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In this work, we investigate a new class of polarization wavefront transformations which exhibit
non-conventional far field interference behavior. We show that these can be realized by double-layer
metasurfaces, which overcome the intrinsic limitations of single-layer metasurfaces. Holograms that
encode four or more distinct patterns in non-orthogonal polarization states are theoretically demon-
strated. This work clarifies and expands the possibilities enabled by a broad range of technologies
which can spatially modulate light’s polarization state and, for metasurfaces specifically, rigorously
establishes when double-layer metasurfaces are - and are not - required.

Traditionally, wavefront transformation is character-
ized by a scalar function – a spatially varying phase and
amplitude profile. Recently, its scope has been extended
to incorporate the polarization degree of freedom - the
polarization state of light can be adjusted spatially [1–
6]. In a typical application, these devices are designed to
implement two independent phase profiles for a pair of
orthogonal polarization states. In this way, a single de-
vice can function as two different ones, controlled by the
incident polarization (Fig. 1a shows this schematically
for a metasurface-like device).

What happens if the incident polarization state differs
from the designed ones? For most previous devices, one
simply gets a weighted intensity sum of the two designed
patterns in the far field (Fig.1d). However, we point out
here that this intuitive intensity addition rule does not
hold in general. In this paper, we show that there exists a
class of intriguing polarization wavefront transformations
(Fig.1e), where the output intensity pattern may change
dramatically for different input polarization states. In
this case, the far field electric field for two orthogonal in-
cident polarization states may interfere with each other,
leading to non-intuitive polarization-dependent behav-
ior (Fig.1f-h). For example, one can project a triangle
and rectangle for x and y incident polarization (Fig.1f-
g), and obtain a circle for 45 degree incident polarization
(Fig.1h). This is in sharp contrast to previous polariza-
tion holograms, which can encode only two images.

As we will show later, a distinguishing feature of such
wavefront transformations (Fig.1e) is that the output
field’s spatial and polarization degrees of freedom are al-
ways non-separable for any plane wave incidence. In con-
trast, for most previous devices, one can find a pair of or-
thogonal incident states, where the output polarization is
uniform across the wavefront, and thus separable[7]. We
refer to them as non-separable and separable polarization
wavefront transformations respectively. (See Appendix
Sec 1.1 [8–17] for further discussions on (non)separable
states of light versus (non)separable transformations.)

To understand their far field polarization behavior, let
us revisit the concept of orthogonality. Consider two
plane waves incident normal to a polarization element

FIG. 1: (a-b) Schematics of separable and non-separable
transformations. (c-h) The output far field patterns for

different incident polarization states. ~λ and ~λ⊥ are
orthogonal. Among them, (b-c) are separable states; (d)and
(f)-(h) are non-separable states. In terms of far field
superposition, (d) is an intensity sum of (b) and (c), whereas
(h) shows a new pattern that is different from (f) or (g).

with orthogonal polarization states. Neglecting losses
and non-linearity, orthogonality requires that the inner
product of the two output far fields, ~E1(x, y) and ~E2(x, y)
to be zero, ∫

~E∗1 (x, y) · ~E2(x, y)dxdy = 0. (1)

Equation 1 holds for both separable and non-separable
transformations. However, the implications are very
different. For the former, we can write ~E1(2)(x, y) =
f1(2)(x, y)û1(2), where f1(2)(x, y) are the complex ampli-
tudes, and û1(2) are polarization vectors. As û1(2) are
independent of spatial coordinates, Equation 1 becomes

(û∗1 · û2)

∫
f∗1 (x, y)f2(x, y)dxdy = 0. (2)

The complex amplitudes f1 and f2 can be arbitrary spa-
tial functions chosen by design. Therefore in general∫
f∗1 f2dxdy 6= 0, which implies that û∗1 · û2 = 0, and

thus ~E∗1 (x, y) · ~E2(x, y) = 0. In other words, the local
electric fields are everywhere orthogonal to each other.
As a result, there is no interference between them. The
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far field intensity pattern for any other incident polariza-
tion state will simply be a weighted sum of | ~E1(x, y)|2
and | ~E2(x, y)|2.

However, the situation changes completely for non-
separable polarization wavefront transformations. In this
case, the far field polarization states û1(2)(x, y) vary spa-
tially, and cannot be considered independently from the
integral as in equation 2. The local orthogonality does
not hold any more. In fact, ~E∗1 (x, y) · ~E2(x, y) can be al-
most everywhere nonzero, as long as their spatial integral
cancels out. Therefore, at any location on the wavefront,
~E1(x, y) and ~E2(x, y) can have a non-vanishing interfer-
ence term, which opens up an entire new design space for
polarization control.

