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We map a quantum Rabi ring, consisting of N cavities arranged in a ring geometry, into an
effective magnetic model containing the XY exchange and the Dzyaloshinskii-Moriya (DM) interac-
tions. The analogue of the latter is induced by an artificial magnetic field, which modulates photon
hopping between nearest-neighbor cavities with a phase. This mapping facilitates the description
and understanding of the different phases in the quantum optical model through simple arguments
of competing magnetic interactions. For the square geometry (N = 4) the rich phase diagram
exhibits three superradiant phases denoted as ferro-superradiant, antiferro-superradiant and chiral
superradiant. In particular, the DM interaction is responsible for the chiral phase in which the
energetically degenerate configurations of the order parameters are similar to the in-plane magneti-
zations of skyrmions with different helicities. The antiferro-superradiant phase is suppressed in the
triangle geometry (N = 3) as geometric frustration contributes to stabilize the chiral phase even for
small values of the DM interaction. The chiral phases for odd and even N show a different scaling
behavior close to the phase transition. The equivalent behavior on both systems opens the possibil-
ity of simulating chiral magnetism in a few-body quantum optical platform, as well as understanding
one system using the insights gained from the other.

Introduction – It is not unusual that two seemingly
very different systems are connected by the same under-
lying physics. Finding such connections can often help
us to gain new insights into one system by importing
knowledge obtained from the study of the other. Here
we show how a light-matter interaction system — the
quantum Rabi ring — can be mapped to a chiral mag-
netic system consisting of various kinds of magnetic cou-
plings including, for example, the Dzyaloshinskii-Moriya
(DM) interaction [1, 2] which plays a fundamental role
in the study of topological states in magnetic systems,
see for example Ref. [3]. The DM interaction favors non-
collinear spin structures, stabilizing interesting spin tex-
tures such as magnetic vortices and magnetic skyrmions
in chiral magnets [4–6].

Unlike in real magnetic materials, in effective mag-
netic models obtained from the mapping of a distinct
system, the relative strengths of the different magnetic
interactions may be easily tuned. In particular, light-
matter interaction platforms have been used to simu-
late antiferromagnetic spin chains [7], frustrated classi-
cal magnetism [8], and to engineer collective spin ex-
change interactions [9]. High tunability and control
makes platforms such as cavity and circuit QED [10–
13] and cold atoms [14–16] ideal to explore many-body
quantum phases.

Richer behaviors can be achieved when external fields
are added to the mix. Recent experimental advances and
theoretical findings have addressed synthesizing magnetic
fields for neutral ultracold atoms [17–19] and photonic
systems [15, 20–23]. In particular, addition of artificial

magnetic fields have been proven to unlock the emergence
of exotic phases of matter, such as chiral ground-state
currents of interacting photons in a three-qubit loop [22],
chiral phases in a quantum Rabi triangle [24], and frac-
tional quantum Hall physics in the Jaynes-Cummings
Hubbard lattice [25–27].
Here, by mapping the quantum Rabi ring into a mag-

netic system, described by the Lipkin-Meshkov-Glick
(LMG) model, the different phases in the former can be
intuitively understood by studying the competition of the
DM interaction and the XY Heisenberg exchange inter-
action, as well as the presence or absence of geometric
frustration in the equivalent LMG ring.
Quantum Rabi ring – We consider a system with N

cavities placed in a ring. Each cavity contains a two-level
atom and is described by the quantum Rabi Hamiltonian

HR,n = ωa†nan + g(a†n + an)σ
x
n +

∆

2
σz
n, (1)

where an (a†n) is the photon annihilation (creation) oper-
ator of the single-mode cavity with frequency ω at cavity
n, g is the atom-cavity coupling strength, and σi

n are the
Pauli matrices representing the two-level atom at site n
with energy splitting ∆ between levels. The dimension-
less coupling strength is defined as g1 ≡ g/

√
∆ω.

