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In a standard Quantum Sensing (QS) task one aims at estimating an unknown parameter θ,
encoded into an n-qubit probe state, via measurements of the system. The success of this task
hinges on the ability to correlate changes in the parameter to changes in the system response R(θ)
(i.e., changes in the measurement outcomes). For simple cases the form of R(θ) is known, but
the same cannot be said for realistic scenarios, as no general closed-form expression exists. In
this work we present an inference-based scheme for QS. We show that, for a general class of unitary
families of encoding, R(θ) can be fully characterized by only measuring the system response at 2n+1
parameters. This allows us to infer the value of an unknown parameter given the measured response,
as well as to determine the sensitivity of the scheme, which characterizes its overall performance.
We show that inference error is, with high probability, smaller than δ, if one measures the system
response with a number of shots that scales only as Ω(log3(n)/δ2). Furthermore, the framework
presented can be broadly applied as it remains valid for arbitrary probe states and measurement
schemes, and, even holds in the presence of quantum noise. We also discuss how to extend our
results beyond unitary families. Finally, to showcase our method we implement it for a QS task on
real quantum hardware, and in numerical simulations.

Introduction. Quantum Sensing (QS) is one of
the most promising applications for quantum technolo-
gies [1]. In QS experiments one uses a quantum system
as a probe to interact with an environment. Then, by
measuring the system, one aims at learning some rele-
vant property of the environment (usually some charac-
teristic parameter) with a precision and sensitivity that
are higher than those achievable by any classical sys-
tem [2]. QS has applications in a wide range of fields
such as quantum magnetometry [3–6], thermometry [7–
10], dark matter detection [11], and gravitational wave
detection [12, 13].

In a QS experiment one first prepares an n-qubit probe
state ρ that is as sensitive as possible to an external pa-
rameter θ of interest. This ensures that upon encoding
two distinct parameters θ and θ′ on the system, the re-
spective measurements associated to ρθ and ρθ′ will be
sufficiently distinguishable, a prerequisite to any task of
sensing. Second, one obtains the system response R(θ)
to the external interaction by measuring some observable
over ρθ. Third, if the functional form of R(θ) is known
and invertible, one can infer the value of θ from measure-
ment outcomes, as well as estimate the sensitivity of the
QS scheme.

In simple cases all the previous steps are well char-
acterized. For instance, in an idealized magnetometry
experiment it is known that the optimal probe state
is the n-qubit Greenberg-Horne-Zeilinger (GHZ) state,
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while the optimal measurement is a parity measure-
ment [14, 15]. In this case, R(θ) = cos(nθ) which allows
one to obtain the magnetic field as θ = cos−1(R(θ))/n
(assuming θ ∈ (−π/n, π/n)), and the state’s sensitivity
as (∆θ)2 = 1/n2, which corresponds to the Heisenberg
limit [2]. However, the situation becomes more involved
in realistic scenarios where the system dynamics are not
known, and hence where the explicit functional form of
R(θ) may not be accessible. For instance, when noise in
the magnetometry setting is taken into account, the GHZ
state is no longer optimal [16–18]. In this case the true
response R(θ) will inevitably deviate from the idealized
cosine formula, limiting the extent to which θ can be ac-
curately estimated. While recent works have focused on
maximizing the sensitivity of QS protocols in noisy sit-
uations, by means of variational approaches [17, 19–24],
methods to recover the true R(θ) in-situ are still lacking.

Here we introduce a data-driven inference method
which allows us to efficiently characterize the exact func-
tional form of R(θ) for a general class of unitary families.
We show that R(θ) can be expressed as a trigonometric
polynomial of degree n, such that it can be fully deter-
mined by only measuring the system response at a set
of 2n + 1 known parameters. We then discuss how the
inferred function can be used to estimate the value of
any unknown parameter, as well as the sensitivity of the
scheme. Moreover, we rigorously analyze the inference
error. Finally, we show that our method can be extended
to cases where the system response is no longer exactly a
trigonometric polynomial, but can still be approximated
by one. The applications of the inference scheme are
demonstrated in both numerical simulations as well as
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real implementations on a quantum computer.
Results. Here we consider a single-parameter QS set-

ting employing an n-qubit probe state ρ to estimate a pa-
rameter θ. As shown in Fig. 1, ρ is prepared by sending
a fiduciary state ρin through a state preparation channel
E such that E(ρin) = ρ. We focus on the case of unitary
families where the parameter encoding mechanism is of
the form

