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We present a minimal non-Hermitian model where a topologically nontrivial complex energy
spectrum is induced by inter-particle interactions. Our model consists of a one-dimensional chain
with a dynamical non-Hermitian gauge field with density dependence. The model is topologically
trivial for a single particle system, but exhibits nontrivial non-Hermitian topology with a point gap
when two or more particles are present in the system. We construct an effective doublon model to
describe the nontrivial topology in the presence of two particles, which quantitatively agrees with
the full interacting model. Our model can be realized by modulating hoppings of the Hatano-Nelson
model; we provide a concrete Floquet protocol to realize the model in atomic and optical settings.

Non-Hermitian Hamiltonians have been found to host
a rich variety of topological phases [1–14]. While some
non-Hermitian phases are direct analogues of Hermitian
phases, there are many uniquely non-Hermitian phases.
These result when the system has a point gap in the com-
plex energy plane, which allows for non-trivial winding of
the energy spectrum. Non-Hermitian topology manifests
in an analogous bulk-boundary correspondence known as
the skin effect wherein a macroscopic number of states lo-
calize at the boundary [15–19]. These phenomena have
been primarily investigated as single particle effects.

Comparatively little work has been done to understand
the role of correlations and interactions in non-Hermitian
topological phases [20–24]. Interactions have played an
important role in Hermitian topological physics, giving
rise to many paradigmatic phases including the fractional
quantum Hall effect and quantum spin liquids. Such
strongly interacting systems have led to many advance-
ments in physics, including developments in gauge theo-
ries. Given the richness of Hermitian interacting systems,
it remains to be seen how analogous non-Hermitian inter-
actions can enrich the topology of open systems. Exper-
imentally, two body loss terms are ubiquitous in optical
lattices and photonics with an increasing degree of con-
trol, further motivating investigations of the topology of
many body open systems.

In this letter, we report on a minimal 1D non-
Hermitian model exhibiting interaction induced topology.
We demonstrate that our model is topologically trivial for
a single particle, but gains a non-trivial winding number
in the complex energy plane for two or more particles.
We characterize the spectrum by the clustering proper-
ties of the eigenstates. This leads us to derive an effective
SSH model of Doublons with an emergent sublattice sym-
metry, which quantitatively captures the complex energy
ring of the full spectrum. The winding number of the
interacting model corresponds with the winding of this
effective model analogous to interaction induced topology
in Hermitian systems [25–27]. We conclude by proposing
a two-frequency Floquet protocol that realizes our model
as an effective Hamiltonian. As an intermediate step,
this Floquet protocol realizes a Hatano-Nelson model.

Model.— Our model consists of bosons populating a
1D chain with hoppings dependent on the gradient of the
density, which can be interpreted as a density-dependent
synthetic dynamical gauge field. The Hamiltonian of our
system is

H =
∑
j

a†j+1

[
− t+ iγR(nj+1 − nj)

]
aj

+ a†j

[
− t+ iγL(nj − nj+1)

]
aj+1 (1)

where aj and a†j are bosonic annihilation and creation
operators, respectively, t is the single particle hopping
parameter, nj is the density operator a†jaj on the jth
site, and γR/L are the couplings to the gauge field for
right and left hoppings. To realize a non-Hermitian
model, we take γR 6= γ∗L in similar fashion to the
Hatano-Nelson model [28, 29]. Description in terms of
non-Hermitian Hamiltonians can be obtained through a
post-selection procedure on quantum trajectories [21, 30].
Later we present a concrete experimental protocol com-
bining quantum trajectory and Floquet theory to real-
ize this Hamiltonian. In the present model, when there
is only one particle present in the system, the density
terms are identically zero. Therefore, for a single parti-
cle the Hamiltonian is Hermitian and corresponds to a
free boson. The single particle spectrum is shown in Fig.
1a which reproduces the free boson result for a periodic
chain of length L = 20.

Exact Diagonalization.— Let us contrast this result
with the two particle spectrum shown in Fig 1b. We
consider fixed particle number as the Hamiltonian has
U(1) symmetry. Physically, particle number is conserved
between quantum jumps during which the non-Hermitian
Hamiltonian description is valid. Here we find that the
energy spectrum consists of a sector where energies are
nearly real and a sector consisting of a ring of complex
energies. We project each eigenstate into the subset of
basis states where particles lie on the same site or adja-
cent sites, and find that the states with complex energies
largely lie in this subspace while those with nearly real
energies have almost zero weight in this subspace. To
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FIG. 1. Summary of key results. Panels a and b are energy
spectra for periodic boundary conditions plotted in the com-
plex plane for 1 and 2 particles, respectively. For one particle,
the spectrum is real while for two particles, the spectrum is
complex with a point gap. The coloring in panel b is obtained
projecting each eigenstate onto the subspace of basis states
where particles lie on the same site or adjacent sites. The
red line is the spectrum obtained from the effective doublon
model described below. Panel c and d are the real space pro-
files of the eigenstates in the open boundary geometry for 1
and 2 particles respectively. For one particle, eigenstates are
typical standing waves while for two particles we observe a
skin effect. The chosen parameters are t = 1, γL = 1.5 and
γR = 0 for a lattice with 20 sites.

