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The large-Z asymptotic expansion of atomic energies has been useful in determining exact conditions
for corrections to the local density approximation in density functional theory. The necessary correction
is fit well with a leading ZlnZ term, and we give its coefficient. The gradient expansion approximation
also has such a term, but with a smaller coefficient. Analytic results in the limit of vanishing interaction
with hydrogenic orbitals (a Bohr atom) lead to the conjecture that the coefficients are precisely 2.7 times
larger than their gradient expansion counterparts, yielding an analytic expression for the exchange-energy
correction which is accurate to ∼ 5% for all Z.

For almost a century, the non-relativistic semiclassical
expansion of the total binding energy of atoms[1] has guided
the development of density functional approximations,
beginning with Thomas-Fermi (TF) theory[2, 3] and the
local density approximation (LDA) for exchange[4, 5]. In the
seventies, Lieb and Simon proved[6] that the dominant term
in that expansion is given exactly by TF theory, and in the
eighties Schwinger and Englert showed explicitly that the
LDA recovers the dominant term for the atomic exchange
energy[7–9]. Recent analytic and numerical evidence shows
the same is true for atomic correlation energies[10, 11].

For exchange, recent focus has been on the leading
correction to LDA[12, 13]. Most modern generalized
gradient approximations (GGAs) — the starting point of
most modern XC approximations — yield a well-defined
correction that can be compared to atomic data for large
Z. The popular approximations of PBE[14] and B88[15]
both yield highly accurate approximations to this term
for atoms, which are about double that of the gradient-
expansion approximation[16, 17] (GEA), yielding some of
the insight behind PBEsol[18]. The behavior for large Z has
been built into several recent non-empirical approximations
(SCAN[19], APBE[20], acGGA[11]).

The original works[12, 13] on expanding the beyond-LDA
exchange energy for atoms,

∆EX = EX − ELDA
X , (1)

used simple powers of Z1/3, based on the scaling behavior of
the gradient expansion for the slowly-varying electron gas.
Here we provide three lines of evidence for the existence
of a ZlnZ contribution, showing that the analytic forms
used as ‘exact conditions’ are likely incorrect, and should be
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FIG. 1. Beyond-LDA exchange energy per electron (∆EX/Z)
of neutral atoms. The solid blue line is the new BlnZ +C fit
described in the text, whereas the orange dashed curve is the
fit of Ref. [13]. (Hartree atomic units used throughout.)

replaced by those suggested below. Thus, the current work
not only contributes to the very long-standing search for the
expansion of the energy of atoms in mathematical physics,
but also provides a crucial correction to exact conditions
which are built into the latest modern density functional
approximations, used throughout condensed matter physics,
materials science, and chemistry.

Our first line of inquiry consists of evaluating ∆EX/Z
for neutral atoms up to Z = 120, using the optimized
effective potential (OEP). These data are plotted versus
lnZ in Fig. 1, and a straight line gives a significantly better
fit than Ref. [13].
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A second direction shows analytically that applying the
GEA to the TF density profile for an atom [21] produces
a lnZ divergence near the nucleus, but its coefficient is
less than half the slope of the fit in Fig. 1, reflecting the
aforementioned discrepancy with GGAs.

A third direction is a study of the Bohr atom[22], in which
the electron repulsion is infinitesimal and the orbitals are
hydrogenic. Exchange energies were calculated analytically
for such atoms with up to 22 closed shells[23]. Fitting
these, as well as the LDA exchange energies, gives a ZlnZ
coefficient larger than that of neutral, interacting-electron
atoms. In GEA, the cusp where the Bohr-atom TF density
abruptly vanishes also contributes. Overall, the ZlnZ
coefficient is here 2.7 times larger than in GEA. Assuming
that ratio is true for all atoms explains the data of Fig. 1.

Our first step is a detailed analysis of Fig. 1. Three
candidates for the leading correction to LDA are: a term
proportional to Z [13], the ZlnZ dependence suggested by
the GEA, and a term proportional to Z4/3, which appears
in the oscillations across the periodic table.[24] The general
form

∆EX/Z ≈ −A′ Z1/3 −BlnZ − C −DZ−1/3 (2)

enables a discussion of all these possibilities.
We use the OPMKS code [25] to calculate EX with

the OEP and ELDA
X with the spin-dependent LDA of

[26], for non-relativistic neutral atoms up to Z = 120,
extending an earlier data set.[10] To avoid bias, we ignore
the large numbers of highly correlated data points across
subshells, keeping only atoms with closed subshells, grouped
as follows: He and the alkaline earths (s), the remaining
noble gases (p), group 12 metals (d), and closed f-shell
atoms. There are 20 such atoms for Z ≤ 120, but we
exclude the first element of each group (Z = 2, 10, 30, and
70), as these are most strongly affected by oscillations in
Z.[10]

