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We consider passive imaging tasks involving discrimination between known candidate objects and
investigate the best possible accuracy with which the correct object can be identified. We analytically
compute quantum-limited error bounds for hypothesis tests on any library of incoherent, quasi-
monochromatic objects when the imaging system is dominated by optical diffraction. We further
show that object-independent linear-optical spatial processing of the collected light exactly achieves
these ultimate error rates, exhibiting superior scaling than spatially-resolved direct imaging as the
scene becomes more severely diffraction-limited. We apply our results to example imaging scenarios
and find conditions under which super-resolution object discrimination can be physically realized.

Introduction—Object discrimination is at the heart of
decision making in medical diagnostics, extrasolar as-
tronomy, and autonomous sensing. For incoherent imag-
ing with large standoff distances, small objects, and/or a
small aperture, optical diffraction impedes accurate dis-
crimination between spatially distinct objects. A classic
heuristic criterion, attributed to Rayleigh, holds that two
objects cannot be discriminated when their distinguish-
ing features exhibit length scales smaller than the width
of the system point-spread-function (PSF) [1]. More
quantitatively, for hypothesis tests between such “sub-
Rayleigh” objects, the probability of correct identifica-
tion degrades as the PSF more severely perturbs the mea-
sured images [2].

A paradigm shift for sub-Rayeigh imaging recently
emerged via the calculation of task-specific error bounds
that optimize over all measurements permitted by quan-
tum mechanics [3]. These “quantum limits” revealed that
direct measurements of the image-plane optical intensity
profile are responsible for the catastrophic degree of er-
ror implied by the Rayleigh criterion, whereas alternative
measurements yield far lower error than direct imaging
for many tasks [4–8]. Quantum limits, and “quantum-
optimal” measurements that achieve them, were found
for specific hypothesis tests including one-vs-two point
source discrimination [9, 10] and exoplanet detection
[11, 12]. However, no general results exist that broadly
apply to real-world object discrimination settings.

This Letter finds quantum limits and quantum-optimal
measurements for generalized sub-Rayleigh object dis-
crimination, with applicability to sub-cellular fluores-
cence microscopy, exoplanet surveys, pattern recognition
in remote sensing, and many more imaging domains. For
sub-Rayleigh hypothesis tests between any two incoher-
ent, quasi-monochromatic 2D objects, we 1) compute the
quantum Chernoff bound on symmetric discrimination
error, 2) compute the classical Chernoff exponent that
characterizes the error obtained with ideal direct imag-
ing, 3) quantify a quadratic scaling gap between the two
Chernoff exponents, and 4) identify a quantum-optimal
measurement that employs a pre-detection spatial-mode
sorting device whose linear-optical design does not de-

pend on the objects. Remarkably, our results extend
to M -ary discrimination: the same object-independent
measurement is quantum-optimal for any M > 2 sub-
Rayleigh objects. Last, we define Hamming-like distance
measures for object libraries to quantify the realizable
advantage over direct imaging.
Quantum model—Let the label Hj , j ∈ [1,M ], de-

note a hypothesis corresponding to one of M candidate
objects. Under hypothesis Hj , the quantum state ηj
on Hilbert space H describes one temporal mode of a
quasi-monochromatic optical field collected by an imag-
ing system. Many natural thermal sources exhibit ε� 1
mean photons per temporal mode such that multi-photon
detection within the optical coherence time is vanish-
ingly rare [13]. Using a weak-source Fock expansion
ηj = (1−ε)|0〉〈0|+ερj+O(ε2), where |0〉〈0| is the vacuum
state, the state ρj carries all spatial information about
the jth object [4]. Since ρj models one photon over mul-
tiple orthogonal spatial modes, it can be mapped onto
a Hilbert space spanned by the Fock states of a single
bosonic mode [4]. We denote this Hilbert space H(1).

Let an imaging system with a 2D coherent PSF ψ(~x)
relate object- and image-plane position vectors ~xobj =
{xobj, yobj} and ~x = µ~xobj by the transverse magnifica-
tion µ. We spatially model the object under hypothe-
sis Hj by a normalized radiant exitance profile mj(~xobj).
The state of the collected optical field on H(1) is then [14]

ρj =

∫∫ ∞
−∞

1

µ2
mj

(
~x

µ

)
|ψ~x〉〈ψ~x|d2~x, (1)

where the pure state |ψ~x〉 =
∫∫∞
−∞ ψ(~a−~x)|~a〉d2~a encodes

the effect of the aperture and |~x〉 is a single-photon eigen-
ket at image-plane position ~x [4]. In a basis of orthogonal
vectors |φm〉 =