Although quantum phase transitions (QPTs) are often
studied in the thermodynamic limit [28], some few-body
systems such as the quantum Rabi model [29–36] have
been proven to undergo QPTs in alternative limits such
as the the classical oscillator (CO) limit with ∆/ω →
∞ [37]. This is the regime we will focus on in this work.
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The quantum Rabi ring Hamiltonian contains photon
hopping between the neighboring cavities

HRR =

N
∑

n=1

HR,n +

N
∑

n=1

J(eiθa†nan+1 + e−iθa†n+1an), (2)

where J is the hopping amplitude between nearest-
neighbor cavities with a phase θ, and periodic bound-
ary conditions imply aN+1 = a1. A thorough description
of this system in a triangle (N = 3) can be found in
[24]. An artificial vector potential A(r) leads the photon
hopping terms between nearby cavities n and m to be-
come complex with the phase given by θ =

∫ rm

rn
A(r)dr.

The artificial magnetic field can be realized by a peri-
odic modulation of the photon hopping strength among
the different cavities [22, 24]. The complex phase breaks
time-reversal symmetry (TRS) and, as will be shown, is
crucial in leading to the DM interaction in the mapped
magnetic model.
In the CO limit, for small values of g1, the average

number of photons in the cavity tends to zero, which
is the so-called normal phase. As g1 increases to the
critical point g1c, the system undergoes a QPT as the
photon population in each cavity becomes macroscopic
(proportional to ∆

ω
), signaling the superradiant phase.

Moreover, the hopping of photons between neighboring
cavities unlocks more exotic superradiant phases with the
order parameter 〈an〉 being site-dependent.
A general description of the mean-field features and ex-

citation spectrum of this model can be done by construct-
ing low-energy effective Hamiltonians for each phase (see
Supplemental Material [38]). After shifting the bosonic
operator an → ãn+αn with the complex mean-field value
αn = An+ iBn, the effective low-energy Hamiltonian un-
der the condition J/ω ≪ 1 is obtained by projecting to
the spin subspace | ↓〉, giving

H↓
eff

=

N
∑

n=1

[

ωã†nãn − λ2
n

∆n

(

ã†n + ãn
)2

+Jã†n(e
iθãn+1 + e−iθãn−1)

]

+ Eg, (3)

where ∆n ≡
√

∆2 + 16g2A2
n, λn ≡ g∆/∆n, and the

mean-field ground-state energy Eg is given by

Eg =

N
∑

n=1

[

ω(A2
n +B2

n)−
1

2

√

∆2 + 16g2A2
n

+2J cos θ(AnAn+1 +BnBn+1)

+2J sin θ(BnAn+1 −Bn+1An)
]

. (4)

Minimization of Eg with respect to An and Bn [38]
yields the mean-field values of An and Bn which depend
strongly on N being odd or even, as shown later.
Effective magnetic model: LMG ring – We now

map the effective Hamiltonian (3) using the Holstein-
Primakoff transformation [39] given by Sz = a†a − S

and S+
n = a†n

√

2S − a†nan. In the normal phase 〈an〉 =
An+ iBn = 0, and in the classical spin limit S → ∞, the
Holstein-Primakoff transformation can be approximated
by S+

n ≈
√
2Sa†n, leading to the magnetic Hamiltonian

HLMGR =

N
∑

n=1

[

ωSz
n − 2g21ω

S
(Sx

n)
2

]

+
J

S
cos θ

N
∑

n=1

(Sx
nS

x
n+1 + Sy

nS
y
n+1)

+
J

S
sin θ

N
∑

n=1

ẑ · (~Sn × ~Sn+1), (5)

which is also valid for the region in the superradiant
phase not too far away from the normal-superradiant
phase boundary. We denote HLMGR as the LMG ring
model as it is a generalization of the LMG Hamilto-
nian [40] with additional nearest-neighbor interactions
included. The physical meaning of each term in HLMGR

is quite clear: The two terms in the first line represent
an external magnetic field along the z-axis and the easy-
axis anisotropy along the x-axis, respectively; the second
line is a typical XY spin exchange interaction which is
either ferromagnetic or antiferromagnetic depending on
the sign of J cos θ; finally, the last line corresponds to
the DM interaction with the strength J sin θ. The rela-
tive strength between the XY and the DM terms is thus
readily controlled by θ.
Treating ~S as a classical vector, the mean-field energy

according to HLMGR can be readily derived as

EMF

ωS
=

N
∑

n=1

−
√

(1−X2
n − Y 2

n )− 2g21X
2
n

+
J

ω
cos θ(XnXn+1 + YnYn+1)

