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In this work, we present a framework that combines machine learning potential (MLP) and metadynamics to
investigate solid-solid phase transition. Based on the spectral descriptors and neural networks regression, we
have developed a scalable MLP model to warrant an accurate interpolation of the energy surface where two
phases coexist. Applying it to the simulation of B4-B1 phase transition of GaN under 50 GPa with different
model sizes, we observe sequential change of phase transition mechanism from collective modes to nucleation
and growths. When the size is at or below 128 000 atoms, the nucleation and growth appear to follow a preferred
direction. At larger sizes, the nuclei occur at multiple sites simultaneously and grow to microstructures by
passing the critical size. The observed change of atomistic mechanism manifests the importance of statistical
sampling with large system size in phase transition modelling.

Solid-solid phase transitions driven by pressure or temper-
ature are important for our understanding of crystal formation
in geological processes, as well as the materials’ manufac-
turing (e.g., steel-making, synthesis of ceramics, or creating
diamond from carbon under high pressure1). Despite their
ubiquity, however, elucidation of the microscopic mechanism
of solid-solid phase transitions is significantly challenging,
due to the need of in-situ high-resolution imaging technology
under extreme conditions. Therefore, computational studies
have been devoted to investigate solid-solid phase transitions
and provide insights to the microscopic mechanism. Atom-
istic simulations based on molecular dynamics (MD) can trace
atomic motions in phase transitions, but their effectiveness
is hindered by the length and time scales allowed for these
simulations2. Commonly used ab initio simulations are re-
stricted up to a few thousands of atoms3, and therefore can
only mimic energy barrier crossing via concerted motion of
atoms. Most solid-solid phase transitions are thermodynam-
ically first order and initialized by nucleation that may pro-
ceed through intermediate states. When a nucleus grows in
a crystal, free energy is gained in the core but penalized at
the interface. The competition between these two contribu-
tions results in a nucleation barrier, which the system must
overcome for the nucleus to grow to a critical size, leading to
a cascade of bulk changes4,5. The primary difficulty in sim-
ulating nucleation and grain growths is the requirement of a
very large system size to enable statistical sampling and avoid
nuclei interacting with their periodic images. A realistic mate-
rial simulation must reach beyond collective atomic motions
to enable such nucleation dynamics, while at the same time
maintains a truthful description of the material, as opposed to
model simulations6,7.

Notable progress has been made in simulating phase tran-
sition from metadynamics8,9 over the years. This method is
designed to overcome large energy barriers through positively
biased MD. In metadynamics, the free energy (G) is described
by a number of collective variables (CVs, denoted as s). To
drive the system out of an energy well,G is continuously mod-
ified by filling Gaussian potentials that discourage the revisit
of already explored phase space. At timestep t, the total free

energy is expressed as9

Gt(s) = G(s) +
∑
t′<t

We−|s−s
t′ |2/2δs2 , (1)

where W and δs are the height and width of the Gaussian. At
each metastep, s follows

st+1 = st + δs
F t

|F t|
, (2)

and |F t| = −∂Gt/∂s.
Metadynamics has been used successfully to study phase

transitions in a variety of systems10–15. Recently, the simu-
lation has been scaled up with Gaussian process regression
(GPR) potential16 for a B4-B1 phase transition in GaN (up to
4096 atoms) using scaled lattice matrix as the CVs, where the
onset of nucleation is revealed17. In another work, metady-
namics simulation is carried out using classical potentials and
two CVs, namely coordination number and volume, which
achieves the simulation of B1-B2 transition in NaCl proceed-
ing via nucleation and growth up to 64 000 atoms18. These
studies adopt either classical or machine learning potentials,
providing a compromise between accuracy and length/time
scale.

In the present study, we focus on providing a scheme
for a substantially scaled up simulation of solid-solid phase
transitions using machine learning representation of multi-
dimensional free energy surfaces. We developed an effi-
cient method for training neural network (NN) potential19 on
a dataset including structures, stress tensors and interatomic
forces calculated at density functional theory (DFT) level. We
show that the potential is capable of collecting all relevant in-
formation needed for solid-solid phase transitions, and for de-
scribing the nucleation dynamics. The metadynamics scheme
is implemented to allow all degrees of freedom of the super-
cell to evolve during the simulation, thus it enables a realistic
path selection. The applicability of this method is demon-
strated using a classic example, the B4-B1 phase transition in
GaN, consisting of a simulation box with size up to million
atoms under high pressure. GaN is a wide band-gap semicon-
ductor of technological importance. Multiple transition paths
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were proposed20,21, exhibiting the complexity of its transition.
Our simulation reveals the bulk phase transition through nu-
cleation and growths, and a system size dependent crossover
from directional nucleation of single cluster to homogeneous
nucleation of multiple clusters.