Sθ(ρ) = e−iθH/2ρ eiθH/2 = ρθ . (1)

Here, H is a Hermitian operator such that H =
∑
j hj

with h2
j = 11, and [hj , hj′ ] = 0, ∀j, j′. As shown be-

low, the Hamiltonian in a magnetometry task is precisely
of this form. We allow for the possibility of sending ρθ
through a second pre-measurement channel D which out-
puts an m-qubit state D(ρθ) (with m 6 n), over which
we measure the expectation value of an observable O,
with ||O||∞ 6 1. The system response is thus defined as

R(θ) = Tr[D ◦ Sθ ◦ E(ρin)O] . (2)

This setting encompasses cases where E or D are noisy
channels, as well as cases of imperfect parameter encod-
ing where a θ-independent noise channel acts after Sθ, as
is further discussed in the Supplemental Material (SM)
[25].

Leveraging tools from the quantum machine learning
literature [26] we prove the following theorem.

Theorem 1. Let R(θ) be the response function in Eq. (2)
for a unitary family as in Eq. (1). Then, for any E, D and
measurement operator O, R(θ) can be exactly expressed
as a trigonometric polynomial of degree n. That is,

R(θ) =

n∑
s=1

[as cos(sθ) + bs sin(sθ)] + c , (3)

with {as, bs}ns=1 and c being real valued coefficients.

Notably, Theorem 1 determines the exact functional
relation between the encoded parameter θ and the system
response. Furthermore, the 2n+1 coefficients {as, bs}ns=1

and c, that are not known a priori, can be efficiently esti-
mated by means of a trigonometric interpolation [27].
This is readily achieved by measuring the system re-
sponses at a set of predefined parameters P = {θk}2n+1

k=1
(see Fig. 1), as this leads to a system of 2n+ 1 equations
with 2n + 1 unknown variables. Hence, one needs to
solve a linear system problem of the form A · x = d.
Here, x = (a1, . . . an, b1, . . . bn, c) is the vector of un-
known coefficients, d = (R(θ1), . . . ,R(θ2n+1)) is a vec-
tor of measured system responses across P and A is a
(2n+ 1)× (2n+ 1) matrix with elements Akj = cos (jθk)
for j = 1, . . . n, Akj = sin (jθk) for j = n + 1, . . . 2n and
Ak(2n+1) = 1. Thus, solving x = A−1 · d allows us to
fully characterize R(θ). In the SM we provide additional
details on this linear system problem.

Here we note that A can be singular (for instance if
θk = θk′ + 2π for any two θk, θk′ ∈ P ), and hence care

FIG. 1. Inference-based QS scheme. An input state ρin is
sent through the following channels: state preparation E , pa-
rameter encoding Sθ, pre-measurement D. We then measure
the expectation value of O. By measuring the system response
at 2n+ 1 parameters, we can recover the exact form of R(θ)
in Eq. (3). From R(θ) we can infer the value of a parameter
given the system response, and compute the sensitivity of the
sensing scheme.

must be taken when determining the 2n+ 1 parameters.
As shown in the SM, the optimal strategy is to uniformly
sample the parameters as

θk =
2π(k − 1)

2n+ 1
, with k = 1, . . . , 2n+ 1 , (4)

since this choice reduces the matrix inversion error.
In practice one cannot exactly evaluate the responses
R(θk), but rather can only estimate them up to some
statistical uncertainty resulting from finite sampling. We
define R(θk) as the N -shot estimate of R(θk), and R̃(θ)
as the inferred response, a trigonometric polynomial of
the form in Eq. (3), obtained by solving the linear system
of equations with the estimates R(θk). The effect of the
estimation errors on the accuracy of the inferred response
can be rigorously quantified as follows.

