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The Kondo lattice model plays a key role in our understanding of quantum materials, but a lack of small
parameters has posed a long-standing problem. We present a 3 dimensional S= 1/2 Kondo lattice model
describing a spin liquid within an electron sea. Strong correlations in the spin liquid are treated exactly, enabling
a controlled analytical approach. Like a Peierls or BCS phase, a logarithmically divergent susceptibility leads
to an instability into a new phase at arbitrarily small Kondo coupling. Our solution captures a plethora of
emergent phenomena, including odd-frequency pairing, pair density wave formation and order fractionalization.
The ground-state state is a pair density wave with a fractionalized charge e, S = 1/2 order parameter, formed
between electrons and Majorana fermions.

The rich physics of the Kondo lattice, describing an array
of local moments interacting with an electron sea, plays a key
role in our understanding of quantum materials, from heavy
fermion compounds to twisted moiré lattices [1–4]. A key
element of this model is the transformation of spins into heavy
fermions, producing a large Fermi surface[5, 6]. These inter-
actions have to date been treated with approximate methods,
such as the large-N expansion[7–11] and dynamical mean field
theory[12].

Our work builds on a series of important developments
in the theory of Kitaev models and their connection with the
Kondo lattice[13–18]. Earlier variants of Kitaev-Kondo lat-
tices include models that couple the original, spin-gapped Ki-
taev spin liquid to a conduction sea [15–17], and models that
couple two dimensional Yao-Lee spin liquid to a conduction
sea via an octupolar coupling[18].

Here we introduce a 3-dimensional Kondo lattice model
which couples a Z2 spin liquid with a Fermi surface to a
conduction sea, in which the Kondo lattice physics can be
treated analytically to leading logarithmic accuracy. The spin
fluid is a three dimensional generalization of the Yao Lee
spin liquid[19], embedded on a hyper-octagonal lattice[13],
chosen because its cubic, trivalent structure gives rise to an
exactly solvable, gapless spin liquid whose gapless Majorana
excitations lie on a Fermi surface. Like the Kitaev spin liquid,
the Z2 gauge fields associated with the fractionalized spins are
static and can be treated exactly [19, 20].

Recent work has hypothesized that hybridization between
electrons and fractionalized excitations can give rise to a
new kind of fractionalized order with half-integer quantum
numbers[21, 22]. Such order emerges as a result of condensa-
tion of bound states of electrons and fractionalized excitations
of the spin liquid. Our Kondo lattice model provides a rigor-
ous example of this phenomenon and gives a clear description
of its manifestation in terms of physical observables such as
the electron self energy. In particular, at half filling, the
judicious choice of the lattice guarantees a perfect nesting be-

tween spinon and electron Fermi surfaces and allows us to sum
the leading logarithmic divergences, establishing an instabil-
ity at infinitesimal Kondo coupling into a pair-density wave
with a charge e, S = 1/2 order parameter, which induces odd-
frequency pairing amongst the conduction electrons and also
gives rise to a neutral, Majorana Fermi surface.

FIG. 1. (a) Hyper-octagonal lattice: a four-atom coil (1, 2, 3, 4)
on a BCC lattice gives rise to alternating square and octagonal
spirals[13].(b) Anisotropic coupling of orbital degrees of freedom
according to the plane in which the bond lies. (c) Kondo coupling
between the Yao-Lee spin liquid and the electron sea.