To generate a set of competing models for our data, we
vary a subset of coefficients in Eq. (2), holding the others
to zero, and find the coefficients and their standard errors
from nonlinear regression using the Levenberg-Marquardt
method. [27] These are shown in Table I, listed in order
of the number of parameters, with data entries for zeroed
out coefficients left blank. The final column shows the
reduced χ2 of the fit, i.e., the sum of the squared errors

per degree of freedom, χ2
red =

∑n
i=1

(
δi
σ

)2
/(n−m). Here

δi is the difference between the two sides of Eq. (2) for the
ith value of Z, the standard error σ has been set to 1 mHa
for simplicity, and m is the number of free parameters in
the fit.

For the first (and worst) two forms, ∆EX ∝ Z is the
leading order, as in Ref. [13]. The logarithmic fit, line 3,
has the smallest errors in coefficients and the best χred.
This fit does remarkably well also outside the range of Z
fitted, even down to hydrogen, as seen in Fig. 1.

The remaining fits have additional free parameters. A
Z1/3 term (fits 5 and 7) slightly degrades the quality of the

A′ B C D χ2
red

1 0.153(6) 560

2 0.2138(34) -0.205(11) 22.1

3 0.02464(26) 0.0590(10) 0.91

4 0.0256(14) 0.053(9) 0.008(12) 0.95

5 0.0007(15) 0.0239(16) 0.0592(11) 0.96

6 0.0128(9) 0.134(5) -0.098(7) 1.3

7 -0.007(8) 0.039(16) 0.01(5) 0.06(7) 0.98

TABLE I. Coefficients of various fits of ∆EX/Z in Eq. (2),
with “missing” coefficients fixed at zero. χ2

red quantifies the
errors of the fit as described in the text. Standard errors in
the coefficients are given in parenthesis.

fit, in the sense that χred increases (n−m decreases more
than

∑
i δ

2
i ), and the standard error of the A′ coefficient is

larger than its absolute value, suggesting it should be set to
zero.[13] A term proportional to Z−1/3 is likewise ineffective
(fits 4 and 7). Fit 6, using only powers of Z1/3 without a
logarithmic term, results in a somewhat larger

∑
i δ

2
i despite

the larger number of free parameters.

An asymptotic series should increase in accuracy as Z
increases, so we refit models to a more restricted set of
data: first by dropping a second element of each group
(12 atoms), and then a third (9 atoms). For the lnZ-
leading model, the three fits yield essentially the same
results (B = 0.0254, 0.0253 and C = 0.0560, 0.0562). For
the Z1/3 model (fit 6), the coefficients drift noticeably as
the data is restricted to a smaller range, and the fit is
poor outside the range fitted, similar to the EB09 curve
in Fig. 1. As a final test, using all data from Z = 1 to
120 indiscriminately yields coefficients for B and C that are
statistically indistinguishable from those of fit 3, but with a
much higher χ2

red. The data and details of the fits are given
in [28].

Overall, the fits with the lnZ term as leading order are
clearly the most predictive, and for best judgement of the
asymptotic behavior we choose the 12-atom fit of the lnZ
model, which is appropriately weighted to large Z (the 9-
atom fit gives larger standard errors for B and C [28]):

∆EX ≈ −0.0254ZlnZ − 0.0560Z, (3)

which is the curve shown in Fig. 1. Remarkably, given
that ELDA

X is −0.2564 for hydrogen, this yields −0.3124,
almost exactly matching the analytic result, −5/16. That
the success of this fit should in fact be expected of the
semiclassical approximation is evident in Figs. 1 and 9 of [10]
and in [29]. Before such an asymptotic expansion diverges,
the inclusion of the next term will often improve accuracy
by two orders of magnitude.[29, 30] Eq. (3) thus provides
another example of “the principle of unreasonable utility of
asymptotic estimates.”[31]

Next, we estimate ∆EX theoretically. The LDA exchange
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FIG. 2. Plot of s2 near the nucleus versus distance, scaled as
Zr, for alkaline earth atoms ranging from Ca up to Z = 816
which has valence shell 16s2. The black line shows the TF
model.

energy is given by

ELDA
X = −aX

∫
d3r n4/3(r) , (4)

where aX = 3 (3/π)
1/3
/4 [4, 5], and insertion of the TF

density[21] into this expression directly gives the dominant
contribution[10] to exchange as Z →∞, ETF = −AZ5/3.
For the beyond-LDA contribution to the exchange energy,
Eq. (1), we try the GEA[17, 32],