+
J

ω
sin θ(XnYn+1 −Xn+1Yn), (6)

where we have defined Xn =
〈Sx

n
〉

S
and Yn =

〈Sy

n
〉

S
. Min-

imization EMF with respect to Xn and Yn yields the
ground-state phase diagram. One example with N = 4
is shown in Fig. 1(a). We only consider θ ∈ [0, π]. The
phase diagram in the range θ ∈ [−π, 0] is a mirror image
of the one presented here.
For small g1, the system is in the paramagnetic phase

(PP) where the spin is polarized by external field term
along the z-axis. The PP is the analog of the normal
phase in the original Rabi ring model. When g1 ex-
ceeds a critical value, the system enters various non-
paramagnetic phases according to the value of θ through
a second-order phase transition. Defining two critical
values of θ as

cos θ±c = ±1−
√

1 + 16J2/ω2

4J/ω
≈ ∓2J/ω, (7)

the non-paramagnetic phases can be characterized as:
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Figure 1. (Color online) (a) Phase diagram in the θ-g1 plane
for the LMG ring with N = 4 using Xn for a given site n as
order parameter. To facilitate visualization of the different
phases we have chosen one of the degenerate configurations
of the ground state for each phase, such that Xn in the chiral
phase has opposite sign. The solid black line represents the
second-order phase boundary, while vertical dashed lines rep-
resent the predicted first-order lines obtained from the equiv-
alent quantum Rabi ring. (b) Allowed magnetization config-
urations in the CP for N = 4 represented in the xy-plane. In
all our calculations, we set ∆/ω = 50 and J/ω = 0.05, as well
as choosing ω = 1 as the units for frequency.

1. Ferromagnetic Phase (FP) — For θ ∈ (θ+c , π], and

g1 > gF1c = 1

2

√

1 + 2J
ω
cos θ, the system enters the

FP. Here the XY coupling is ferromagnetic. To-
gether with the easy-axis anisotropy term, it polar-
izes the spin along either the x- or the (−x)-axis.
The ground state in FP is doubly degenerate as a
result of the break of the Z2 symmetry.

2. Antiferromagnetic Phase (AFP) — For θ ∈ [0, θ−c ),

and g1 > gAF1c = 1

2

√

1− 2J
ω
cos θ, the system enters

the AFP. Here the XY coupling is antiferromag-
netic. The spins are polarized along the (±x)-axis
and neighboring spins are anti-aligned. The ground
state in AFP is also doubly degenerate.

3. Chiral Magnetic Phase (CP) — In between FP
and AFP, for θ ∈ (θ−c , θ

+
c ) and g1 > gC1c =

1

2

√

1 + 4J2

ω2 sin2 θ, the DM term dominates over the

XY coupling and renders spins at different sites no
longer collinear. Here the ground state is 4-fold de-
generate, breaking both the Z2 and the C4 symme-
tries, and the corresponding in-plane magnetization
orientation in the xy-plane is shown in Fig. 1(b).

Note that the transitions between various non-
paramagnetic phases are all of first order, and the critical
points at θ±c are triple points where three phases (PP,
FP/AFP, and CP) coexist.
Each magnetic phase described in terms of the values of

Xn and Yn, has an equivalent phase in the quantum Rabi
ring in terms of An and Bn, as shown in Table I. A simi-
lar phase diagram as in Fig. 1(a) would be obtained if we
solve the quantum Rabi ring Hamiltonian (3) directly. In
particular, the second-order phase boundary between the

Table I. Correspondence between phases in the quantum Rabi
ring (QRR) and those in the LMG ring (LMGR).