∫∫∞
−∞ φm(~x)|~x〉d2~x that span H(1), where

φm(~x) are orthogonal 2D functions, the density matrix

ρj =

∞∑
m,n=0

dj,m,n|φm〉〈φn| (2)

has elements dj,m,n =
∫∫∞
−∞ µ−2mj(~x/µ)cm,n(~x)d2~x,

where cm,n(~x) = 〈φm|ψ~x〉〈ψ~x|φn〉.
Quantum and classical detection theory—Consider a

hypothesis test between objects m1(~xobj) and m2(~xobj)
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with equal prior probabilities (Fig. 1). To decide be-
tween hypotheses H1 and H2, a receiver measures the
true state η⊗M1 or η⊗M2 acquired overM temporal modes
and applies a pre-determined decision rule on the out-
come(s). If the conditional probability of deciding Hj′

under true hypothesis Hj is P (say H ′j |Hj true), the av-

erage error probability Perr =
[
P (say H1|H2 true) +

P (say H2|H1 true)
]
/2 is a symmetric performance met-

ric [15] for that measurement and decision rule [16]. Opti-
mizing over all such schemes, the quantum-limited min-
imum average error probability Pmin

err ∼ e−ξQM follows
an exponential decay when M� 1, where the quantum
Chernoff exponent (QCE) ξQ quantifies how efficiently
each additional copy of the received state ηj suppresses
the minimum error [17, 18]. Under the weak-source

model, this minimum error decays as Pmin
err ∼ e−ξ

(1)
Q N ,

where N = εM is the average photon number of η⊗Mj .
In [19], we show that the per-photon QCE [17, 18]

ξ
(1)
Q = − log

[
min

0≤s≤1
Tr
(
ρs1ρ

1−s
2

)]
(3)

obeys ξQ ≈ εξ(1)
Q for weak-source sub-Rayleigh objects.

The most general description of a measurement, a pos-
itive operator-valued measure (POVM), consists of a set
of positive semi-definite operators {Πz}Z on H, linked
to measurement outcomes z in an outcome space Z,
that resolve the identity operator as

∑
z∈Z Πz = I [24].

For a particular measurement performed on η⊗Mj , the
minimum average error among all decision rules goes
as Pmin

err,Meas ∼ e−ξMeasM, where ξMeas is the Chernoff
exponent (CE) for that measurement [16, 25]. For
weak sources, the minimal error of any photon-counting

measurement goes as Pmin
err,Meas ∼ e−ξ

(1)
MeasN [19], where

ξMeas ≈ εξ(1)
Meas in the sub-Rayleigh regime and where

ξ
(1)
Meas = − log

[
min

0≤s≤1

∑
z∈Z(1)

P (z|ρ1)sP (z|ρ2)1−s

]
(4)

is the per-photon CE [16], which depends on the single-

photon outcome probabilities P (z|ρj) = Tr(Π
(1)
z ρj) ob-

tained by the reduced POVM {Π(1)
z }Z(1) on H(1) with

outcomes z ∈ Z(1).

The quantum and classical statistics are related by
the quantum Chernoff bound ξMeas ≤ ξQ, i.e., the QCE
automatically optimizes over the CEs of all POVMs on
H⊗M [26]. A measurement whose CE matches the QCE

(ξ
(1)
Meas = ξ

(1)
Q ) is quantum-optimal for the given hypothe-

sis test. Conversely, a gap (ξ
(1)
Meas < ξ

(1)
Q ) indicates a fun-

damental sub-optimality in the measurement that cannot
be remedied by data post-processing.

Results: binary object discrimination—In this section

we compute the QCE ξ
(1)
Q for generalized sub-Rayleigh

a.

b.

FIG. 1. Discrimination of two objects m1(~xobj) and m2(~xobj).
a. Direct imaging. b. TriSPADE receiver using a spatial-mode
sorter and three shot-noise-limited photon detectors. For a 2D
Gaussian PSF, the sorted modes are shown at right.

object discrimination and find a universally optimal mea-

surement for which ξ
(1)
Meas = ξ

(1)
Q . For a preliminary re-

sult, if the object under H1 is a single point source at
object-plane position ~x1,obj = ~x1/µ, as in Refs. [9–12],
then for any second object the QCE is [19]