Our model Hamiltonian H = HC + HYL + HK , where

HC = −t
∑
<i j>

(c†iσcjσ + H.c) − µ
∑
j

c†jσcjσ,

HYL = (K/2)
∑
<i j>

(®σi · ®σj)λ
αi j

i λ
αi j

j ,

HK = J
∑
j

®Sj · (c
†

j ®σcj). (1)

Here 〈i, j〉 are neighboring sites on the hyper-octagonal
lattice[13], a trivalent body centered cubic (BCC) crystal with
four atoms per primitive unit cell, coiled around a helix to form
alternating square and octagonal spirals(Fig. 1). HC describes
hopping electrons while HYL describes a three-dimensional
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Yao-Lee (3DYL) spin liquid on the same lattice, with an or-
bital and spin degree of freedom at each site, denoted by Pauli
operators λaj (a = 1, 2, 3) and spins ®Sj = ®σj/2, respectively.
Theαi j = x, y, z label anisotropic xx, yy and zz orbital interac-
tions on bonds that lie in the yz, zx and xy planes respectively.
Finally, J is an antiferromagnetic Kondo coupling between the
electrons and local moments.

Fermionization. The Yao-Lee model [19] belongs to a
family of Z2 Kitaev spin liquids which can be solved ex-
actly using fermionization. Following [19] we represent
spin and orbital operators as products of Majorana fermions
®σj = −i ®χj × ®χj and ®λj = −i®bj × ®bj , where we use the
normalization {χai , χ

b
j } = δi jδ

ab . The spin-orbital oper-
ator is given by ®σjλ

α
j = −2iDj ®χjbαj where the constants

Dj = 8iχ1
j χ

2
j χ

3
j b1

jb
2
jb

3
j = ±1 commute with H. In the gauge

Dj = 1,

HYL = K
∑
<i, j>

ui j(i ®χi · ®χj) (2)

where ui j = −2ibαi j

i bαi j

j = ±1 is a Z2 gauge field that com-
mutes with the Hamiltonian.

The 3DYLmodel describes free fermionsmoving in a static
Z2 gauge field. This model shares many of the properties of
a 2D Kitaev spin liquid, most notably, the presence of gapped
Z2 flux excitations. On the hyper-octagonal lattice these are
described by Wilson loops - products of the gauge fields W =∏

u(i, j) = ±1 around closed ten and twelve-fold loops (where
(i, j) orders the sites i and j along xx, yy and zz bonds so
that the site furthest in the y, z and x directions respectively, is
placed first [13]). In the spin liquid ground-state, all loops are
trivial W = 1[13]; flipping the sign of a Wilson loop creates a
flux excitation (vison), with an energy determined as a fraction
of K . Unlike 2DKitaev spin liquids, the 3 dimensional models
undergo an Ising phase transition into a Higgs phase where
gauge fluctuations (visons) are confined such that only short
Wilson loops are allowed [23–25]. For theKitaevmodel on the
hyper-octagon lattice the transition at Tc1 ∼ 0.012K[24, 25]
gives rise to a spin-gap, but in the 3DYL, spin excitations
occur without the creation of visons, eliminating the spin-gap;
moreover, the three Majorana modes enhance Tc1 by a factor
of three. Below Tc1 the visons are confined and the Majorana
fields describe coherent, fractionalized spin excitations.

In the ground-state, choosing a gauge where u(i, j) = 1 and
taking into account that χ−k = χ†k ,

HYL = K
∑
k∈�
®χ †kαh(k)αβ ®χkβ, (3)

where α, β ∈ [1, 4] are site indices, while

h(k) =
©«

0 i ie−ik·a2 ie−ik·a1

−i 0 −i ie−ik·a3

−ieik·a2 i 0 −i
−ieik·a1 −ieik·a3 i 0

ª®®®¬ , (4)

and a1 = (1, 0, 0); a2 =
1
2 (1, 1,−1); a3 =

1
2 (1, 1, 1), are the

primitiveBCC lattice vectors. Since χ−k = χ†k , themomentum

sum is restricted to half the Brillouin zone, corresponding to a
cube (�) of side length 2π centered at the P point at (π, π, π).
The spectrum Ek ≡ Kε(k), determined by det[ε1 − h(k)] = 0,
or

ε4 − 6ε2 − 8ε(sxsysz) + [9 − 4(s2
x + s2

y + s2
z )] = 0, (5)

(where sl ≡ sin(kl/2), l = x, y, z), contains a single Fermi
surface centered at P[14] (Fig. 2).

