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We classify phases of a bosonic lattice model based on the computational complexity of classically simulating
the system. We show that the system transitions from being classically simulable to classically hard to simulate
as it evolves in time, extending previous results to include on-site number-conserving interactions and long-
range hopping. Specifically, we construct a complexity phase diagram with easy and hard “phases”, and derive
analytic bounds on the location of the phase boundary with respect to the evolution time and the degree of
locality. We find that the location of the phase transition is intimately related to upper bounds on the spread of
quantum correlations and protocols to transfer quantum information. Remarkably, although the location of the
transition point is unchanged by on-site interactions, the nature of the transition point does change. Specifically,
we find that there are two kinds of transitions, sharp and coarse, broadly corresponding to interacting and
noninteracting bosons, respectively. Our work motivates future studies of complexity in many-body systems
and its interplay with the associated physical phenomena.

A major effort in quantum computing is to find examples
of quantum speedups over classical algorithms, despite the ab-
sence of general principles characterizing such a speedup. The
study of classical simulability of quantum systems evolving
in time allows one to identify features underlying a quantum
advantage. Studying the classical simulability of both quan-
tum circuits [1–14] and Hamiltonians [15, 16], especially un-
der restrictions such as spatial locality [17–21], allows one to
understand the classical-quantum divide in terms of their re-
spective computational complexity. Computational complex-
ity has been closely linked to phases of matter in contexts
such as dynamical phase transitions [20], measurement-based
quantum computing [22], thermal phase transitions [23], and
entanglement phase transitions [24]. Therefore, studying the
complexity of simulating quantum dynamics is fruitful in un-
derstanding the nonclassical features of quantum many-body
physics, both theoretically and experimentally.

In this work, we characterize the worst-case computa-
tional complexity of simulating time evolution under bosonic
Hamiltonians and study a dynamical phase transition in ap-
proximate sampling complexity [20, 21]. Previous work [20]
studied free bosons with nearest-neighbor hopping but did not
consider the robustness of the transition to perturbations in
the Hamiltonian, a crucial question in the study of any phase
transition. In this work, we zoom into the physics of the dy-
namical phase transition. Among other things, we generalize
Ref. [20] to include number-conserving interactions and long-
range hops and conclude that the phase transition survives
under perturbations in the Hamiltonian. The interactions we
study are ubiquitous in experimental implementations of hop-
ping Hamiltonians with ultracold atoms and superconducting
circuits [25, 26]. Long-range hops that fall off as a power law
are also native to several architectures [27–31]. We also study

FIG. 1. (Color online). Slice of the complexity phase diagram for
the long-range bosonic Hamiltonian in D-dimensions with n bosons
when the number of sites is m = Θ(n2). Colors represent whether
the sampling problem is easy (yellow), hard (magenta), or not cur-
rently known (hatched). The X-axis parametrizes the evolution time
as a polynomial function of n, and the Y -axis isα, the exponent char-
acterizing the long-range nature of the hopping Hamiltonian (with
scale y= 1/

√
α except for the point α= 0).

the location of the phase transition and its dependence on var-
ious system parameters, constructing a complexity phase dia-
gram, a slice of which is presented in Fig. 1.

Setup and summary of results.— Consider a system of n
bosons hopping on a cubic lattice of m sites in D dimen-
sions with real-space bosonic operators aj . We letm= Θ(nβ)
(see [32]) and assume sparse filling: β≥ 1. The Hamiltonian
H =

∑
i,j Jij(t)a

†
iaj + h.c. +

∑
i f(ni) has on-site interac-

tions f(ni) and time-dependent hopping terms bounded by a
power-law in the distance d(i, j) as |Jij(t)| ≤ 1/d(i, j)α. The
parameter α governs the degree of locality. When α= 0, the
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system has all-to-all couplings, while α→∞ corresponds to
nearest-neighbor hops. The on-site terms Jii(t) can be large,
and the interaction strength is parametrized by V . For con-
creteness, our hardness results are stated assuming a Bose-
Hubbard interaction f(ni) =V ni(ni − 1)/2, but they hold
for generic on-site interactions [33]. We assume the bosons
are initially sparse and well-separated. Specifically, partition
the lattice into K clusters C1, . . . , CK containing b1, . . . , bK
initial bosons, respectively, such that b := max bi =O(1) does
not scale with lattice size. Define the width Li of a clus-
ter Ci as the minimum distance between a site outside the
cluster and an initially occupied site inside the cluster and let
L= mini Li. Thus, our initial states are chosen so the typical
cluster size is L= (m/n)1/D = Θ(n(β−1)/D).

