any l ∈ S is between ql − δ and ql + δ, i.e.,
{k = k1 · · · km| ∀l ∈ S : |nl(k)

m − ql| ≤ δ}. Then,

ρ⊗m =
∑

k∈typical

qk|ηk〉〈ηk|+
∑

k/∈typical

qk|ηk〉〈ηk| . (9)

Now we define a sequence of TI operations that prepare
ρ⊗m with a vanishing error: sample string k with probability
qk. If k is not a typical string, prepare a fixed incoherent
state, which does not consume any c-bits. By the law of
large numbers, as m → ∞ the probability of such events
goes to zero and therefore the corresponding error vanishes.
For typical k, up to a permutation, |ηk〉 can be written as⊗

l |ηl〉⊗nl(k), and typicality implies nl(k) ≤ m(ql + δ).
Therefore, |ηk〉 can be obtained from

⊗
l |ηl〉⊗dm(ql+δ)e,

which has the energy variance
∑
ldm(ql + δ)eVH(ηl). Using

the second part of theorem 4, one can show that the period of
this state is equal to τ , the period of ρ. Then, using a simple
variant of theorem 1 we show that as m→∞, by consuming
(τ/π)2∑

ldm(ql + δ)eVH(ηl) c-bits, we can prepare state
|ηk〉 with a vanishing error (Note that the energy variance of
c-bit is π2/τ2). Using the facts that

∑
l qlVH(ηl) = FH(ρ)/4

and VH(ηl) ≤ ‖H‖2, where ‖H‖ is the operator norm, we
conclude that for any δ > 0, by consuming c-bits at rate
(τ/2π)2 × (FH(ρ) + 4δ‖H‖2) per copy, one can prepare
copies of the desired system with vanishing error. This proves
one direction of theorem 2. See SM for details and the proof
of the other direction.

Conclusion–Preparing a general state requires consumption
of both work and coherence. When coherence is a free
resource, the work cost is determined by the free energy and
when work is free the coherence cost is determined by QFI.
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In a more complete picture both of these resources should
be taken into account. Understanding the possible tradeoff
between these resource costs remain an open question. Also,
generalizing the present results to the case of non-Abelian
groups, such as SO(3) will be interesting (See, e.g., [68, 69]
for progress in this direction). Our resource-theoretic ap-
proach enabled us to clarify a previously unnoticed relation
between fundamental properties of QFI, which is arguably the
most studied quantity in quantum metrology and estimation

theory. As QFI has found extensive applications in different
areas of physics, exploring further implications of theorems 2
and 3 will be interesting.
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[36] J. A. Adell and P. Jodrá, Journal of Inequalities and Applica-

tions 2006, 64307 (2006).
[37] L. Dieci and T. Eirola, SIAM Journal on Matrix Analysis and

Applications 20, 800 (1999).
[38] M. Hayashi, Quantum Information (Springer, 2006).
[39] M. G. Paris, International Journal of Quantum Information 7,

125 (2009).
[40] D. Girolami, T. Tufarelli, and G. Adesso, Physical review letters

110, 240402 (2013).
[41] S. Kim, L. Li, A. Kumar, and J. Wu, Physical Review A 97,

032326 (2018).
[42] C. Zhang, B. Yadin, Z.-B. Hou, H. Cao, B.-H. Liu, Y.-F. Huang,

R. Maity, V. Vedral, C.-F. Li, G.-C. Guo, et al., Physical Review
A 96, 042327 (2017).

[43] D. Girolami and B. Yadin, Entropy 19, 124 (2017).
[44] D. P. Pires, M. Cianciaruso, L. C. Céleri, G. Adesso, and D. O.
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