QRR phase LMGR phase
Normal (NP):
An = Bn = 0

Paramagnetic (PP):
Xn = Yn = 0

Ferro-superradiant (FSP):
Bn = 0 and An = An+1

Ferromagnetic (FP):
Yn = 0 and Xn = Xn+1

Antiferro-superradiant
(AFSP): Bn = 0 and

An = −An+1

Antiferromagnetic (AFP):
Yn = 0 and Xn = −Xn+1

Chiral superradiant (CSP):
Bn 6= 0 and An 6= 0

Chiral magnetic (CP):
Yn 6= 0 and Xn 6= 0

(b)(a)

PP

FPCP

Figure 2. (Color online) (a) Phase diagram in the θ-g1 plane
for the LMG ring with N = 3, symbols are chosen as in
Fig.1(a). (b) Allowed magnetization configurations in the CP
for N = 3 represented in the xy-plane. Arrows with different
color and length represent sites with different in-plane mag-
netization length ln =

√
X2

n
+ Y 2

n
.

normal and the superradiant phases is exactly the same
as the boundary between the paramagnetic and non-
paramagnetic phases. The first-order phase boundaries
between different superradiant phases slightly deviates
from those between different non-paramagnetic phases
for large g1 far away from the second-order boundary.

The similarity in the mean-field behavior of both sys-
tems indicates the possibility of simulating magnetic be-
havior using the quantum Rabi ring, at the same time
it opens the possibility of understanding better the chi-
ral phases in the quantum Rabi ring by comparing them
with the well-understood features of chiral magnetism.
In addition to realizing various types of magnetic cou-
pling terms, we can also simulate geometric frustration
by changing N from even to odd. To this end, let us con-
sider a triangular system with N = 3. Such an arrange-
ment with antiferromagnetic coupling is a prototypical
system that exhibits magnetic frustration.

The phase diagram forN = 3 is shown in Fig. 2(a). We
can use the same conceptual reasoning of competing mag-
netic interactions to understand the phase diagram of this
particular geometry. The FP has identical expressions for
the second-order phase boundary and order parameter
values as the ones found for N = 4. However, the AFP
region is reduced to the line θ = 0. Along this line, the
DM interaction vanishes exactly and the spins are aligned
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Figure 3. (Color online) Scaling exponents γ as a function of
θ for (a) N = 4 and (b) N = 3, vertical dashed lines indi-
cate the boundary between non-paramagnetic phases. At the
triple points, two modes vanish at the critical point with dis-
tinct exponents indicated with open markers and a red star.
The PP-CP transition for N = 3 in (b) has non-symmetric
exponents, the purple solid and the orange dashed line indi-
cate the exponent when g1 approaches the critical value from
below and above, respectively. (c) Lowest and second-lowest
excitation energies as a function of g1/g1c across the triple
point at θ = θ+

c
. (d) Lowest excitation energy as a function

of g1/g1c across the PP and the CP boundary for N = 3.
Open markers signal the numerical results while the fitting
functions are denoted by dashed and solid lines .

in the x-direction with the behavior being exactly the one
of a classical frustrated anti-ferromagnet described by a
Heisenberg model, as pointed out recently [41].

The CP is much broader in the triangular case as
it is defined in the region where 0 < θ 6 θc =

cos−1

(

− 2J√
8J2+ω2+ω

)

[24]. The ground state in the CP is

6-fold degenerate due to the break of both the Z2 and the
C3 symmetries. The in-plane magnetization orientation
of the degenerate CP states are shown in Fig. 2(b). In
the previous square case, the spins at different sites point
along different directions, but all have the same length.
This is not the case in the triangular case. As one can
see from Fig. 2(b), there is always a site where the trans-
verse spin is along the x- or (−x)-axis and this spin has
larger magnitude than the other two. In the triangular
quantum Rabi ring model, this means that the photon
numbers at different sites are not the same. This has im-
portant consequences in the excitation spectrum as we
will show later. Also note that, for small values of θ, the
XY exchange interaction J cos θ > 0 is stronger than the
DM interaction, however, the system still favors a chiral
phase with non-collinear alignment. This is very much in
line with observations in antiferromagnetic systems [42–
44] where geometric frustration has been proven to sta-
bilize chiral spin textures favored by the DM interaction,
even for very small values of the coupling strength.