further characterize this separation we calculate the cor-
relator a†ja

†
kajak for each eigenstate. Representative cor-

relators for complex energy states and nearly real energy
states are shown as a function of j for a fixed k in Fig
2. This correlator confirms that the states with complex
energy occur when the particles cluster while those with
nearly real energies occur when the particles separate.

FIG. 2. Four point correlator 〈a†ja
†
kajak〉 for k = 10 with

periodic boundary conditions. The solid line is representa-
tive of states with corresponding energies on the ring while
the dashed line is representative of states with nearly real
eigenenergies.

The energy spectrum has a point gap indicating the
presence of nontrivial topology. To verify the nontrivial

FIG. 3. Plot demonstrating the nontrivial winding number.
A jump from 1 to -1 increases the winding by 1 while a jump
from -1 to 1 descreases the winding by 1.

topology, we calculate the winding number following the
flux insertion procedure outlined in Ref [31]. We define
H(φ) by multiplying e−iφ (eiφ) to the boundary hopping
term in the first (second) term of Eq.(1), where φ is the
strength of the inserted magnetic flux. We then calculate

1

π
=
[
∂φ ln det[H(φ)− δI]

]
(2)

as a function φ, where =[·] stands for the imaginary part,
and I is the identity matrix. The signed number of jumps
in this quantity give the winding of the phase about the
point δ, chosen to lie within the point gap, in the complex
plane. In Fig 3, we plot this quantity versus the flux, φ,
and clearly see that it jumps twice as the flux is tuned
from 0 to 2π, giving a winding number of 2 and con-
firming that the system is topologically non-trivial when
there are two particles.

A non-trivial winding number implies the existence of
the skin effect in the open boundary geometry. The open-
boundary eigenstates are plotted in Figs 1c and 1d for
the one and two particle systems respectively. The one
particle eigenstates are exactly those obtained for a free
Boson model while the two particle eigenstates demon-
strate a clear skin effect. In fact, all states will localize
on the edge for strong enough gauge coupling. For com-
pleteness, we present the energy spectrum in the open
boundary geometry in Fig 4, which shows that the spec-
trum does not cleanly separate along particle clustering
properties as both particles localize on the edge. Unlike
the single-particle Hatano-Nelson model, the spectrum
in the open boundary condition does not lie on the real
axis only; we discuss below the origin of this complex
spectrum.

Effective Doublon Model.— To understand the topol-
ogy of the system, we derive an effective doublon model
that captures the physics of the complex energy ring. We
obtain this by restricting our basis to states where the
particles lie on the same site or on adjacent sites. The
effective doublon model consists of two sublattices; we
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FIG. 4. Energy spectrum for open boundary geometry. The
parameters are the same as in Fig. 1 and the coloring of points
is obtained through the same projection method. Red crosses
are obtained from the effective Doublon SSH model.

define sublattice A to be the set of states with particles
on the same site, and sublattice B to be the set of states
with two particles occupying adjacent sites, as shown in
the diagram in Fig 5. We define the creation operator
of a particle in j-th site of sublattice A as a†A,j ≡ a†ja

†
j

and that of sublattice B as a†B,j ≡ a
†
ja
†
j+1. The resulting

effective model is given by the Hamiltonian

HDoublon =
∑
j

Ψ†j,j

(
0 J1

J3 0

)
Ψj,j + Ψ†j+1,j

(
0 J2

J4 0

)
Ψj+1,j ,

(3)

where Ψ†j,l ≡
(
a†A,j , a

†
B,l

)
and J1 =

√
2(−t + iγL), J2 =

√
2(−t+iγR), J3 =

√
2(−t−iγR), and J4 =

√
2(−t−iγL),

which is an SSH model with asymmetric hoppings on a
chain of length 2L. We note that the effective doublon
model has emergent sublattice symmetry in which hop-
ping within the same sublattice is absent. The energy
spectrum of this model is plotted in red on Figs. 1b and
4 for periodic and open boundaries, respectively, demon-
strating that key features of the many body spectrum
are captured by this single particle doublon model. The
accuracy of the Doublon model increases for stronger
density-dependent hopping.

