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The operation of near-term quantum technologies requires the development of feasible, implementable,
and robust strategies of controlling complex many body systems. To this end, a variety of techniques,
so-called “shortcuts to adiabaticty”, have been developed. Many of these shortcuts have already been
demonstrated to be powerful and implementable in distinct scenarios. Yet, it is often also desirable to have
additional, approximate strategies available, that are applicable to a large class of systems. In this work,
we hence take inspiration from thermodynamics and propose to focus on the macrostate, rather than the
microstate. Adiabatic dynamics can then be identified as such processes that preserve the equation of state,
and systematic corrections are obtained from adiabatic perturbation theory. We demonstrate this approach
by improving upon fast quasi-adiabatic driving, and by applying the method to the quantum Ising chain in
the transverse field.

The word “adiabatic” is derived from the Greek adi-
abatos, which means literally “impassable”. In thermo-
dynamics, an adiabatic constraint is a “wall” that is im-
passable to heat, and thus an adiabatic process is a ther-
modynamic state transformation during which no heat is
exchanged [1]. However, the notion of adiabaticity has
found a much broader application in Hamiltonian dynam-
ics [2]. In classical mechanics, an “adiabatic invariant” is
any quantity that remains constant under the Hamiltonian
equations of motion, given infinitely slow variations of the
Hamiltonian [2].

This insight led Born to the formulation of the quantum
adiabatic theorem [3], which states that during infinitely
slow variation of the Hamiltonian no transitions between
energy levels occur. Obviously, such adiabatic processes
are highly desirable in quantum technological applications.
Recent years have seen tremendous research efforts in fa-
cilitating such excitation-free processes also in finite time
driving. Under the umbrella of shortcuts to adiabaticity
(STA) [4, 5] a large variety of techniques has been de-
veloped, of which counterdiabatic driving [6–11], invari-
ant based inverse engineering protocols [12–16], and the
fast-forward technique [17–23] have arguably received the
most attention, with applications in vastly different physi-
cal scenarios. For instance, counterdiabatic driving is par-
ticularly well-suited to optimally control the dynamics of
cold ion traps [24, 25]. However, implementing STA in
more complex quantum system can become rather involved
[26–31]. Thus, it appears very desirable to find alternative
and approximate schemes, that may provide more univer-
sally applicable control strategies. This has already led to
the development of “resource friendly” control strategies
[32–37], that provide alternative means to suppress excita-
tions arising from populating energetically high-lying mi-
crostates.

One of the main causes for the complexity of finding re-
alistically useful STA rests in the fact that, to a certain de-
gree, all methods originate in circumventing the quantum
adiabatic theorem [3]. Hence, the focus is on preserving

the occupation probabilities of the energy eigenstates, i.e.,
microstates [1]. However, in most experimental settings
quantum states cannot be easily measured, and rather ther-
modynamic observables are monitored. Therefore, thermo-
dynamic control has been suggested as a possible way to
construct approximate STA [38], see Ref. [39] for a recent
perspective. However, thermodynamic control methods are
usually applied with a focus on lowering the energetic cost
of a given thermodynamic process [40–44].

In the present letter, we change the paradigm of this ap-
proach by proposing genuine shortcuts to thermodynamic
quasistaticity. To this end, we fully accept the thermo-
dynamic mindset, namely we seek STA that preserve the
adiabatic macrostate, and not the occupations of micro-
scopic energy eigenstates of a quantum system. Hence, we
demand that the macrostate of a driven system (approxi-
mately) fulfills an instantaneous equation of state. Such a
control strategy is constructed by exploiting adiabatic per-
turbation theory [45], which has recently proven power-
ful in assessing nonequilibrium excitations in driven quan-
tum Ising chains [46, 47]. To demonstrate the versatility of
the approach, we benchmark our results against other STA,
in particular against fast quasi-adiabatic driving [48–51],
which is closest in spirit to our approach.