Since the electrons and majoranas move on the same lat-
tice, at half filling their Fermi surfaces are perfectly nested and
can be brought into coincidence by applying a gauge transfor-
mation to the electrons,

(c1, c2, c3, c4) ®R → e−iQ·R(c1, ic2, c3,−ic4) ®R, (6)

where Q = (π, π, π) and R = n1a1 + n2a2 + n3a3 locates the
unit cell. In this gauge,

Hc =
∑

k∈BZ

c†kσα[−t h(k) − µ1]αβckσβ, (7)

and HYL(3) have the same form. At low temperatures, where
flux excitations can be ignored, we can rewrite the Kondo
interaction in terms of the spin ®Sj = −(i/2) ®χj× ®χj and decouple
it using a Hubbard-Stratonovich transformation, in terms of a
charge e spinor, Vj = (Vj↑,Vj↓)

T ,

HK =
∑
j

[
(c†j ®σVj) · ®χj + H.c.

]
+ 2

V†j Vj

J
(8)

The terms multiplying ®χj must themselves be Majorana
fermions, enabling us to rewrite HK in the compact form

HK =
∑
j

[
−iVj(®cj · ®χj) +

V2
j

J

]
, (9)

where we have cast Vj = (Vj/
√

2)(z↑j, z↓j)T in terms of a
normalized spinor and a real amplitude Vj/

√
2, dividing the

electrons into four Majorana components, (c0
j , ®cj),(

cj↑
cj↓

)
=

1
√

2
(c0

j + i ®cj · ®σ)
(
zj↑
zj↓

)
. (10)

FIG. 2. (a) Majorana Brillouin zone of the hyper-octagonal lattice
showing coincident conduction and Majorana Fermi surfaces around
the P point. (b) Hybridization of Majorana modes (in blue) with
conduction band (in red) leaves one conduction Majorana band de-
coupled, forming a neutral Majorana surface.
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Thus in a coherent Kondo lattice, the vector components of the
electron hybridize with the spinons and the scalar component
decouples.

Now the field Vj is a fluctuating field inside the path in-
tegral, but the nesting between the Majorana and conduction
Fermi surfaces ensures that it has a susceptibility to condense
that is logarithmically divergent in temperature or chemical
potential. Like a Cooper or Peierls instability, this ensures that
instability into a condensed phase must occur for arbitrarily
weak Kondo coupling.

We shall now focus on the stable, uniform condensate
Vj = V . At half-filling (µ = 0), vector and scalar electron
components decouple, so that

H =
∑
k∈�

[
−tc0†

k hkc0
k +
®ψ †k

(
−thk −iV
iV Kĥk

)
®ψk

]
+

NV2

J
,

(11)

where ®ψk = (®ck, ®χk)
T , N is the number of sites and we denote

hk ≡ h(k).
As we now demonstrate, at a temperature Tc2, below the

Ising phase transition Tc1, the system undergoes a second
phase transition where the spinor order parameterV condenses
(Fig. 3a). To demonstrate the instability, we note that since only
states close to the Fermi surface contribute at small J << K, t,
we can project the Hamiltonian onto the band with a Fermi sur-
face, with a dispersion for the band and the spin liquid fermions
being equal to−tε(k) and Kε(k) respectively. The calculations
then can be done analytically; we will restrict ourselves to the
simplest case µ = 0. Summing the leading logarithmic ladder
diagrams, we find the critical temperature Tc2 is defined by the
condition J χ1e(Tc2) = 1, where

χ1e(T) =
1
2

∫
d3k
(2π)3

tanh[ βtε (k)2 ] + tanh[ βKε (k)2 ]

2(K + t)ε(k)
, (12)

is the charge e pairing susceptibility[26]. To logarithmic ac-
curacy, χ1e(T) =

ρ
1+K/t ln[W/T], where ρ = 2

√
3/π2t is the

conduction density of states, giving Tc2 = W exp
(
−

1+K/t
ρJ

)
,

so a phase transition into the order fractionalized state will
occur for arbitrarily small Kondo coupling. Of course, devia-
tions from particle-hole symmetry at finite chemical potential
destroy the nesting, so when µ , 0, a transition takes place
at finite J > JC from an FL∗ state[27] with a small Fermi
surface, into the order-fractionalized state (Fig. 3a). The im-
portant point however, is that in the vicinity of particle-hole
symmetry, the broken symmetry state is rigorously established.