To characterize the topology of this effective theory, we
calculate the winding number of the energy spectrum in
momentum space. The Fourier transform of the effective
Hamiltonian is∑

k

Ψ̃†k,k

(
0 J1 + J2e

−ik

J3 + J4e
ik 0

)
Ψ̃k,k (4)

with Ψ̃k,k ≡ (ãA,k, ãB,k), where ãA,k and ãB,k are the
Fourier transforms of aA,j and aB,j . The details for de-
termining the topology of such a system with sublattice
symmetry are outlined in Ref [1] where we have the upper
diagonal matrix H+ = J1 + J2e

−ik and the lower diago-
nal matrix H− = J3+J4e

ik. If the point gap in the many
body system is well-defined, the winding of the full sys-
tem without considering the sublattice symmetry is twice

FIG. 5. Diagram of the effective doublon SSH model. Sub-
lattice A maps to basis states with particles on the same site
while sublattice B maps to basis states with particles on ad-
jacent sites.

the winding of the doublon Hamiltonian. The doublon
model tells us approximately which points in the complex
energy plane we should consider to find non-trivial wind-
ing in the full many-body system. Additionally, the point
gaps in the many body system are often larger than in
the doublon effective theory, providing additional points
about which there is non-trivial winding.

In the Hatano-Nelson model, the spectrum under
open boundary conditions is real implying there ex-
ists an imaginary gauge transformation between the
Hatano-Nelson Hamiltonian and a Hermitian Hamilto-
nian [28, 29, 32]. In general the energy spectrum of
HDoublon has both imaginary and real energies, implying
that the Hamiltonian cannot be made Hermitian by an
imaginary gauge transformation, i.e. our effective dou-
blon model is not related to any Hermitian matrix by
a similarity transformation. With a similarity transfor-
mation similar to the one used for the ordinary Hatano-
Nelson model [32], one can transform our effective dou-
blon Hamiltonian under an open boundary condition to
a tri-diagonal form:

HDoublon ∼


0

√
J1J3 0 · · ·√

J1J3 0
√
J2J4 · · ·

0
√
J2J4 0 · · ·

...
...

...
. . .

 . (5)

This matrix is real and symmetric when both
√
J1J3 and√

J2J4 are real, which gives a sufficient condition for the
reality of the spectrum. When γL and γR are real, which
is the situation relevant in this paper, J2J4 = (J1J3)∗, in
which case we numerically confirm that J1J3 > 0 gives
the necessary and sufficient condition for the spectrum
being entirely real.

Floquet Protocols.— To realize our model, we have
identified a Floquet protocol whose effective Hamilto-
nian can be identified with Eq. 1. This Floquet protocol
is inspired by previous efforts towards realizing Hermi-
tian density dependent gauge fields in the setting of op-
tical lattices [33–39]. The system consists of a static
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Bose-Hubbard Hamiltonian and a time periodic Hatano-
Nelson model.

We first describe how to realize Hatano-Nelson model
from a Floquet protocol, which consists of a repeated
three step process as presented in Ref. [40] with total
frequency Ω = 2π/TΩ.[41] The time-dependent Hamilto-
nian is given as

H(t) = ∆
∑
j

(a†j+1aj +aj+1a
†
j) +U

∑
j

nj(nj − 1) +V (t)

(6)
where ∆ is the hopping parameter, U is the strength of
the interaction and V (t) is the modulation given by

V (t) =


∆1

∑
j a
†
j+1aj + aj+1a

†
j , 0 ≤ t < TΩ/3∑

j iµja
†
jaj , TΩ/3 ≤ t < 2TΩ/3

0, 2TΩ/3 ≤ t < TΩ

(7)
corresponding to a free gas of bosons with periodically
modulated hopping and site dependent loss µj . Note t is
defined mod TΩ. We obtain an effective Hamiltonian to
order 1/Ω as

Heff =
∑
j

[
∆− π∆1

27Ω
(µj − µj+1)

]
a†j+1aj

+
[
∆− π∆1

27Ω
(µj+1 − µj)

]
a†jaj+1 + U

∑
j

nj(nj − 1)

(8)

Choosing the site-dependent loss strength to be µj = jµ0,
we obtain a Hatano-Nelson model. A non-Hermitian
Hamiltonian with site dependent loss can be imple-
mented in ultracold gases by applying near-resonant light
with position-dependent intensity [42]. Modulating this
electric field in time as proposed above should give rise
to the effective time-dependent Hamiltonian in Eqs. 6
and 7.