In the past decade, machine learning methods have been
widely applied to resolve the dilemma in comprising between
accuracy and cost22. Machine learning potentials (MLP) are
trained by minimizing the cost function to attune the model to
deliberately describe the ab initio data. Among many differ-
ent MLP models, both NN and GPR techniques are becoming
popular in the materials modelling community. Compared to
GPR, NN is more suitable for large scale simulation due to its
better scalability. Recently, we have developed the NN ver-
sion of spectral neighbor analysis potential (NN-SNAP)23–26

based on the bispectrum coefficient descriptors16,27 and im-
plemented them to the LAMMPS software28 with the option
of mixing with other empirical models29. To train an ac-
curate NN-SNAP model for describing the GaN’s B4-B1
transition, we start with the existing dataset from a recent
work17 with the VASP code30 and the the Perdew-Burke-
Ernzerhof (PBE) exchange-correlation functional31. we apply
the trained model to run NPT MD simulation for 64-atoms
B1/B4 models at different conditions to sample more phase
space. The representative MD configurations are collected for
single-point DFT calculations (see Fig. S1 and Table S132) to
improve the NN-SNAP model. Finally, we run another simi-
lar iteration based on metadynamics simulation of the 32 and
64 atoms models, ensuring that the final model can accurately
describe the transition paths between B4 and B1 energy basins
on the potential energy surface (PES).

To check the validity of our MLP, we examined some basic
physical quantities with respect to the DFT results. In the past
DFT studies20,21,33, it was found that three key variables de-
scribe the B4-B1 transition of GaN, including (1) the spacing
µ between Ga/N sublattices changing from 0.5 to 0.62; (2) the
basal angle γ decreasing from 120◦ to 90◦; and (3) the c/a
ratio reducing from 1.633 to 1.414. Multiple transition paths
can be envisioned upon switching the orders of these changes,
resulting in different intermediate phases. Following our ear-
lier work33, we checked the 2D PES of a 4-atoms GaN system
as a function of µ and γ. As shown in Fig. 1, our MLP can
well reproduce the DFT’s PES, despite some negligible dis-
crepancies at the high energy regions. Since these data were
not part of the dataset used in the training, the agreement in
blind predicting PES warrants a good interpretive capability
of our MLP, which enables an accurate description of the nu-
cleation region where the two phases coexist. In addition, we
checked the densities, elastic properties and phonon disper-
sion for both B1 and B4 structures in a wide range of pressure
and observed an overall good agreement (see Figs S2-S332).

Furthermore, we perform metadynamics simulations (by
using the 6-dimensional cell parameters as the CVs) to ex-
plore the B4-B1 transition. Fig. 2 shows a typical trajectory
(enthalpy evolution with metastep) for a system consisting of
128 atoms at 50 GPa. In this simulation, the Gaussian parame-
ters were set as δs=0.2 Å, and W=3000 GPa·Å3, respectively.
Once the evolution reached the B1 phase, we recalculated the
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FIG. 1. Comparison of the B4-B1 PES of GaN at 50 GPa computed
using (a) DFT and (b) MLP methods.
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FIG. 2. The metadynamics simulation of 128 atoms-GaN’s B4-B1
transition. (a) Evolution of enthalpy (H) in MLP based metadynam-
ics (yellow) simulation. The enthalpies along the trajectory were
recomputed with DFT (red) for a comparison. (b) Evolution of CVs
along the trajectory. (a, b, c) and (ab, bc, ac) denote uniaxial and
shear modes, respectively. (c) Stress tensors from DFT and MLP
calculations. (d) Atomistic motions at critical steps, in which atoms
in orange and white denote the 4-coordinated B4 and 6-coordinated
B1 environments.

enthalpy along the MLP trajectory with DFT. From Fig. 2a, it
is clear that the computed DFT energies nearly overlay with
the MLP results. More importantly, the stress tensors, as the
driver for the phase change, are well reproduced in MLP (Fig.
2c). The excellent agreements suggest that our MLP trained
with smaller systems is applicable to large scale simulations
at the accuracy on par with DFT.

According to Fig. 2, the entire simulation can be divided
into three stages. Stage i corresponds to a simultaneous com-
pression of a, b, c axes at the first 10 metasteps. These changes
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clearly require a high penalty energy (∆E1=0.204 eV/atom)
and therefore the attempt quickly gives up and the unit cell
bounces back. As a consequence of over-compression in i,
stage ii acts in an opposite way through expansion. Its penalty
energy is lower (∆E2=0.122 eV/atom) and only c axis starts
to rebound when it reaches the second peak. Afterwards,
metadynamics starts to explore different evolution and finds a
transition path at stage iii, via simultaneous large compression
on c and small expansion on b (while a has minor change). To
complete the transition, the system goes through a sharp bar-
rier of ∆E3 of 0.191 eV/atom. At this system size, the phase
transition still undergoes a concerted manner. Fig. 2d presents
the schematic picture of the observed transition mechanism.
The large reduction in c results in a decrease of c/a ratio. The
increment in b causes the change in basal angle γ. The internal
spacing µ is progressively modified through MD equilibrium
after the unit cell change in each metastep.