Excitation energy scaling – To characterize the differ-
ences between chiral phase transitions with and without

frustration, we analyze the excitation energy behavior
near the transition for N = 3 and N = 4. The ef-
fective Hamiltonian in Eq. (3) can be diagonalized as

HRSL =
∑N

n=1
εnb

†
nbn [38], where εn is the excita-

tion energy of the n-th mode and bn (b†n) are bosonic
annihilation (creation) operators of such mode obtained
through a Bogoliubov transformation. Across a second-
order phase boundary we expect the lowest excitation
energy ε1 to vanish exactly at the critical point, with a
power-law behavior of the form ε1 ∝ |g1 − g1c|γ around
the critical point g1c. Usually, it is expected that the
value of γ is independent of whether the critical point is
approached from above or below. However, as discussed
below, this is not the case for the frustrated phases.
The scaling exponents γ as a function of θ are shown

in panels (a) and (b) of Fig. 3 for N = 4 and N = 3,
respectively. For N = 4 the scaling exponents before and
after the transition are always equal to each other. The
PP-FP and PP-AFP transitions have the same scaling
exponent γ = 1/2, which is the same as the conventional
single-cavity Dicke transition [45]. By contrast, γ = 1
for the PP-CP transition. At the triple point, two modes
should vanish at the critical point as a signature of the co-
existence of both non-paramagnetic phases, see Fig. 3(c).
These modes possess exponents 1 and 1/2, respectively,
as indicated by the open markers in panel (a).
For N = 3 in the PP-FP transition γ = 1/2 just as

in the N = 4 case. However, the PP-CP has an un-
usual scaling behavior as a consequence of the frustrated
ground state configurations. As shown in panel (b) and
in more detail in panel (d), the exponents at the two sides
of the phase transition are different: γ = 1 (= 1.5) for g1
approaching g1c from below (above). At the triple point,
we again have two modes vanishing at the critical point,
each of which has a well defined scaling exponent, given
by γ = 1 and γ = 1/2, just as for N = 4.
The difference in the scaling behavior of the CP for

N = 3 and 4 can be understood by exploring Eq. (3).
For N = 3, Hamiltonian (3) is C3 symmetric for g1 < g1c
as λn/∆n is independent of n. However, for g1 > g1c,
one of the sites has a different value of λn/∆n, breaking
the symmetry. For N = 4, on the other hand, A2

n is
independent of n in all phases, and consequently, Eq. (3)
is always C4 symmetric for both normal/paramagnetic
and superradiant/non-paramagnetic phases.
This non-symmetric scaling behavior as a consequence

of frustration has been reported for the special point
θ = 0 [41] where two modes vanish at the critical point,
one with a single exponent 1/2 and the other with non-
symmetric exponents γ = 1/2 and γ = 1 below and above
the transition, these three exponents are signaled in panel
(b). This is consistent with our results as the point θ = 0
in our model where θ is a variable represents a triple point
between the frustrated AFP and the frustrated CP, then,
the vanishing of two modes is expected. Moreover, the
non-symmetric γ values (1/2 and 1) at this point are dif-
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ferent from the ones inside the CP region (1 and 1.5) as
the ground-state configurations at θ = 0 are not chiral,
even though they are still frustrated.

Conclusions – We have explored the connection be-
tween the quantum Rabi ring model and a magnetic
model (LMG ring) containing the XY exchange and the
DM interactions.

Our work illustrates how new exotic chiral phases of
light can be better understood by borrowing well-known
concepts from chiral magnetism. Moreover, it opens new
possibilities in simulating magnetic systems using quan-
tum optical platforms whose parameters can be much
more readily tuned. In particular, the classical oscilla-
tor limit considered here, facilitates the study of systems
consisting of only a few (small N) spins, which can be a
powerful tool for identifying the building blocks of more
complex behaviors in real materials.

Note added – After submitting our work, an article [46]
appeared on arXiv where the authors studied a similar
system.
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