Below Tc2 the vector Majorana modes are gapped, leaving
behind a single, coherent Majorana mode c0

k of the conduction
electrons. This feature is robust and is related to the mismatch
between the quantum numbers of the itinerant Dirac fermions
and Majorana triplet of the Yao-Lee spin liquid. The spectrum
of the gapped fermions close to the Fermi surface is given by

E± = (K − t)ε(k)/2 ±
√
(K + t)2ε2(k)/4 + |V |2. (13)

To understand the nature of the fractionalized order, it is
useful to consider the fractionalized order parameter v̂(xj) =

−J(®σ · ®χj)cj . This quantity carries a Z2 charge, and by Elitzur’s
theorem, can not develop long range order. On the other
hand, we know that the χj field represents a physical degree
of freedom at low temperatures, where Z2 fluctuations have
become massive. To reconcile this situation, we must consider
the gauge invariant density matrix

ρ(x, y) = 〈v̂(x)W(x, y)v̂†(y)〉〉
|x−y |→∞
−−−−−−−→ V(x)V†(y) (14)

whereW(x, y) =
∏

u(l+1,l) is aWilson line connecting the sites
x, y. Once T < Tc1 the Wilson lines are not only constants of
motion, but they are independent of the path between the two
sites x and y. We can calculate the gauge invariant quantity in
the gauge where u(i, j) = 1 so that W = +1, and in this way, we
can be sure that the gauge invariant density matrix asymptoti-
cally factorizes into a product of well-defined spinor order[22].
In short, once T < Tc1 where the absence of visons guarantees
that typical Wilson lines are equal to +1, this fractionalized
long-range order is guaranteed to develop.

One of the physical manifestations of this fractionalized
ODLRO, is the development of long-range tunneling of the
electrons through the spin liquid, which manifests through the
development of odd-frequency triplet pairing and the emer-
gence of a Majorana Fermi surface. The Z2 gauge invariant
self-energy for the electrons that describes the coherent tun-
neling through the spin liquid is given by (Fig 3b)

Σαβ(x − x ′) = V2
(
σaZ(x)

)
α

D(x − x ′)
(
Z
†

(x ′)σa

)
β

(15)

where σaZ(x) = σa(z(x), iσy z∗(x))T is the spinorial hy-
bridization of the vector Majorana components of the electron
with the spin liquid at x ≡ (x, τ), written in a Balian Wertham-
mer notation, and D(x − x ′) is the space-time propagator of

FIG. 3. a) Schematic phase diagram for the 3D CPT model: below
Tc1, the Majorana fermions in the spin liquid become phase coherent
and atTc2 the charge e condensate develops. At particle-hole symme-
try (µ = 0) the charge e condensate forms for arbitrarily small Kondo
coupling. b) Development of coherent charge e condensate allows
tunneling through the spin liquid over arbitrarily long distances, lib-
erating a coherent, quasi-neutral conduction mode. c) Staggered con-
figuration of the gap function∆(R) ∼ ei2Q·R(d̂1+id̂2)· ®σ(1,−1, 1,−1)
at the four sites of the unit cell, forming a pair-density wave.
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the Majorana fermions. Now the Fermi-surface in the spin-
liquid means that D(x) ∼ eikF [x̂] |x |/|x | decays as a power-law
at large distances, (where kF [x̂] is the Fermi wavevector on
the patch of Fermi surface normal to x̂). This implies that
the electron self-energy factorizes into a product of spinors at
widely separated points in space time, a key feature of order
fractionalization (Fig 3b).