Preliminaries We start by establishing notions and no-
tations. Consider a quantum system described by a Hamil-
tonian H(λ) =

∑
nEn(λ) |n(λ)〉 〈n(λ)|, where En(λ)

and |n(λ)〉 are parametric, non-degenerate eigenvalues and
eigenstates, respectively. Moreover, λ is an external con-
trol parameter, such as the volume of a gas container or
a magnetic field. In the following, we will be interested
in thermodynamic state transformations that are driven by
varying λ = λ(t) (also called a protocol), between times ti
and tf , taking the external parameter from an initial value
λi to a final value λf . Moreover, we assume that the quan-
tum system is thermally insulated and, therefore, its time
evolution is unitary. Note that unitary dynamics are neces-
sarily thermodynamically adiabatic in the traditional sense,
since no heat is exchanged. Thus, unless otherwise stated,
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“adiabatic” means “quasistatic” henceforth.
We further assume that the system is initially prepared

in a quantum state that is diagonal in the energy eigenba-
sis, ρi =

∑
n pn |ni〉 〈ni|, where the subscript i means

that a given quantity is evaluated at ti, here simply |ni〉 =
|n(λi)〉. The time-dependent state is then determined by
the von Neumann equation, i~ ρ̇(t) = [H(λ), ρ(t)], and
we denote derivatives with respect to time by a dot.

It is worth emphasizing that even if the initial state, ρi,
is chosen to be an equilibrium state, ρ(t > ti) may be ar-
bitrarily far from equilibrium. Given an initially canonical
state (ρi ∝ exp (−βHi)), even an infinitely slow process
will generally not keep the system in canonical equilib-
rium. This is because the quasistatic evolution preserves
the statistical weights in the initial Hamiltonian. However,
in the present analysis our main focus is also not the mi-
crostate, but rather the thermodynamic macrostate.

In (quantum) thermodynamics a macrostate is fully char-
acterized by its state variables [1, 52], which fulfill an equa-
tion of state (EOS). At any instant, the EOS can be obtained
by calculating the equilibrium average of the generalized
force, F (λ), which is given by [1]

F (λ) = −∂H(λ)

∂λ
, (1)

and Λ ≡ tr {ρF} is the state variable conjugate to λ. For
any driven process, and writing the time-dependent quan-
tum state as ρ(t) =

∑
n pn |ψn(t)〉 〈ψn(t)|, the corre-

sponding average generalized force reads

Λ(t) =
∑
n

pn 〈ψn(t)|F (λ)|ψn(t)〉 . (2)

Here, |ψn(t)〉 is a solution of the corresponding
Schrödinger equation.

Thermodynamic state transformations Before we ana-
lyze the more general out of equilibrium situation, we in-
spect Eq. (2) in the adiabatic limit τ → ∞. The adiabatic
theorem dictates that, if the evolution is slow enough, the
solution to Schrödinger’s equation can be written as [53]

|ψ(0)
n (t)〉 = eiφn(t) |n(λ)〉 , (3)

where the superscript (0) denotes the adiabatic limit and
φn(t) is the usual adiabatic phase (dynamic plus geomet-
ric). In this case, Eq. (2) simplifies to

Λ(0) =
∑
n

pnFnn(λ), (4)

where Fmn(λ) = 〈m(λ)|F (λ)|n(λ)〉. Notice the lack
of explicit time-dependence in Eq. (4): this is the con-
ventional EOS. For infinitely slow variations of λ, Eq. (4)
describes the evolution of the macroscopic state in any
mechanically adiabatic (and thermodynamically adiabatic)
process, i.e., for a thermodynamic state transformation.

Beyond the adiabatic limit Using adiabatic perturba-
tion theory (APT), whose details we leave for the Supple-
mental material [54], we can systematically compute finite-
time corrections to the EOS (4). Using Eqs. (1)–(3) of the
Supplemental Material [54] in Eq. (2) and keeping terms
up to O(τ−1), the first-order correction becomes

Λ(1)(t) =
∑
m,n

m 6=n

pn<
{

2C(1)
mn(t)F ∗mn(λ)

}

= 2~λ̇i
∑
m,n

m 6=n

pn=
{
Fmn,i

eiφmn(t)