By further modulating the hopping of the effective
Hatano-Nelson Hamiltonian, we obtain the desired hop-
ping as we now show. The full time dependent Hamilto-
nian is given by

H(t) =∆
∑
j

[
a†j+1aj + a†jaj+1

]
+ U

∑
j

a†jaj(a
†
jaj − 1)

+ sin(ωt)
∑
j

[
∆Ra

†
j+1aj + ∆La

†
jaj+1

]
(9)

where ∆ is the hopping parameter, U is the interaction
strength, ω is the frequency of the drive, and ∆R 6= ∆∗L
describes a non-Hermitian drive analogous to a Hatano-
Nelson model. We assume ω � Ω so that in the time
scale of 1/ω the system is effectively described by a static
Hatano-Nelson model. From the Magnus expansion[43,

44], we can obtain the effective Hamiltonian to order 1/ω

Heff =
∑
j

a†j+1

[
∆− 2

i~ω
U∆R(nj − nj+1)

]
aj

+ a†j

[
∆− 2

i~ω
U∆L(nj+1 − nj)

]
aj+1

+ U
∑
j

a†jaj(a
†
jaj − 1) (10)

which maps to our original system with ∆ = −t, γL =
2
~ωU∆L and γR = 2

~ωU∆R. We note here if one considers
this Floquet protocol for fermions instead of bosons, the
Hatano-Nelson model can be realized from the fast fre-
quency oscillation, but the density-dependent hopping is
absent as particles cannot lie on the same site. This Flo-
quet protocol introduces an additional interaction term
in the effective Hamiltonian. The physics of our proposed
model remains unchanged for sufficiently small interac-
tion strength U .

Besides one dimensional quantum systems with con-
trolled modulation, such as ultracold atomic gases, the
above protocols can also be realized by mapping the mod-
els to two dimensional classical systems, where density-
induced Hermitian models have been previously investi-
gated [25, 26].

Conclusion.— We have presented a minimal model
where the interaction induces non-trivial non-Hermitian
topology. The density-dependent non-Hermitian gauge
field played a crucial role in the emergence of two-body
topological phases. Our work paves a way toward under-
standing the role of gauge fields in non-Hermitian many-
body systems. In Hermitian systems, effects of gauge
fields are pronounced in two or higher dimensions, giv-
ing rise to exotic many-body phases such as fractional
quantum Hall phases and topological order. It is there-
fore of great interest to extend the study of many-body
physics in non-Hermitian systems under gauge fields to
two and higher dimensions, in which we expect inter-
play of topological orders and non-Hermiticity. The Flo-
quet protocol we provide also elucidated that such non-
Hermitian many-body physics can be studied in experi-
mentally viable setups under suitable time modulations.
Furthermore, density-dependent gauge fields are simplest
examples of dynamical gauge fields where gauge fields
do not take externally fixed values. In Hermitian sys-
tems, dynamical gauge fields play a fundamental role
in understanding a wide variety of systems, from high-
energy to condensed matter physics. Their relations to
non-Hermitian physics has been little explored; our work
opens an avenue toward exploring this uncharted field.
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C. Nägerl, Floquet engineering of correlated tunneling
in the bose-hubbard model with ultracold atoms, Phys.
Rev. Lett. 116, 205301 (2016).

[38] T. Wang, S. Hu, S. Eggert, M. Fleischhauer, A. Pelster,
and X.-F. Zhang, Floquet-induced superfluidity with pe-
riodically modulated interactions of two-species hardcore
bosons in a one-dimensional optical lattice, Phys. Rev.
Research 2, 013275 (2020).

[39] C. Weitenberg and J. Simonet, Tailoring quantum gases
by floquet engineering, Nature Physics 17, 1342–1348
(2021).

[40] N. Goldman and J. Dalibard, Periodically driven quan-
tum systems: Effective hamiltonians and engineered
gauge fields, Phys. Rev. X 4, 031027 (2014).

[41] Z. Zhang and M. C. Rechtsman, private communication

(2021).
[42] Y. Takasu, T. Yagami, Y. Ashida, R. Hamazaki,

Y. Kuno, and Y. Takahashi, PT-symmetric non-
Hermitian quantum many-body system using ul-
tracold atoms in an optical lattice with controlled
dissipation, Progress of Theoretical and Experimen-
tal Physics 2020, 10.1093/ptep/ptaa094 (2020),
12A110, https://academic.oup.com/ptep/article-
pdf/2020/12/12A110/35415105/ptaa094.pdf.

[43] M. M. Maricq, Application of average hamiltonian theory
to the nmr of solids, Phys. Rev. B 25, 6622 (1982).

[44] T. P. Grozdanov and M. J. Raković, Quantum system
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