Theorem 2. Let R(θ) be the exact response function,
and let R̃(θ) be its approximation obtained from the N -
shot estimates R(θk) with θk given by Eq. (4). Defining
the maximum estimation error ε = maxθk∈P |R(θk) −
R(θk)|, then we have that for all θ

|R(θ)− R̃(θ)| ∈ O (ε log(n)) . (5)

Since the maximum estimation error ε is fundamen-
tally related to the number of shots N , we can derive the
following corollary.
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FIG. 2. Magnetometry task on IBM hardware. a) Inferred response R̃(θ) for system sizes of n = 8 and 16 qubits.
The fields used to train (red point) and test (blue star) the inference scheme, were estimated on the IBM_Montreal quantum
computer using 3.2 × 104 shots per expectation value. We depict the inferred response R̃(θ) (red solid curve) as well as the
fit g(θ) = α cos(βθ + γ) + ζ (black dotted curve). b) Relative response error versus n. Statistics were obtained over 74 test
fields and 7 experiment repetitions. The relative error is defined as the difference between the fit or inferred value and the
measurement response, normalized by the average test expectation value. The red (black) points correspond to R̃(θ) (g(θ)),
while solid (dashed) lines represent the median (upper quartile) error. c) Parameter prediction error versus n, with green dots
denoting the worst possible prediction (see SM).

Corollary 1. The number of shots N , necessary to en-
sure that with a (constant) high probability, and for all θ,
the error |R(θ)− R̃(θ)| 6 δ, for an inference error δ, is
in Ω

(
log3(n)/δ2

)
.

It follows from Corollary 1 that, for fixed δ, a poly-
logarithmic number of shots N ∈ Ω(log3(n)) suffices to
guarantee that R̃(θ) will be a good approximation for
the true response R(θ). Once the inferred response is
obtained, it can be further employed for tasks of param-
eter estimation and to characterize the sensitivity of a
sensing apparatus – two aspects of central importance
when devising a QS protocol (see Fig. 1).

When inferring the value of an unknown parameter θ′,
we assume that one is given an estimate of the system
response R(θ′), and the promise that θ′ is sampled from
a known domain Θ. In such a case, one estimates the un-
known parameter as θ∗ = arg minθ∈Θ |R̃(θ) −R(θ′)|. In
many cases of interest, such as high-precision estimation
of small magnetic fields, Θ will be small enough such that
R̃(θ) is bijective, ensuring that the solution θ∗ is unique.
The resulting error in the estimate of the parameter θ′
can be analyzed via the following corollary.

Corollary 2. Let ε′ be the estimation error in R(θ′) for
some θ′ in a known domain Θ where the system response
is bijective. Let χ be the error introduced when estimating
θ′ via R̃(θ) relative to the case when the exact response
R(θ) is used. The number of shots, N , necessary to en-
sure that with a (constant) high probability χ is no greater
than δ′ is Ω(log3(n)/(δ′ + ε′)2).

Corollary 2 certifies that R̃(θ) can be used to in-
fer an unknown parameter from a measured system re-
sponse without incurring additional uncertainties as long

as enough shots are used. In fact, for fixed δ′ and ε′, one
only needs a poly-logarithmic number of shots.

Our inference-based method also allows for estimating
the sensitivity of QS schemes. Knowing the functional
form of the response enables one to directly compute the
sensitivity using the error propagation formula (∆θ)2 =
(∆R(θ))2/|∂θR(θ)|2 [28, 29] which relates the variance
(∆θ)2 in estimates of the parameter θ to the variance
(∆R(θ))2 of the observable O used to estimate θ (i.e.,
(∆R(θ))2 = Tr[D◦Sθ ◦E(ρin)O2]−Tr[D◦Sθ ◦E(ρin)O]2)
and to the slope ∂θR(θ) of the response with respect to
θ. When O2 = 11 (i.e., measuring a Pauli operator), the
sensitivity is

(∆θ)2 =
1− (

∑n
s=1 [as cos(sθ) + bs sin(sθ)] + c)

2

|
∑n
s=1 s (−as sin(sθ) + bs cos(sθ)) |2

. (6)