ξ
(1)
Q =− log

[∫∫ ∞
−∞

1

µ2
m2

(
~x− ~x1

µ

)
|Γ(~x)|2d2~x

]
, (5)

where Γ(~x) = 〈ψ~Ω|ψ~x〉 =
∫∫∞
−∞ ψ∗(~a)ψ(~a − ~x)d2~a is the

2D autocorrelation function of the PSF and ~Ω = {0, 0}
denotes the origin in the image plane. This quantum

limit is achieved (i.e., ξ
(1)
BSPADE = ξ

(1)
Q ) by a 2D binary

spatial mode demultiplexing (BSPADE) device [4, 27, 28]
that passively couples a PSF-matched spatial mode to
one shot-noise-limited photon-counting detector (Π0 =
|ψ~x1
〉〈ψ~x1

|) and all other light to a second detector (Π1 =
I − |ψ~x1

〉〈ψ~x1
|) [19]. Eq. (5) is an exact expression for

the QCE of any point-source-vs-known-object hypothesis
test, sub-Rayleigh or otherwise, and BSPADE is always
quantum-optimal in this case.

We now generalize to two arbitrary objects m1(~xobj)
and m2(~xobj) and obtain analytical results in the sub-
Rayleigh regime. Define γ = µθ/σ as the magnification-
scaled geometric ratio between the largest spatial ex-
tent among the objects (θ) vs the PSF width (σ). The
sub-Rayleigh limit γ � 1 is of greatest interest for
super-resolution imaging, as diffraction significantly im-
pairs conventional object distinguishability below γ =
1 (Fig. 2). We also define m̃j(~xobj) = θ2mj(θ~xobj),

ψ̃(~x) = σψ(σ~x), and Γ̃(~x) = Γ(σ~x) to rescale and non-
dimensionalize the objects, PSF, and PSF autocorrela-
tion function, isolating the effect of γ from that of the
object and PSF shapes [19]. We require that the objects’
2D centroids coincide at a location known to the receiver
such that the task is object identification and not local-
ization [29–31] and that the PSF ψ(~x) is even in x and y
(e.g., a circularly symmetric aperture).

To derive the generalized QCE [19], we represent ρj
[Eq. (2)] in a basis of PSF-adapted (PAD) eigenvec-
tors |φm〉 via Gram-Schmidt orthogonalization of the 2D
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FIG. 2. Simplified object pair examples: a. vertical vs. hor-
izontal ellipse, b. filled vs. hollow nuclear pore [32], c. exo-
planet detection, d. QR code reading. Upper images: normal-
ized ground truth object irradiance. Lower images: Gaussian-
PSF-convolved image-plane intensity profiles when γ = 1.

Cartesian derivatives of the PSF [33–35]. For a Gaus-
sian PSF ψ(~x) = (2πσ2)−1/2 exp(−(x2 + y2)/4σ2), the
PAD basis functions φm(~x) are Hermite-Gauss polyno-
mials [34]. After expanding ρ1 and ρ2 in powers of γ � 1
and truncating to finite dimensions [5], we use operator
perturbation theory [36] to find

ξ
(1)
Q = max

0≤s≤1

[(
sm1,x2 +(1−s)m2,x2−ms

1,x2m1−s
2,x2

)
Γx2

+
(
sm1,y2 +(1− s)m2,y2−ms

1,y2m
1−s
2,y2

)
Γy2
]
γ2+O(γ3),

(6)
where mj,xkyl =

∫∫∞
−∞ xkobjy

l
objm̃j(~xobj)d

2~xobj are spa-
tial moments of the object models and Γxkyl =

−[Re(∂k+lΓ̃(~x)/∂xk∂yl)]~x=~Ω are derivatives of the PSF
autocorrelation function. The QCE in Eq. (6) is our first
main result and represents the quantum limit for dis-
crimination between any two incoherent objects in the
sub-Rayleigh limit γ � 1. Important features of Eq. (6)
include the O(γ2) scaling of the QCE and the separable
contributions from the object second moments and the
second derivatives of Γ̃(~x). Moreover, the minimization
over powers of infinite-dimensional matrices [Eq. (3)] is
replaced with a simple maximization of a scalar function.

We compute the CE for ideal direct imaging (i.e., in-
finite spatial bandwidth, unity fill factor, unity quantum
efficiency, Fig. 1a.) with a zeroless PSF [37] that is sep-
arable in x and y to be [19]

ξ
(1)
Direct = (1/32)(Kx +Ky)γ4 +O(γ5), (7)

with Ka = (m1,a2 −m2,a2)2
∫∫∞
−∞ ψa2(~x)2/|ψ̃(~x)|2d2~x for

a ∈ [x, y] and where ψxkyl(~x) = ∂k+l|ψ̃(~x)|2/∂xk∂yl are
derivatives of the incoherent PSF. Eqs. (6) and (7) reveal

a. b.

c. d.