The above discussion can be made more rigorous by
considering the near-to-far field transformation of light
(Appendix Sec 1.2). Immediately after light passing
through a lossless polarization element, the local orthog-
onality is preserved. However, during propagation, sec-
ondary waves emitted from different locations on the
device start to overlap spatially, which leads to non-
orthogonality in the far field.

Mathematically, a polarization wavefront transforma-
tion is described by a spatially varying 2-by-2 Jones ma-
trix profile J(x, y), where each matrix element is a spatial
function [17, 18] (Table 1). For separable transforma-
tions, the Jones matrices at different locations across the
wavefront can be diagonalized simultaneously. However,
for non-separable transformations, there are always non-
vanishing off-diagonal elements for any global polariza-
tion basis. This also results in their different information
capacity. Separable transformations have only two usable
polarization channels t11, t22, whereas for non-separable
transformations, t11, t12, t21, t22 can all be designed to
have different spatial profiles. Therefore, the latter can
encode more optical functions in a single device, and may
find applications in optical communication and quantum
optics.

The Jones matrix formalism can be used for both near
field and far field, which are related by Fourier transforms
[17]. The properties listed in Table 1 hold for both. From
a device design perspective, it is usually more convenient
to work with near-field Jones matrices, which character-
ize the change of polarization states immediately before
and after the device. In the following, we assume near-
field Jones matrix profiles by default, with the prefix
omitted. For lossless polarization elements, the (near
field) Jones matrix profiles are unitary, and can be vi-
sualized using the geometrical representation introduced
in the next section.

Geometrical representation

To facilitate the analysis, we introduce a new geomet-
rical representation of Jones matrices. It allows us to
intuitively visualize any Jones matrix profile, just as we
can plot out the phase profile of a phase-only element.

TABLE I: Properties of separable and non-separable
transformations. tij(x, y) are spatial functions. V and U are
the basis transformation matrices for the input/output
electric field respectively, and are constant across the
wavefront. Note that V and U can be different.

FIG. 2: (a) Schematics of the retarder space. Each point
represents a class of unitary Jones matrices (waveplates)
with the same polarization effect, up to some overall phase.
The radial distance and orientation are related to the phase
retardation and the eigen-polarization states respectively.
For example, points 1-3 have the same fast axis along x, but
varying retardance, from zero to quarter wave to half wave.
Points from 3-5 are all half wave plates, but with different
eigen-polarizations states. In particular, points in the
equatorial plane correspond to linearly birefringent elements.
(b-f) A polarization wavefront transformation can be
represented in the retarder space as a curve/surface or a
collection of points. (b) Separable transformations are
mapped to ellipses. (c) Non-separable transformations can
have arbitrary shapes. (d-f) Polarization transformations by
single-layer, generalized single-layer and double-layer
metasurfaces are represented by the equatorial plane,
ellipsoids, and arbitrary shapes/points respectively.

For any unitary Jones matrix, we define a correspond-
ing retarder parameter:

R = sin
α

2
n̂, α ∈ (−π, π] (3)

where n̂ = (n1, n2, n3) is the Stokes vector of the eigen-
polarization state of the Jones matrix, and α is the phase
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retardation [7, 9]. The overall phase is omitted, so for
any choice of α Eqn. 3 actually represents a class of
Jones matrices, all having the same polarization effect,
but may have different overall phases. Some equivalent
expressions of R are given in Table S1.

Using this definition, we can intuitively visualize any
unitary Jones matrix. Taking the three components
(R1, R2, R3) as the Cartesian coordinates, it can now be
represented as a point in the 3D space (Fig.2a). Polar-
ization wavefront transformations, which are described
by spatial functions of Jones matrices, can now be repre-
sented as curves/surfaces, or collections of points if sam-
pled discretely, in the retarder space (Fig.2b-f).

Using this representation, we can intuitively distin-
guish separable and non-separable transformations sim-
ply by observing their geometrical shapes in the retarder
space. In fact, we prove that in general a separable trans-
formation is represented by an ellipse (Fig.2b, Appendix
Sec 5.4). Non-separable transformations, on the other
hand, may have arbitrary shapes or trajectories (Fig.2c).

Implementation with metasurfaces

Recently, metasurfaces - artificial interfaces patterned
with subwavelength arrays of nanostructures [5, 19, 20]
- have emerged as an exciting new medium in polariza-
tion optics. Each nanostructure functions as a linearly
birefringent waveplate, whose optical axis and phase re-
tardation can be adjusted spatially by design [7, 9, 21–
24]. Here we use metasurfaces as a general platform for
polarization wavefront transformation. In particular, we
propose to use double-layer metasurfaces (Fig. 3c) to
realize non-separable transformations.