Although we also found several other B4-B1 transition
paths in the metadymamics simulation, the results in Fig. 2
provide a relatively simple picture as it can identify a success-
ful path within only a few attempts. Using the same scaled
Gaussian parameters, we proceed to investigate the depen-
dence of system size by varying number of atoms (N ).

Table S332 summarizes the details of all metadynamics sim-
ulations in this study. Both ∆E1 and ∆E2 quickly converge as
the system goes beyond 2000 atoms (see Fig. S4). They repre-
sent two hard modes that cannot initiate the phase transition.
However, ∆E3, corresponding to the barrier of low-energy
transition path between B4 and B1 is found to continuously
decrease with the system size. Fig. 3a shows the evolution
of ∆E3 as a function of system size. Up to N=1024, the
system undergoes concerted transition in which ∆E3 steadily
drops with increasing system size. The mechanism changes
to nucleation in a 2000-atoms system (Fig. 3a). The anal-
ysis of metadynamics trajectories (Figs. S5-S7) shows clear
evidence of nucleus formation at the critical stage. The B1
nucleus for N=2000 grows rapidly and completes the entire
transition within only one metastep with an energy barrier of
0.215 eV/atom. The nucleation process is seen to be particu-
larly effective in further reducing the barrier in larger systems.
The terminal value of the energy barrier is around 0.1 eV/atom
when N=524 288, the largest system attempted in the present
study.

Recently, a similar trend was also observed in the study
of B1-B2 transition based on a classical potential and two
CVs18. In that work, the authors suggest that a smaller num-
ber of CVs should be used to study nucleation in large sys-
tems. However, our simulations, based on the six-dimensional
cell parameters9, is able to produce the same physical picture.
This maybe due to an accurate MLP enabling a faithful config-
uration exploration on the PES. Allowing all degrees of free-
dom in the system to change enables the simulation to sample
more phase space and atomic events. Up to N=128 000, the
nucleus formation and growth is observed to always follow
a preferred direction. Nevertheless, simulations with larger
sizes suggest more homogeneous nucleation events. Com-
pared to the directional nucleus picture as shown in Fig. 3b,
we find multiple nuclei with different sizes and orientations
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FIG. 3. The size-dependence metadynamics simulations of GaN’s
B4-B1 transition. (a) Evolution of phase transition barrier (∆E3) as
a function of system size. (b) and (c) Time evolution of enthalpy (H)
during the phase transition for several selected systems. Two repre-
sentative inset snapshots show directional [in (b)] and homogeneous
[in (c)] nucleation mechanisms.

appearing at the early stage of phase transition (see Fig. 3c).
To understand the size dependence of nucleation mecha-

nism, we focus on analyzing the results of three represen-
tative systems (N=16 000, 128 000 and 524 288). From
each of their metadynamics trajectories, we picked critical
metasteps that are around the phase transition window, and
ran longer NVT MD simulations with both Nose-Hoover35

and Langevin36 thermostats up to 15 ps with the same strain
condition. This is to elongate the time window allowed for
atomic nucleation in one metastep. As shown in Fig. 4a, the
system size clearly has a marked impact on the phase tran-
sition. While there is only an oscillation for N=16 000, we
observe phase transition events for two larger systems shown
by the sizable changes in both temperature and enthalpy. For
N=128 000, it has a single transition window between t1=2.0-
4.0 ps. As shown in Fig. 4b, it first undergoes atomic fluc-
tuation to initiate a nucleus site (marked as A). The A site
then continues to grow along [110] direction as shown by the
expansion of interface regions (colored in red). The critical
nucleus, similar to other recent studies17,18, is a cylindrical
volume extending across the periodic boundary. While the
system size seems to suppress the development of multiple
nuclei, a smaller interface-to-volume ratio favors the forma-
tion of cylindrical nucleus.