A similar expression will hold when using R̃(θ) in place
of R(θ). As shown in the SM, using R̃(θ) to estimate
the sensitivity at a parameter θl leads to an error which
scales as O(ε log(n)/Dl), whereDl = ∂θR(θ)|θ=θl . More-
over, as proved in the SM, a polynomial number of shots
suffices to guarantee |∆θ − ∆θ̃| 6 δ′′ for some fixed δ′′

if Dl ∈ Ω(1/ poly(n)). Notably, the inferred sensitivity
(∆θ)2 in Eq. (6) can be compared with the quantum
Cramer Rao-Bounds (CRBs) [30, 31], or the ultimate
Heisenberg limit, to determine the optimality of the sens-
ing scheme. In the SM we use this insight to show how
our inferred response function can be used to train a mea-
surement operator to reach the optimal sensing scheme
given a fixed probe state.

One can further ask whether Eq. (3) can still be used
in scenarios where the system response is no longer a
trigonometric polynomial. Such a case will arise, for in-
stance, if Sθ is not of the form in Eq. (1). Still, we can
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leverage tools from trigonometric interpolation to accu-
rately approximate the system response. Here, the fol-
lowing theorem holds for periodic responses and for pa-
rameters close enough to the θk values in P (regions of
great interest for several QS tasks such as small magnetic
field estimation).

Theorem 3. Let f(θ) be a 2π-periodic function with
|f(θ)| 6 1 ∀θ, and let R̃(θ) be its trigonometric polyno-
mial approximation obtained from the N -shot estimates
of f(θk), with θk given by Eq. (4). Defining the maxi-
mum estimation error ε′ = maxθk∈P |f(θk)− f(θk)|, and
assuming that |θ − θk| ∈ O(1/ poly(n)), then

|f(θ)− R̃(θ)| ∈ O
(

max

{
M

poly(n)
, ε′ log(n)

})
, (7)

where M is the Lipschitz constant of f(θ).

Theorem 3 shows that if M ∈ O(n), which can oc-
cur for a wide range of parameter encoding schemes [32],
then, we can derive a result similar to that in Corollary 1.
Namely, using a poly-logarithmic number of shots to es-
timate the quantities f(θk) leads to R̃(θ) being a good
approximation of f(θ).

Experimental results. We demonstrate the perfor-
mance of the inference method for a magnetometry task
performed on the IBM_Montreal quantum computer.
This consists in preparing the GHZ state, encoding a
magnetic field via Eq. (1) with H =

∑n
j=1 Zj , and mea-

suring the parity operator O =
⊗n

j=1Xj . Here, Zj and
Xj are the Pauli z and x operators acting on the j-th
qubit, respectively. We set D to be the identity channel
and perform the QS task for systems of up to n = 22
qubits.

We first measure the system response at 2n+1 training
fields θk ∈ P , sampled according to Eq. (4). These esti-
mates are then used to infer the response R̃(θ) of Eq. (3),
as well as to fit a function g(θ) = α cos(βθ + γ) + ζ. As
discussed in the SM, the latter corresponds to a first or-
der approximation of a noisy response under where the
coefficients α, β, γ and ζ, correct the cosine to account
for the effects of hardware noise. To evaluate the abil-
ity of these two functions to recover the true response
of the system, we compare their predictions against the
measured system response at a set of random test fields.

In Fig. 2(a) we display inference results for n = 8 and
n = 16 qubits, indicating that our method (red solid
curve) is clearly able to fit the training and test fields bet-
ter than the cosine response (black dotted curve). More
quantitatively, in Fig. 2(b), we show the scaling of the er-
ror as a function of the system size. One can see that for
all problem sizes considered our method leads to smaller
response prediction error. We note that for larger n the
effect of noise becomes more prominent, as the hardware
noise suppresses the measured expectation values [33–35].
Hence, in this regime both methods are equally limited
by finite sampling noise which becomes of the same order
as the magnitude of the response. Still, even for system

FIG. 3. Numerical results for QS tasks on a simulated
noisy trapped ion device. a) System response versus θ for
n = 8 qubits in all three QS setups described in the main
text. The exact response R(θ) (black curve), and its value at
the training fields R(θk) (black points), were obtained with
no finite sampling. In contrast, the response estimated at
the training fields R(θk) (red crosses), and the resulting in-
ferred function R̃(θ) (red curve), were obtained with a poly-
logarithmic number of shots. b) Median (solid) and maximum
(dashed) of the error |R(θ) − R̃(θ)| (red) and the bound of
Theorem 2 (blue) for 104 test fields uniformly sampled over
(0, 2π). The statistics were obtained over 30 repetitions of the
experimental setups. c) Curves depict the inferred sensitiv-
ity versus θ. The exact (inferred) sensitivities are shown as a
black (red) curves.