Separable transformations can be easily realized us-
ing single-layer metasurfaces (Fig.3a), combined with ad-
ditional waveplates if necessary (Fig.3b). Essentially,
we can design the metasurface to implement two dif-
ferent phase profiles for horizontal and vertical polar-
ization, which corresponds to the Jones matrix profile

J =
( t11(x,y) 0

0 t22(x,y)

)
. If needed, we can add additional

waveplates to provide the global basis change U and V
(Fig.3b). We refer to such implementation as general-
ized single-layer metasurfaces. According to Table 1, all
separable transformations can be realized in this way.

For non-separable transformations, however, single-
layer metasurfaces are not enough. In general, the re-
quired Jones matrices for non-separable transformations
can be arbitrarily birefringent — linear, circular or el-
liptical — across the wavefront. Single-layer nanostruc-
tures, however, are constrained to be linearly birefrin-
gent due to reciprocity. (See Appendix Section 4 for fur-
ther discussion.) To overcome this limitation, we propose
to use double-layer metasurfaces (Fig.3c). The polariza-
tion effect is accumulated upon interaction with light,
i.e. Jbilayer = JtopJbottom (Appendix Section 7.2). Al-
though individually Jtop and Jbottom are linearly bire-

fringent, their product Jbilayer can be arbitrarily bire-
fringent (Appendix Section 6). Therefore, double-layer
metasurfaces can achieve any unitary polarization wave-
front transformation, including both separable and non-
separable ones. It is noted that double-layer metasurfaces
have been previously used for (polarization-independent)
dispersion engineering [25], but their unique polarization
transformation capabilities have not been investigated.

While it might not be surprising that two layers can
realize more polarization functions than a single layer,
importantly, we show that two layers are sufficient (Ap-
pendix Section 6). More layers may help with the dis-
persion or angular response, but will not add more po-
larization function at the design wavelength.

FIG. 3: (a-c) Side views of single-layer, generalized
single-layer and double-layer metasurfaces. (d) The Venn
diagram summarizes the relation between different types of
polarization transformations (marked by fill pattern) and
the possible metasurface implementations (marked by color).
Generalized single-layer metasurfaces (light blue) can realize
all separable transformations (line pattern) and a subset of
non-separable transformations (dot pattern). Double-layer
metasurfaces (dark blue) can implement any unitary
polarization transformation.

Polarization wavefront transformations that are
achievable with different types of metasurfaces can be
illustrated in the retarder space (Fig. 2d-f, Fig. S8). As
single-layer metasurfaces are made up of linearly bire-
fringent nanostructures, they correspond to the equa-
torial plane (Fig.2d). Generalized single-layer meta-
surfaces deform the plane into origin-centered ellipsoids
(Fig.2e) by changing the input and output polarization
basis (Appendix Section 5). Representing the most gen-
eral case, double-layer metasurfaces can have arbitrary
shapes/points in the retarder space (Fig.2f).

Comparing Figure 2b-c and Figure 2d-f reveals the re-
lation between polarization function and the required im-
plementation. For example, since an ellipse is part of an
ellipsoid, separable transformations can always be real-
ized using generalized single-layer metasurfaces. For non-
separable transformations, while usually double-layers
are required, there are special cases where (generalized)
single-layers should suffice – if the required Jones matrix
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profile happens to belong to an ellipsoid. A summary
is given in Figure 3d. From a practical design point of
view, for a given task, one can simply plot the target
Jones matrix profiles in the retarder space and determine
straightforwardly whether the transformation is separa-
ble and what kind of metasurface is required for the im-
plementation.

Multi-channel polarization hologram

FIG. 4: (a) A schematic of the device. It consists of two
layers of TiO2 rectangular nanopillars fabricated on top of
one another. The bottom layer is encapsulated in glass. The
top layer is exposed to air. (b) The building blocks of the
metasurface. Ht = 600 nm, Hb = 1600 nm. U = 225 nm.
The design wavelength is λ = 488 nm. (c) The optimized
target Jones matrix profile. For visualization purposes, only
1% of the points are shown. (d) The retarder space
representation of the simulated library. (e-h) The simulated
far field intensity pattern for horizontal, vertical , 45 degree
and left circular incident polarization state respectively. (i-j)
The simulated far field polarization distribution for
horizontal and vertical incident polarization. (k-l) The real

and imaginary parts of ~E∗H · ~EV . Red and blue correspond
to positive and negative value respectively.