E2
mn,i

F ∗mn(λ)

}
,

(5)

where we used the fact that the product of F ∗mn(λ) and the
first term of Eq. (2) of the Supplemental Material [54] is
purely imaginary. We immediately observe that the first-
order correction to the EOS is directly proportional to the
time derivative of the external parameter at the beginning of
the process. Hence, for all protocols with λ̇i = 0, the EOS
is preserved up toO(τ−2) in any sufficiently slow process.
We stress that this conclusion is independent of the Hamil-
tonian considered, only depending on the validity of APT.
Thus, we have unveiled a universal design principle for op-
timal control strategies applicable in any gapped quantum
system, simple as well as complex.

Strategies where the time derivatives of the protocols
vanish at the end points of the evolution have already
been discussed as ways to guarantee adiabaticity in the
microstate [55–58]. However we emphasize that the first-
order result for the macrostate only depends on the initial
derivative, and not the final derivative. This still leaves
a lot of freedom in finding “optimal” and experimentally
implementable protocols. Thus it should be obvious that
even better results can be achieved by complementing our
macroscopic strategy with microscopic methods.

Fast quasi-adiabatic driving One strategy to ensure
APT convergence is the application of fast quasi-adiabatic
(FQA) protocols [48–51] and related approaches [5]. If
there is only one relevant energy gap Emn(λ) in the quan-
tum system, FQA provides a protocol λ(t) for which first-
order APT transitions between eigenstates m and n are
equally likely at any instant. This protocol is the solution
to a first order differential equation [48–51]

~

∣∣∣∣∣ λ̇(t)Fmn(λ)

E2
mn(λ)

∣∣∣∣∣ = c1, (6)

where c1 is a constant that, together with the integration
constant, is uniquely defined by the boundary conditions
λ(ti) = λi and λ(tf ) = λf . For a generic protocol,
microscopic adiabaticity is secured if the left-hand side of
Eq. (6) is much smaller than unity for any t, the quanti-
tative adiabatic condition [59, 60] [Eq. (4) of the Supple-
mental Material [54]]. The boundary conditions always
lead to c1 ∝ τ−1, which means that the FQA protocol
still requires large enough τ for the adiabatic condition
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FIG. 1. Magnetization of the TI chain in the entirely paramagnetic process withN = 100 starting at zero temperature. The results were
numerically obtained from the exact time-dependent dynamics. (a) State diagram of the TI chain for an adiabatic (quasistatic) evolution
(EOS), the LIN, the FQA and the FQ2 protocols for Jτ = 3, starting from the top right corner. The inset shows the time-dependence
of each protocol. (b) Excess magnetization µex = µ− µ(0) at the end of the process vs. process duration.

to be fulfilled. FQA’s advantage is that it naturally slows
down whereEmn(λ) is small (see Eq. (6)), and thus it may
reach the adiabatic condition and make APT converge for
a smaller τ , when compared to a generic protocol.

Curiously, FQA is limited to suppressing first-order tran-
sitions. The authors of Ref. [51] remark that considering
transitions of higher-than-one order APT is not possible,
since the associated differential equation would not have
enough constants to satisfy the boundary conditions on λ
and its derivatives. For example, demanding the second-
order APT transition probabilities to be uniform along the
process gives a second-order differential equation,

~2
∣∣∣∣∣ 1

Emn(λ)

d

dt

(
λ̇(t)Fmn(λ)

E2
mn(λ)

)∣∣∣∣∣ = c2, (7)

which was obtained from Eq. (6) with the proper substi-
tution to second order coefficients, discussed in the Sup-
plemental Material [54]. The three available constants (c2
plus two integration constants) in the solution of Eq. (7) are
insufficient to satisfy the four boundary conditions — two
on λ (same as FQA) and two on λ̇, which are necessary
to make the second-order APT correction be the relevant
correction.