In the ground state where V is uniform we can Fourier
transform the self energy to obtain

Σαβ(k, ω) = (1 −ZZ†)αβV2D(k, ω), (16)

whereZZ† projects out the unhybridized scalar component of
the conduction sea and D(k, ω) = [ω − Kh(k)]−1 is the spin-
liquid propagator in momentum space. Without the projector,
this scattering would describe the resonant scattering of elec-
trons in a Kondo insulator, but the elimination of the scalar
component means that a tunneling electron that re-emerges
into the spin liquid loses all knowledge of its original charge,
allowing it to emerge as a hole, producing resonant Andreev
scattering. On the Fermi surface, where h(k) has vanishing
eigenvalues Σ(k, ω) ∼ 1/ω describes odd frequency pairing
that is infinitely retarded in time. One of the clearest mani-
festations of long-range order in the charge e order, is that the
projective nature of the scattering self-energy remains coher-
ent in momentum space, allowing the residual scalar Majorana
conduction electron c0 to propagate coherently over arbitrarily
long distances.

To examine this resonant pairing in more detail, it is use-
ful to construct the composite order parameter, formed from
bilinears of the z field,

d̂1 + id̂2 = zT (−iσ2)σz, d̂3 = z†σz. (17)

The triad (d̂1, d̂2, d̂3) describes co-existing magnetic and su-
perconducting order. We can then divide the self-energy into
normal and pairing components

Σ = ΣN + ∆(k, ω)τ+ + ∆†(k, ω)τ−, (18)

where

ΣN (k, ω) = 1
4

(
3 − (d̂3 · σ)τ3

)
Σ0(k, ω),

∆(k, ω) = − 1
4

(
(d̂1 + id̂2) · σ

)
Σ0(k, ω). (19)

ΣN describes a kind of odd-frequency magnetism (with no
onsite magnetic polarization). The second-term ∆(k, ω) in
(19) describes a triplet gap function, with a complex d-vector
d̂1 + id̂2 which breaks time-reversal symmetry.

However, hidden from immediate view, is the fact that
the Andreev scattering ∆(k, ω) actually describes a pair den-
sity wave. To see this, let us now transform our solution
back to the original electron gauge. Reversing the transforma-
tion (6), we see that in the original gauge (V1,V2,V3,V4)R j =

exp[iQ · Rj](1,−i, 1, i)V0. Now the hyper-octagon lattice can
be viewed as made of four-atom coils marked by 1, 2, 3, 4 on
Fig. 1, arranged on BCC lattice. From (6) it follows that the

d̂1,2 alternate along the coil and between the center and cor-
ners of the BCC lattice. In other words, the magnetic vector
d̂3 is uniform, but the superconducting d-vector d̂1

j + id̂2
j is

staggered between neighboring sites, forming a pair density
wave (PDW).

The Goldstone modes and topology. We briefly touch on
the topic of collective excitations and topology. As pointed
out above, the gauge invariant quantities must connect two V
fields at different points by a string of gauge fields. However,
below the melting temperature Tc1 we can safely forget about
Z2 gauge fields and work in a fixed gauge u(i, j) = 1. In this
situation, the spinorV acquires the status of a true order param-
eter. Symmetry dictates that well below the transition where
the amplitude fluctuations are weak the Ginzburg-Landau free
energy density f for the low energy sector is given by

f [x] =
ρ

2

���( − i ®∇ + e ®A
)
zσ

���2 + ®B2

8π
− gµB ®B · (z†®σz)

(20)

where ®B = ∇ × ®A and as before, Vjσ = (V/
√

2)zσ . We have
also included a Zeeman coupling.