FIG. 3. (Q)CEs for the tasks in Fig. 2 with a Gaussian

PSF. Thick lines: lowest-order (in γ) approximations for ξ
(1)
Q

[Eq. (6)] and ξ
(1)
Direct [Eq. (7)]. Thin lines: exact numerical re-

sults for ξ
(1)
Q [Eq. (3)], ξ

(1)
Direct [Eq. (4)], and ξ

(1)
TriSPADE [Eq. (4)].

Misalignment was θ/10 for the misaligned ξ
(1)
TriSPADE in c.

a quadratic scaling sub-optimality in direct imaging—

ξ
(1)
Direct ∼ γ4 vs ξ

(1)
Q ∼ γ2—for all binary discrimina-

tion tasks [38]. Alternatively, we analyze a “TriSPADE”
measurement (Fig. 1b.) [27] that sorts the collected light
between the PSF-matched spatial mode and the first-
order PAD-basis modes in two perpendicular dimensions.
TriSPADE uses linear optics and shot-noise limited pho-
todetectors to implement a measurement with the object-
independent projectors Πi = |φi〉〈φi|, i ∈ [0, 2]. The re-

sulting CE ξ
(1)
TriSPADE achieves the QCE when γ � 1 [19],

so TriSPADE is a quantum-optimal measurement for bi-
nary sub-Rayleigh object discrimination.

In Fig. 3 we numerically evaluate ξ
(1)
Q , ξ

(1)
Direct, and

ξ
(1)
TriSPADE from Eqs. (3) and (4) for the examples depicted

in Fig. 2. We observe that the lowest-order O(γ2) behav-
ior of the QCE, found by numerically maximizing Eq. (6),
is an excellent approximation for both the QCE and
the TriSPADE CE throughout the sub-Rayleigh regime
(γ < 1). Meanwhile, Eq. (7) closely follows the O(γ4)
sub-Rayleigh direct imaging CE, illustrating the general
O(γ2) scaling gap. We also find TriSPADE to be ro-
bust to mode-sorter misalignment from the object cen-
troid, retaining the O(γ2) advantage over direct imaging
(Fig. 3c). These results suggest that TriSPADE can per-
form a wide range of sub-Rayleigh hypothesis tests with
substantially less error than conventional methods.
Results: M -ary object discrimination—We now ex-

tend our analysis to M > 2 equiprobable objects, such
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c.a.

d.b.

FIG. 4. (a.-b.) Visualization of generalized object libraries
with quadratically and linearly packed 2D second moments.
(c.-d.) Comparison of the CEs for TriSPADE, direct imaging
and an error threshold for M -ary object discrimination with
a 2D Gaussian aperture to lowest order in γ (mx2,min = 0.05,
mx2,max = 0.1, color online).

as a library of QR codes (Fig. 2d.). The M -ary QCE

ξ
(1)
Q,M = mini6=j ξ

(1)
Q,i,j , which characterizes the quantum-

limited asymptotic error for discriminating M states, is

found by minimizing the pairwise QCEs ξ
(1)
Q,i,j for each

pair of states {ρi, ρj} [39]. The similarly defined M -

ary CE ξ
(1)
Meas,M = mini6=j ξ

(1)
Meas,i,j obeys the multiple

quantum Chernoff bound ξ
(1)
Meas,M ≤ ξ

(1)
Q,M [39]. We

have shown that TriSPADE saturates the quantum limit

(ξ
(1)
TriSPADE,i,j = ξ

(1)
Q,i,j) for any two states when γ � 1.

Therefore, the TriSPADE measurement, which crucially
does not depend on the candidate states, will always
simultaneously achieve the QCE for all pairs of states
in a library when γ � 1. It follows that TriSPADE
saturates the multiple quantum Chernoff bound (i.e.,

ξ
(1)
TriSPADE,M = ξ

(1)
Q,M ) and is therefore a quantum-optimal

measurement for discriminating within any M -object li-
brary in the sub-Rayleigh limit.