The computational task of approximate sampling is to sim-
ulate projective measurements of the time-evolved state in the
local boson-number basis. The approximate sampling com-
plexity measures the running time of a classical algorithm
needed to produce samples from some distribution D̃ that is
ε=O(1/poly(n))-close in total variation distance to a target
distribution D (see [34]). Sampling from a distribution D̃
takes runtime T (n, t) on a classical computer, where t is the
evolution time. Like thermodynamic quantities, the complex-
ity is defined asymptotically as n→∞, so we consider the
scaling of T along a curve t(n). Along any curve t(n) = cnγ ,
sampling is easy if there exists a polynomial-runtime classi-
cal algorithm for all n, or hard if such an algorithm cannot
exist. Since the problem is either easy or hard for a partic-
ular function t(n), there is always a transition in complexity
as opposed to a smooth crossover. We prove upper and lower
bounds on the transition timescale by presenting sampling al-
gorithms on the easiness side, and performing reductions to
quantum supremacy proposals on the hardness side. Specifi-
cally, we show that approximate sampling is easy for all times
t< ceasyn

γeasy and hard for all times t> chardnγhard .
We find that the transition comes in two types, which we

call “sharp” and “coarse”. For sharp transitions, these bounds
coincide in the exponent γeasy = γhard and the transition oc-
curs in the coefficient ceasy≤ chard. For coarse transitions,
however, the transition occurs in the exponent. In our results,
we will show that sampling is easy for any time t=O(nγeasy),
but hard along any curve with exponent γhard>γeasy (see
[35–37] for more precise definitions). An example of a sharp
transition is when the transition timescale is t∗= 2n, so sam-
pling is easy for t≤ 1.99n and hard for t≥ 2.01n. An example
of a coarse transition is t∗= Θ(n log n), so sampling is easy
for t≤ cn and hard for t≥ cn1.01.

We summarize our main results in Table I. The easiness
result comes from applying classical algorithms for quantum
simulation, and depend on Lieb-Robinson bounds on infor-
mation transport [38–42]. The hardness results come from
reductions to families of quantum circuits for which efficient
approximate samplers cannot exist, modulo widely believed
conjectures in complexity theory [10, 17–19], and from fast
protocols to transmit quantum information across long dis-
tances [43, 44].
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if D≥ 2 or V <∞

∞ otherwise.
a Up to an additive constant δ > 0 that is present for α<D/2, D=1, or

weak interactions V = o(1).
b The easiness timescale for this case is teasy = logn.

TABLE I. Exponents γeasy and γhard in the easiness and hardness
timescales for various regimes of α.

Note that the hardness exponents in Table I sometimes
come with an infinitesimal δ > 0 whenever at least one of the
following cases holds: α<D / 2, D= 1, or weak interactions
V = o(1). When the easiness and hardness timescales coin-
cide, we interpret this term δ as signifying a coarse transition,
since it ensures γhard>γeasy. In the D = 1 nearest-neighbor
limit, we show the δ is optimal proving the transition is coarse.

We examine the various limits: α→∞ (nearest-neighbor),
α→ 0 (all-to-all connectivity), V → 0 (free bosons), and
V →∞ (hardcore bosons). First, when α→∞, the hard-
ness timescale upper bound is O(L) in all cases except when
V →∞ and D= 1, which we discuss later. This matches the
easiness timescale t = Ω(L), which corresponds to the dis-
tanceL between clusters. This pins down t∗ to Θ(L), which is
when interference between clusters become relevant [20]. In
the opposite limit when the model is sufficiently long-range
(α<D/2), the role of the dimension is unimportant, giving
γhard< 0 in all cases, showing the immediate onset of hard-
ness.

Next, we observe that the location of the transition t∗ is
generally independent of the interaction strength V . The only
exception is the limit of hardcore interactions and nearest-
neighbor hops (V, α → ∞) in 1D. There, t∗ → ∞, as the
model maps to free fermions, or equivalently, matchgate cir-
cuits, which are easy to simulate at all times [1, 2].