sizes as large as n = 22 qubits, the inference method re-
duces the relative error by a factor larger than two when
compared to that of the g(θ) fit. Finally, we also use R̃(θ)
and g(θ) for parameter estimation, i.e., to determine an
unknown magnetic field encoded in the quantum state.
As shown in Fig. 2(c), the g(θ) fit matches the worst
possible prediction already for n = 8 qubits, whereas
our inference method can outperform the g(θ) fit by up
to one order of magnitude. In the SM we further dis-
cuss the behaviour of the parameter prediction curves of
Fig. 2(c).

Numerical simulations. We complement the previous
study with numerical results from a density matrix simu-
lator that includes hardware noise, but where finite sam-
pling can be omitted. We evaluate our inference method
by emulating several magnetometry tasks as they would
have been performed on a trapped-ion quantum com-
puter (see [36, 37]). To this end, we consider three dif-
ferent sensing setups. First, we study the same stan-
dard GHZ magnetometry setting as implemented on the
IBM device. Second, we characterize the squeezing in a
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system where the probe state is a spin coherent state,
H =

∑
j<kXjXk is the one-axis twisting Hamiltonian

[38], and O = Zn (note that we did not chose the op-
timal measurement operator O =

∑
j Zj as we want to

showcase that we can infer the response for any choice
of O). Finally, we study a scenario where the probe
state is constructed by a unitary composed of 4 lay-
ers of a hardware efficient ansatz with random param-
eters [39, 40], H =

∑n−1
j=1 ZjZj+1 and O = 1

n

∑n
i=1Xi.

(This case is relevant for variational quantum metrol-
ogy [17, 19, 20, 23, 24], where one wishes to prepare
a probe state via some parameterized quantum circuit
that is usually initialized with random parameters.) In
all cases D is the identity channel. See SM for further
details, including the circuits employed.

As motivated by Corollary 1, R̃(θ) is inferred with
N = d5× 102 log(n)2 log(2× 102(2n+ 1))e shots per θk.
Figure 3(a) shows that in all three QS settings consid-
ered the inferred response closely matches the exact one
(i.e, the red curve for R̃(θ) and the black curve for R(θ)
are overlaid). In Fig. 3(b) we further show the scaling of
the error |R(θ) − R̃(θ)| with respect to the system size.
This analysis reveals that our method always performs
significantly better than the upper bound given by The-
orem 2. Indeed, we can see that allocating a number of
shots N that increases poly-logarithmically with n allows
the error to decrease with increasing system size.

Finally, we use R̃(θ) to estimate the sensitivity of the
three experimental setups. As shown in Fig. 3(c), our
method (red curves) recovers the behavior of the exact
sensitivity (black curves). The sensitivity diverges in pa-
rameter regions where the experimental setup is insensi-
tive to the field (when the response function has a vanish-
ing gradient). In the SM we further provide a theoretical
and numerical analysis for the estimated sensitivity, as
well as the scaling of the error of inferring an unknown
parameter.
Conclusions. We introduced a inference-based scheme

for QS which fully characterizes the response R(θ) for a
general class of unitary families by only measuring the

system at 2n + 1 known parameters. This framework
leverages techniques from quantum machine learning and
polynomial interpolation [26, 41, 42] for quantum sensing,
leading to new insights and methodology for the charac-
terization, implementation and benchmarking of sensing
protocols.

One of the main advantages of our method is that it
can be readily combined with existing sensing protocols.
For instance, further research could explore the use of
the inferred response function in a variational setting,
involving an optimization of the experimental setup to
maximize the sensitivity and parameter prediction accu-
racy (see SM). This paves the way for a new approach
in data-driven quantum machine learning for QS where
the optimization procedure does not require knowledge
of the classical or quantum Fisher information [17, 20–
24, 43–48].
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