Above we have seen that from the macroscopic dynam-
ics, Eq. (5), optimal driving protocols obey λ̇ = 0 at the
beginning (and not at the end). This additional condition
permits us to uniquely solve Eq. (7), if we impose the same
boundary conditions as the FQA method plus λ̇(ti) = 0,
which leads to c2 ∝ τ−2. We will be referring to this strat-
egy as FQ2, and as we will see shortly, FQ2 clearly outper-
forms FQA. We once again bring attention to the fact that
making λ̇(ti) = 0 gives null first order APT correction
for the EOS of any gapped system. Equations (6) and (7),

which do depend on the system through its eigenspectrum,
are primarily used to guarantee early APT validity and can
be applied even when the Hamiltonian is only numerically
diagonalizable. In fact, at low temperature, knowledge of
only a few eigenlevels may be necessary, since only tran-
sitions between the lowest energy eigenstates are relevant
(see Fig. 2 of the Supplemental Material [54]).

Illustrative example: quantum Ising chain We now ap-
ply the above developed strategy to control a thermody-
namically relevant, exactly solvable system: the transverse
field Ising model (TI) [61, 62]. The Hamiltonian reads

HTI(Γ) = −1

2

(
J

N∑
j=1

σzjσ
z
j+1 + Γ

N∑
j=1

σxj

)
, (8)

where J is the coupling constant, Γ is the external magnetic
field and σx,zj are standard Pauli matrices for each spin
j (with periodic boundary conditions). In the thermody-
namic limit N →∞, this system displays a quantum crit-
ical point (QCP) at Γ = J , where the energy gap between
ground and first excited states vanishes. For simplicity, we
assume N to be even and that the system is initially pre-
pared in its ground state. The force is FTI =

∑N
j=1 σ

x
j /2,

while the nonequilibrium magnetization per spin reads

µ(t) =
1

2N

N∑
j=1

〈
σxj
〉

(t). (9)

In any finite time process, the magnetization can be sep-
arated into an adiabatic contribution µ(0) and an excess
contribution µex. Details for how to calculate the non-
equilibrium average in Eq. (9) can be found in the Sup-
plemental Material [54].
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FIG. 2. Magnetization of the TI chain in the QCP crossing process starting at zero temperature with N = 100. The results of
both panels were numerically obtained from the exact time-dependent dynamics. (a) State diagram of the TI chain for an adiabatic
(quasistatic) evolution (EOS), the LIN, the UQA and the UQ2 protocols for Jτ = 50, starting from the top right corner. The inset
shows the time-dependence of each protocol. (b) Excess magnetization µex = µ− µ(0) at the end of the process vs. process duration.

First, we consider a process keeping the chain entirely in
its paramagnetic phase (Γ > J ) and starting at zero tem-
perature, i.e., with the chain initially prepared in its ground
state. We solve FQA and FQ2 for the smallest gap of the
system and compare them to a naive linear protocol (LIN)
— the results for a chain of finite size are shown in Fig. 1.
In Fig. 1a, we show µ of Eq. (9) vs. Γ in a process that ap-
proaches, but does not cross, the QCP. The inset contains
the time-dependence of each protocol, where it can be seen
that both FQA and FQ2 adapt to the system’s spectrum, but
FQ2 does so while still keeping null first derivative at the
start. FQA has a very high first derivative at the initial
time, and this ultimately make its evolution have notable
oscillations around the EOS. On the other hand, LIN fol-
lows the EOS closely, up until a point where the gap gets
too small and it ends up breaking adiabaticity. Finally, FQ2
follows the EOS right until the end, which is a consequence
of its compromise to attain adiabaticity while zeroing the
first order correction to the EOS. In Fig. 1b, we depict the
excess magnetization µex at tf as a function of τ . It is clear
that FQ2 outperforms FQA for a generic τ , even if FQ2
first crosses the “adiabatic” µex = 0 line for a marginally
bigger τ than FQA.