Furthermore, we identify “distance” measures that de-

termine the prefactors of ξ
(1)
Q,M ∼ γ2 and ξ

(1)
Direct,M ∼ γ4

from the minimum distance among all object pairs in
a library. Our measures, which depend on the sec-
ond moments (mj,x2 and mj,y2) of the candidate ob-
jects, resemble the Hamming distance in linear coding
theory, which quantifies the distinguishability of noise-
corrupted codewords [40]. Approximating Eq. (6) using
the quantum Bhattacharyya bound [41], we find that
relative square roots of object second moments (e.g.,√
mi,x2−√mj,x2) form a distance for the pairwise QCEs,

such that M = MxMy quadratically packed objects on a
Mx×My rectangular grid within the 2D space of second
moments (Fig. 4a.) form an “equidistant” library, i.e.,

ξ
(1)
Q,i,j is the same for all nearest-neighbor object pairs

along either x or y [19]. Consider an equidistant library
of objects constrained by mx2,min ≤ mj,x2 ≤ mx2,max and

my2,min ≤ mj,y2 ≤ my2,max and let M2
x = M2

y = M � 1.
Up to a coordinate rotation [19],

ξ
(1)
Q,M ≈

(
√
mx2,max −

√
mx2,min)2Γx2

2M
γ2+O

(
γ3
)
, (8)

ξ
(1)
Direct,M =

(
√
mx2,max −

√
mx2,min)2Ψx2

8Mm−1
x2,min

γ4+O
(
γ5
)
, (9)

where Ψx2 =
∫∫∞
−∞ ψx2(~x)2/|ψ̃(~x)|2d2~x. For direct imag-

ing, the differences mi,x2 − mj,x2 constitute a distance

measure for ξ
(1)
Direct,M [Eq. (7)], so linearly packed objects

form an equidistant library (Fig. 4b.). In this case [19],

ξ
(1)
Q,M ≈

(mx2,max −mx2,min)2Γx2

8Mmx2,max
γ2+O

(
γ3
)
, (10)

ξ
(1)
Direct,M =

(mx2,max −mx2,min)2Ψx2

32M
γ4+O

(
γ5
)
. (11)

To unravel the implications of these second-moment
distances, we probe conditions under which the quantum-
optimal TriSPADE receiver achieves a useful perfor-
mance gain over conventional imaging. Fig. 4c.-d.
depicts parameterized regions indicating whether, to
lowest order in γ, the TriSPADE CE exceeds that
of direct imaging by an order of magnitude (i.e.,

ξ
(1)
TriSPADE,M > 10ξ

(1)
Direct,M ) and/or satisfies a threshold

representing an acceptable application-specific error rate

(i.e., ξ
(1)
TriSPADE,M > ξ

(1)
Thresh). We observe that γ deter-

mines the relative improvement over direct imaging, and
quadratic object packing (c.) yields the 10x improvement
for a larger slice of the sub-Rayleigh regime than lin-
ear packing (d.), highlighting the different distance mea-
sures between the two measurements. Satisfying the er-

ror threshold ξ
(1)
Thresh requires a tradeoff with γ and the

number of objects M but is less sensitive to the second-
moment packing configuration of the library.

Finally, in Fig. 5 we ask how many objects can be dis-
tinguished to a desired accuracy with a conventional or
quantum-optimal measurement, which directly relates to
the decision-making power of an imaging system. Using
an equidistant library for both measurements, we solve
Eqs. (8) and (11) for M and find that TriSPADE distin-
guishes more objects than direct imaging by an increas-
ing factor as γ decreases for any threshold error rate.

For instance, at a relaxed threshold ξ
(1)
Thresh = 10−6, i.e.,

higher tolerable error and/or more available photons (in-
set), TriSPADE distinguishes 100 objects at γ = 0.28
(vertical line), while direct imaging cannot identify more
than one. We conclude that TriSPADE significantly in-
creases the complexity of distinguishable sub-Rayleigh
object libraries without compromising performance.
Conclusion—Our work shows that a simple optical re-

ceiver could enable substantial improvements in decision-
making in many super-resolution imaging contexts. Sys-
tem imperfections (e.g., optical losses, mode crosstalk,
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FIG. 5. Maximum number of objects that are distinguishable
at a threshold error rate to lowest order in γ with a 2D Gaus-
sian aperture (mx2,min = 0.05, mx2,max = 0.1, color online).
Inset: error probability vs. mean detected photon number.

detector noise) and limited prior knowledge of the library
(e.g., object defects, unknown pose) are outside the scope
of this Letter but can only reduce discrimination accu-
racy from the ideal case [42, 43]. Our quantum limit
is therefore a fundamental lower bound on identification
error that can rule out quantitative regimes of discrimi-
nation capability for future imaging systems.
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