∆EGEA
X = −µGEaX

∫
n4/3(r) s2(r) d3r , (5)

where s = |∇n|/(2kFn) is the dimensionless gradient
parameter, kF = (3π2)1/3n1/3 is the local Fermi
wavenumber, and µGE = 10/81.[33] Application of Eq. (5)
to the slowly-varying gas, or to a neutral atom using the
density scaling of [12], yields a term of order Z when scaled
toward the TF limit. However, the present analysis amounts
to scaling the potential, in the sense of Refs. [34, 35]. While
potential- and density-scaling are interchangeable for the
dominant term of the large-Z asymptotic expansion (TF
theory), additional terms appear for potential scaling, such
as the Scott correction to the kinetic energy [21]. To show
this for exchange, we proceed by directly employing the TF
profile in Eq. (5).

Gradients are weak in the bulk of large atoms, with s of
order Z−1/3. At distances smaller than O(Z−1/3) from the
nucleus, screening of the nuclear charge is negligible[22] and

the TF density varies as (2Z/r)
3/2

/3π2, so

sTF(r) ' 3

4

1√
2Zr

, r � Z−1/3 . (6)

This approximation fails in the region where the inner shell
(1s) electrons dominate; see Fig. 2, which shows s2 of

alkaline earths up to Z = 816 (using FHI98PP in all-electron
mode[36]) and s2 of the TF density, Eq. (6). For r >> 1/Z,
the atomic gradients approach the TF curve, while near
r ≈ 1/Z, the density profile displays the oscillations studied
in [22] and switches over to that of the well-known nuclear
cusp, while s remains finite, achieving its maximum value
around r = 1/Z. Keeping only the divergent contribution
to Eq. (5) gives:

∆EGEA
X ' −9µGE

8π2
Z

∫ Z−1/3

Z−1

dr

r
, (7)

which yields a logarithmic term,

∆EGEA
X = −3µGE

4π2
ZlnZ +O(Z) . (8)

We define

B = − lim
Z→∞

∆EX/(ZlnZ) , (9)

and our derivation yields

BGEA =
3

4π2
µGE (10)

or about 9.38 mHa. The presence of such a logarithmic
term in the GEA for atoms was noticed in [37], and could
be inferred from earlier work (see Appendix A of [11]).

We have no rationale for the difference between the
results of the GEA, Eq. (10), and the actual data, Eq. (3),
i.e., the slope in Fig. 1. Eq. (10) is unaffected by integration
by parts (unlike [38]). Thus, the beyond-LDA exchange
energy of large-Z atoms has a leading ZlnZ term both
numerically and in GEA, but their coefficients disagree.

A similar analysis can be applied to the analog of Eq. (5)
for the kinetic energy, leading to a stronger divergence at
small r, due to the presence of an extra power of n1/3. In
addition to the naive-scaling Z5/3 term, the small-r cutoff
produces a Z2 term, proportional to the Scott correction
mentioned above. This procedure does not generate the
exact coefficient, -1/2 (see [21]). Instead this is inferred
from the Bohr atom,[10] to which we turn for the analysis
of exchange.

The simplicity of the Bohr atom (hydrogenic orbitals)
allows calculations to much larger electron number, leading
to unambiguous results. We fill N hydrogenic orbitals in a
potential −N/r, so that N plays the role of Z here. The
inner region, r << N−1/3, is identical to that of interacting
atoms in the large Z limit.[39]

We analytically evaluated EX, defined by an infinitesimal
Coulomb repulsion, up to N = 7590 (22 shells), using
Mathematica.[23] Our extremely accurate fit has the form

EBohr
X (N) = (11)

−ĀoN5/3−(B̄olnN + C̄o)N − (D̄olnN + Ēo)N
1/3 + ..,

where the subscript denotes a Bohr-atom coefficient and the
bar denotes EX. The leading coefficient is (2/3)1/3(4/π2),
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FIG. 3. Plot of the gradient parameter s near the edge of the
Bohr atom, versus distance from the cusp radius rc, scaled
by N5/9, for two representative values of N identified in the
legend. Dot-dashed lines: the results of the corresponding TF
models, which diverge at rc (dashed vertical line).

from LDA applied to the TF density[39], while B̄o = 26.268
mHa agrees with 7/(27π2) to 5 digits, with C̄o = 45.3536
mHa, D̄o = −3.17 mHa and Ēo = 0.6 mHa, determined to
the number of digits shown (see [28] for details).