As a second case, we consider the crossing of the QCP,
from the paramagnetic phase to the ferromagnetic phase.
In a finite size chain, the gap at the QCP is small but
non-zero, which makes adiabaticity difficult but possible
to achieve. In this scenario, the smallness of the energy
gap forces the FQA protocol to slow down dramatically
around the QCP and, consequently, to speed up around the
end points. This speed-up is detrimental in the ferromag-
netic phase of the TI chain, where the gap of many other
sub-levels are comparable to the gap of the lowest sub-level

(see Fig. 1 of the Supplemental Material [54]). Other en-
ergy differences can be taken into account when building
FQA protocols (see Ref. [63]), but the associated differ-
ential equation is not exactly solvable and hardly numeri-
cally solvable when traversing the QCP. Thus, to circum-
vent this issue, we apply a similar strategy known as uni-
form quasi-adiabatic (UQA) [64] to the lowest sub-level
of the TI chain. It is the solution to Eq. (6) with the
substitution Fmn(λ) → ∂λEmn(λ) [5], motivated by the
Kibble-Zurek mechanism of second-order quantum phase
transitions. Thus, we define a UQ2 protocol as the solu-
tion of Eq. (7) with the aforementioned substitution and
we compare it to LIN and UQA in Fig. 2. Figure 2a is the
equivalent of Fig. 1a, but with a considerably larger pro-
cess duration, which evidences the difficulty of crossing
the QCP while maintaining adiabaticity (in the mechanical
sense). The inset once again shows the time-dependence of
each strategy, and it is clear that both UQA and UQ2 slow
down around the QCP. The conclusion is the same as in the
paramagnetic process: UQ2 follows the EOS more closely.
Furthermore, as can be seen in Fig. 2b, UQ2 gives final
µex = 0 for a significantly smaller τ than the other two
protocols, which is a consequence of its final first deriva-
tive also being null at the end point (see inset of Fig. 2a).

Concluding remarks Controlling complex many body
quantum systems is an involved task. While some strate-
gies have been successfully employed in platforms with
great technological promise, such as counterdiabatic driv-
ing in ion traps [24, 25], more universally applicable
paradigms appear desirable. To this end, we have proposed
to take inspiration from the mother of all control theories
— thermodynamics. Rather than aiming to control the mi-
crostate, we have suggested to control the macrostate and
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identify protocols that preserve the equation of state. This
approach is somewhat akin to invariant based strategies
[5, 13], on which we comment in the Supplemental Ma-
terial [54], where we study thermodynamic shortcuts for
the driven harmonic oscillator [65–67]. However, our ap-
proach significantly goes beyond existing methods, since
using adiabatic perturbation theory, finite-time corrections
can be systematically computed, which gives systematic
conditions for the optimal driving protocols. The utility
of the approach has been demonstrated by improving upon
fast quasi-adiabatic driving, and its applicability has been
demonstrated for the driven Ising chain.

The analyses of state diagrams demonstrate the differ-
ence between microscopic adiabaticity and macroscopic
adiabaticity. More specifically, strategies that are bet-
ter suited for parametric following of microstates (eigen-
states) are not necessarily better for parametric following
of macrostates (state variables). It is also worth noting that
a notion of relaxation time seems to be absent, which is
perhaps expected in isolated systems where relaxation to
some sort of equilibrium is not guaranteed. Nonetheless
there is still the notion of a time scale to which the driv-
ing rate must be compared with, related to the energy gap
between eigenstates. Lastly, it is interesting to see that,
even though is is possible to stay close to the equation of
state in finite time driving, such possibility does not lead to
thermodynamic reversibility. In other words, applying the
same “optimal” protocol in the reverse process does not
give the same curve in the state diagram as in the forward
process and, in fact, the FQ2 strategy we devised to better
follow the equation of state does not provide protocols with
time-reversal symmetry.

Finally, we note that the present paper fills the gap in a
hierarchy of strategies developed for securing adiabaticity
in finite time. First, there are standard shortcuts to adia-
baticity, where one seeks to follow the parametric eigen-
states of the system. Second, we have the thermodynamic
shortcuts introduced in the present letter, which follow the
equation of state. Third, we have the methods from ther-
modynamic control, where the focus is on making sure that
the energetic cost of a certain manipulation of the system
is as close as possible to the cost in an quasistatic process.
It is expected that the further down you go in the hierarchy,
the less information is needed to determine the associated
optimal driving protocol.
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