In this section, we provide a concrete example of non-
separable transformations. A schematic is shown in Fig-
ure 4a. It is a multi-channel polarization hologram that
projects different farfield holographic images for different
incident polarization states. For horizontal and vertical
incident polarization, the device generates an image of
the letter A and B respectively in the far field. Naive
intensity addition rule would predict a mixture of A and
B for any other incident polarization state. However, by
using non-separable transformations, we can design the
device such that it projects an image of C and D for 45◦

linearly polarized light, and left circularly polarized light
respectively.

To design the device, we first developed a new algo-
rithm to compute the required Jones matrix profile. It
is a gradient-descent-based optimization method which
is generalized from the well-known Gerchberg–Saxton
phase retrieval algorithm [16] (Appendix Section 2).
Note that this algorithm considers the target intensity
profiles for different incident polarization states, instead
of the far field Jones matrix distribution . The latter is
discussed in another work in [26]. The optimized Jones
matrix profile is shown in Figure 4c. One can see that
the points are scattered around in the unity ball. This
tells us two things: first, this is a non-separable trans-
formation, since the points do not belong to an ellipse
(Fig.2b); second, a double-layer metasurface is required
for the implementation, as the points do not belong to an
ellipsoid either (Fig.2e). More details on how to compute
and utilize the retarder parameters can be found in the
Appendix section 1.3.1 and 3.2.

To implement the device, we simulated a library of
double-layer nanostructures. A schematic of the building
blocks is shown in Figure 4b. It consists of two layers of
TiO2 rectangular nanopillars fabricated on top of one an-
other. In each layer, the nanopillar length (Lt, Lb), width
(Wt,Wb) and angular orientation (θt, θb) can vary arbi-
trarily and independently. One can see that the points
densely occupy the entire retarder space (Fig. 4d), prov-
ing their capability of realizing any polarization wave-
front transformation.

Lastly, we need to fit the target profile using the li-
brary. At each location on the metasurface, we search
for a structure in the library that best matches the tar-
get Jones matrix. The simulated output far field intensity
profiles are shown in Figure 4e-h. Four different letters -
A,B,C,D - are projected for horizontal, vertical, 45 degree
and left circular incident polarization respectively.

We denote the output fields for horizontal and vertical
incident polarization as ~EH and ~EV . Their polarization
distribution is illustrated in Figure 4i-j. Clearly, the lo-
cal orthogonality is not satisfied. For 45 degree incident
polarization, the output field is ~E45◦ = 1√

2
( ~EH + ~EV ).

Its intensity is given by

| ~E45◦ |2 =
1

2
(| ~EH |2 + | ~EV |2) + Re[ ~E∗H · ~EV ] (4)

Similarly, for left circular polarization incidence,

| ~ELCP|2 =
1

2
(| ~EH |2 + | ~EV |2)− Im[ ~E∗H · ~EV ] (5)

The interference term – the real and imaginary part of
~E∗H · ~EV – is shown in Figure 4k-l. One can see that
destructive interference (blue) suppresses the unwanted
pattern, and that constructive interference (red) occurs
in the desired area.

In the Appendix, we show that more than four holo-
graphic images can be encoded in a single device, at the
expense of more cross-talk (Design 1-3 in Fig. S4). Note
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that for illustration purposes, we do not rely on any post
selection of polarization, that is, there is no polarizer af-
ter the metasurface. With post-selection polarizers, the
cross-talk can be further reduced (Design 4 in Fig.S4),
but it comes at the expense that additional information
about the post-selection states has to be provided in or-
der to successfully retrieve the holographic images.

Discussion

In principle, the polarization function of a double-layer
metasurface can also be realized by cascading multiple
single-layer metasurfaces in sequence. In practice, how-
ever, the optical alignment requirement can be very chal-
lenging to meet, especially for holographic applications
where the required Jones matrix profiles may vary rapidly
at the sub-wavelength scale.

Besides metasurfaces, there are many other types of
polarization elements, such as liquid crystal (LC) devices
[1]. LC is tunable and low cost, but offers fewer design de-
grees of freedom for polarization control. Typically only
one parameter - either phase retardation or the optical
axis orientation - can be controlled spatially. Therefore,
four cascaded LC components are required to realize a
general polarization transformation[27].

For simplicity, in this manuscript we choose to work
in the weak coupling regime - the interaction between
nanostructures in different layers is negligible. It is, how-
ever, also possible to enhance and utilize inter-layer cou-
pling to realize novel optical responses such as angle-
dependent polarization control [9] and exceptional points
[28].
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