Since the spinor z is defined by three Euler angles, trans-
forming under the double-group SU(2), small fluctuations of
the order parameter consist of three Goldstone modes, one of
them being higgsed if the condensate is charged. The free
energy (20) has been discussed in various contexts, in par-
ticular in connection with multi-band superconductivity when
the superconducting pairing takes place on Fermi surface con-
sisting of multiple sheets [28, 29]. The case of zero electric
charge e = 0 emerges in connection with frustrated magnetism
[30, 31]. It is distinct from the conventional superconductivity
due to the different topology of the order parameter manifold;
here it is of the S3 sphere. Since π1(SU(2)) = 0, it forms a
fragile superconductor with a Meissner effect, but zero crit-
ical current. The existence of the integer-valued topological
invariant in three dimensions π3(SU(2)) = Z

Q =
i

24π2

∫
d3xεµνλTr

(
U+∂µUU+∂νUU+∂λU

)
, (21)

where

U =

(
z↑ −z∗

↓

z↓ z∗
↑

)
. (22)

is an SU(2)matrix, suggests a possibility of nontrivial topolog-
ical defects of the kind found in the Skyrme model of nuclear
matter (for a review, see, for example, [32]). The latter model,
however, contains a term with four derivatives whose presence
is required to prevent the Skyrmions from collapse. It has
been argued by [28] and later by [29, 30] that such terms are
generated once one takes into account the fluctuating mag-
netic field. These authors suggested that in this case, the the
Ginzburg Landau free energy (20) admits additional knotted
solitons, or Hopfion topological configurations [28–30]. How-
ever, numerical calculations performed in [33] indicate that the
Hopfions are unstable leaving their existence an open question.
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Conclusions. We have presented a model of a three di-
mensional Kondo lattice which exhibits a remarkable range of
properties associated with strong correlations. Some of these
properties, such as pair density wave formation, have been ob-
served experimentally, others, like odd-frequency pairing and
the formation of a neutral Fermi surface, have been a matter of
ongoing debate. The success of our approach is based on the
fact that we are able to treat the strong correlations exactly in
the asymptotic region of weak Kondo coupling.

There are three key aspects to our work. First, the con-
densate represents a new class of superconductivity, with the
fractionalized order parameter that transforms under a double
group. This feature leads to a number of robust consequences.
In particular, the group topology determines the fragility of
the superconducting order: although it displays diamagnetism
(Meissner effect), the critical current is zero. Since the first
homotopy π1(SU(2)) = 0, there are no vortices, but a nontriv-
ial third homotopy π3(SU(2)) = Z suggests a possibility of
such topological excitations as Hopfions or hedgehogs. The
gauge invariant order parameter also breaks time reversal sym-
metry in a fashion that is protected by Kramers theorem and
independent of crystal lattice, thus the transition into this state
will not split under strain. Secondly, the proposed supercon-
ducting order forms a PDW that coexists with a novel form of
magnetic order. This property is related to the fact that the
nested Fermi surfaces of the conduction electrons and the Ma-
joranas are centered at different points in the Brillouin zone,
so that when an electron enters the spin liquid, it needs to
borrow momentum from the condensate. Thirdly, the low
temperature excitations are described by a quasi-neutral Fermi
surface whose existence is guaranteed by the mismatch be-
tween the quantum numbers of electrons and the Majorana
spin excitations, and the long-range coherence of the charge
e condensate. This guarantees that even in the situation of
perfect nesting (half filled conduction band) there is a residual
Majorana Fermi surface.

We end by noting that one of the key features of the cur-
rent model is the stabilization of an underlying Z2 spin liquid
inside a Kondo lattice, by orbital degrees of freedom which
decouple by forming a kind of valence bond solid. This is a
situation that conceivably, could occur in quantum materials,
such as the topological Kondo insulator SmB6, which un-
der field, exhibits Quantum oscillations reminiscent of a bulk
Fermi surface[34, 35]. This material is thought to involve a
quartet spin-state interacting with a conduction sea[36, 37]. It
is interesting to speculate that these orbital degrees of freedom
may, under some circumstances, freeze into a valence bond-
solid, stabilizing an underlying Majorana spin liquid within
the Kondo insulator.
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