For LDA, there are also O(N2/3lnN) and O(N2/3) terms,
making results harder to fit. However, the simplicity of
the expressions[22] and availability of arbitrary precision
software (using the Julia language with 64-decimal-digit
accuracy) enables their brute-force evaluation for up to 100
full shells (N = 676700).[28] We find BLDA

o to match
−2/(27π2) to within ∼ 0.1% (note the opposite sign),
yielding

Bo = B̄o −BLDA
o =

1

3π2
. (12)

To evaluate the GEA, note the TF density distribution:

nTF
o =

(2N)3/2

3π2

(
r−1 − r−1c

)3/2
, r ≤ rc , (13)

where rc = (18/N)1/3 is the radius beyond which the
density vanishes,[39] so s diverges not only at the nucleus
but also as r approaches rc [39], as

sTF
o ' 3

4

32/3

21/6

[
N5/9(rc − r)

]−3/2
, 0 < rc−r � N−1/3 .

(14)
The result is

∆EGEA
o ' −9µGE

8π2
N

[∫ N−1/3

N−1

dr

r
+

∫ rc−N−5/9

0

dr

rc − r

]
,

(15)
where the first logarithmic divergence is treated as above.
The second is also cut off, taking into account that the
kinetic energy is here very small, and the wavelength of the
electrons is of order N−5/9,[40] as displayed in Fig. 3. As a

result, the contribution of the second divergence is 3 times
smaller than that of the first, yielding

BGEA
o =

µGE

π2
. (16)

The two regions of divergence also determine BLDA
o . The

inner region of the density has been studied in detail in [22].
The leading non-oscillatory correction to the TF density
profile is n(r) ' nTF(r)[1 − 1/(64Zr)] for Z−1 � r �
Z−1/3, producing a contribution of −1/(18π2) via Eq. (4).
Consistency with the result BLDA

o = −2/(27π2), Eq. (12),
requires that the outer divergence yields a contribution 1/3
as large as the first, just as for BGEA

o .
The value excogitated from the highly precise numerical

results, Eq. (12), is exactly 27/10 times larger than that of
the GEA, Eq. (16). It is tempting to conjecture that

B =
27

10
BGEA (17)

yields the exact result for all atoms, including fully
interacting ones, implying that B = 1/(4π2) or 25.3 mHa is
the exact result for neutral atoms, in agreement with our fit,
Eq. (3). More generally, the conjecture gives the prediction

B =
1

12π2

(
4− N

Z

)
(18)

for any N/Z ratio, interpolating between the result for
neutral atoms, N = Z, and Eq. (12) for N � Z. A careful
investigation of this relationship will require generating data
for a large range of N for each N/Z ratio, as in Fig. 1.
As a preliminary check, we show in [28] that applying this
formula with a constant C to a number of positive ions with
N/Z = 1/2 continues to give agreement with the beyond-
LDA data from the OEP, at the ∼ 5% level, for N > 2.

Last, we turn to the implications for approximate
functional development. Our derivation applies to most
GGA’s for the exchange energy, usually written in terms
of an enhancement factor FX:

EGGA
X = −aX

∫
n4/3(r)FX(s(r)) d3r . (19)

Typically, FX ≈ 1 + µGGAs2 + ... for small s, which
dominates in the TF limit. Thus Eq. (10) applies, with µGE

replaced by µGGA. This yields 16.7 mHa for PBE and 20.9
mHa for B88, differing from the value of 25.4 mH of Eq.
(3). However, both yield accurate EX for Z between 10 and
100, due to differences in the remaining terms of a large-Z
fit. Thus, functionals that have been fit to large-Z data,
such as SCAN, are accurate for all practical calculations. In
the future both the O(ZlnZ) and the O(Z) terms should
be addressed in developing approximate density functionals.

Using the hydrogen atom as a ‘norm’[19], the conjecture
above yields:

∆Enormed
X = −Z

{
lnZ

4π2
+

5

16
− 0.2564

}
(20)
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for neutral atoms, which is indistinguishable from the
straight line of Fig 1, and contains no empirical parameters.

In conclusion, the present work is a step in the
process of improving DFT approximations using asymptotic
expansions for non-relativistic atoms: it identifies a
logarithmic divergence in the coefficient of the leading O(Z)
contribution to the beyond-LDA exchange energy, resulting
in a leading ZlnZ term.

Further steps would involve studying existing
approximations, evaluating the coefficients of both their
ZlnZ terms and their O(Z) terms. Obtaining very-high-Z
data for real atoms is crucial, possibly using simplified
methods. Analogous data for molecules and solids would
also be very helpful, especially to determine any differences
based on the lack of classical turning surfaces in solids[41].
But first and foremost, a derivation of the ZlnZ term
from semiclassical theory, including the correct value of
its coefficient, would provide a fundamental, detailed
understanding of the exchange energy, and would be
instrumental in guiding future developments in DFT.
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