However, the trajectory for N=524 288 exhibits a more
complicated picture with three stages. First, multiple nuclei
(marked as B1, B2 and C in Fig. 4c) emerge simultaneously
until t2= 3.0 ps, which causes the temperature of the sys-
tem to rise. Further, these nuclei grow and start to interact
with each other, when they get close around t2=4.5–5.7 ps.
These nuclei are three dimensional in nature; some are not far
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FIG. 4. The size-dependent nucleation process in GaN’s B4-B1 transition. (a) Variation of enthalpy and temperature as a function of time for
N=16 000, 128 000 and 524 288. (b) and (c) show selected MD snapshots for N=128 000 and 524 288, respectively. Several representative
nucleus sites (A, B1, B2, C) are marked in gold color to guide the eye. To compute HGaN, the atomic volumes are estimated by Voronoi
tessellation from OVITO34.

from spheres. Closer nuclei (i.e., B1 and B2) merge into mi-
crostructure and bypass the critical size. The grains reach the
largest size at peak temperature, which agrees with the clas-
sical theory of nucleation for two competing effects with re-
spect to temperature37. After this stage, the number of grains
decreases, and the temperature drops accordingly. Some nu-
clei like C stop growing before reaching the critical size and
eventually disappear. Similar homogeneous nucleation and
microstructure formation have been observed in previous clas-
sical simulations with close to a million atoms38, which mani-
fests the importance of the statistical sampling with large size.

In general, a larger system size with mutiple nuclei can re-
duce the barrier further as compared to the single-nucleus pic-
ture. In addition, Fig. S9 lists the evolution of simulated x-ray
diffraction patterns for a few representative systems, in which
the size dependent transition paths are revealed. Large system
size, consisting the full information of atomic packing, nu-
clei and grain boundaries, can generate more realistic diffrac-
tion pattern, thus allowing the comparison with experimental
measurement to identify the intermediate phases during phase
transition from ultrafast loading and dynamic x-ray diffraction
measurement39,40.

In summary, we report the application of MLP in solid-
solid phase transition simulations, demonstrated in the B4-
B1 transition of GaN. We trained a neural network potential
and validated it by a set of benchmark calculations. The po-
tential is effective for describing rare events such as nucle-
ation and growths, which leads to accurate atomistic mod-

elling at a large scale. By varying the system size up to half
million atoms in metadynamics simulation, we observe se-
quential change of phase transition mechanism from collec-
tive modes to directional nucleation, and to homogeneous nu-
cleation at multiple sites. Nowadays, MLPs are being widely
applied to study the phase transitions between crystalline41,
amorphous42, superionic solids43 and liquids44–46. Compared
to these works, we are focusing on a small and well-defined
piece of PES that is related to the transition between B4 and
B1 phases. These restrictions allow us to thoroughly investi-
gate the size impacts only and extend the previous discussion
on the size dependence of nucleation from a static geometry
model4 to dynamic simulation at finite temperature. Given the
observed size dependence in the model system, it reasonable
to speculate that such size effects may also exist in other sys-
tems, which in turn may impact the transition mechanisms, as
well as the physical quantities (e.g., transition barrier, phase
boundary).

This research is sponsored by the U.S. Department of En-
ergy, Office of Science, Office of Basic Energy Sciences,
Theoretical Condensed Matter Physics program, DOE Es-
tablished Program to Stimulate Competitive Research un-
der Award Number DE-SC0021970, and Natural Sciences
and Engineering Research Council of Canada (NSERC).
The computing resources are provided by XSEDE (TG-
DMR180040) and Compute Canada. The authors thank Dr.
Aidan Thompson for helpful discussions regarding the imple-
mentation of NN-SNAP into the LAMMPS package.

∗ yansun.yao@usask.ca
† qiang.zhu@unlv.edu
1 W. F. Smith, Principles of Materials Science and Engineering

(McGraw-Hill, 1996).

2 D. Marx and J. Hutter, Ab Initio Molecular Dynamics: Basic The-
ory and Advanced Methods (Cambridge University Press, Cam-
bridge, 2009).

3 S. Scandolo, Proc. Natl. Acad. Sci. 116, 10204 (2019).

mailto:yansun.yao@usask.ca
mailto:qiang.zhu@unlv.edu
http://dx.doi.org/10.1073/pnas.1905457116


5

4 R. Z. Khaliullin, H. Eshet, T. D. Khne, J. Behler, and M. Par-
rinello, Nat. Mater. 10, 693 (2011).

5 Q. Huang, D. Yu, B. Xu, W. Hu, Y. Ma, Y. Wang, Z. Zhao, B. Wen,
J. He, L. Z., and T. Y., Nature 510, 250 (2014).

6 W. Qi, Y. Peng, Y. Han, R. K. Bowles, and M. Dijkstra, Phys.
Rev. Lett. 115, 185701 (2015).

7 Y. Peng, F. Wang, Z. Wang, A. M. Alsayed, Z. Zhang, A. G. Yodh,
and Y. Han, Nat. Mater. 14, 101 (2014).

8 A. Laio and M. Parrinello, Proc. Natl Acad. Sci. USA 99, 12562
(2002).
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