The results for constant density β= 1, or m= Θ(n), are
perhaps most experimentally relevant and are shown in Ta-
ble II. In this case, the separation between clusters is a con-
stant, and when α≥D + 1, the classical sampling algorithm
works only for time t=O(n−1/(α−D)), so the easiness ex-
ponent asymptotes to 0 as α→∞; in other words, sampling
becomes hard after constant time, consistent with recent re-
lated results [45]. Nevertheless, for α→∞, the easiness and
hardness exponents still match, up to an irremovable δ > 0 in
1D. We now outline the proofs of our results, whose details
may be found in the Supplemental Material [46].

Easy-sampling timescale.— To derive teasy, we give
an efficient sampling algorithm. The algorithm performs
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0 if D≥ 2 or V <∞
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TABLE II. Easiness and hardness timescale exponents when β = 1.

time evolution on each cluster Ci separately. This takes
polynomial time in the number of basis states, which is(|Ci|+bi−1

bi

)
=O(|Ci|bi) and hence polynomial in n when

bi =O(1). This product-state approximation of the exact
time-evolved state |ψ(t)〉=Ut |ψ(0)〉 is achieved by decom-
posing the propagator Ut via a spatial decomposition scheme
for quantum simulation [42, 47] that we call the HHKL de-
composition. We complete the derivation of the easiness
timescale by showing that the approximation is good for times
t<O(teasy).

We briefly present the HHKL decomposition. Let HR be
the sum over all terms in the Hamiltonian supported com-
pletely in region R and implicitly let XY =X ∪Y rep-
resent the union of regions. The decomposition scheme
approximates the time evolution unitary acting on region
XY Z (where Y separates regions X and Z) by forward
evolution on Y Z, backward evolution on Y , and for-
ward evolution on XY : UXY Z ≈UXY (UY )†UY Z . The
operator norm error made by this approximation is [42]
O
(
(evt − 1)Φ(X)(`−α+D+1 + e−`)

)
, where v > 0 is a char-

acteristic velocity, Φ(X) is the area of the boundary ofX , and
` is the minimum distance between any pair of sites in X and
Z. The error is small for times t shorter than the time it takes
for information to propagate from X to Z.

The velocity v of information propagation is also known as
a Lieb-Robinson velocity and is determined by the operator
norm of terms in the Hamiltonian which couple different sites
[39]. Since bosonic operators have unbounded operator norm,
this could result in an unbounded velocity [48]. However,
because of boson number conservation under the Hamilto-
nian, the dynamics is fully contained in the n-boson subspace,
within which the operator norm of each term is O(n). While
free bosons (V = 0) behave as in the single-particle subspace,
implying the Lieb-Robinson velocity is O(1), in the interact-
ing case, an O(n) Lieb-Robinson velocity would cause the
asymptotic easiness timescale to vanish (teasy→ 0).

Nevertheless, we can derive an easiness timescale indepen-
dent of V for a clustered initial state, a key technical result
detailed in [46]. Intuitively, at short times each boson is well-
localized within its original cluster. Therefore, the relevant
subspace has at most b bosons in each cluster Ci. Truncat-
ing the Hilbert space to allow only b + 1 bosons per clus-
ter is therefore a good approximation at short times [46, 49],
and the truncation error vanishes in the asymptotic limit.

The modified Hamiltonian H ′ after truncation has terms with
norm only O(b), giving an effective Lieb-Robinson velocity
v=O(b) =O(1) for states close to the initial state [50]. For
this modified Hamiltonian, we apply the HHKL decomposi-
tion to bound the error caused by simulating each cluster sep-
arately. Once the error has been calculated, the timescale im-
mediately follows by solving ε(t) =O(1) for t= teasy, which
is a lower bound on the transition timescale t∗. In Ref. [46],
we give the full dependence of teasy on various system param-
eters, including the filling fraction of bosons.

Sampling hardness timescale.— To derive thard, we give
protocols to simulate universal quantum circuits by setting the
time dependent parameters Jij(t) of the long-range bosonic
Hamiltonian. This implies sampling is worst-case hard after
time thard. Specifically, if a general sampling algorithm exists
for times t≥ thard, we prove this algorithm can also simulate
hard quantum circuits [17] when interactions are strong, and
boson sampling [10] when interactions are weak.

In the interacting case, our reduction from universal quan-
tum computation to a long-range Hamiltonian hinges on im-
plementing a universal gate set. Using a dual-rail encoding to
encode a qubit in two modes of each cluster Ci, we show in
Ref. [46] how to implement arbitrary single-qubit operations
in O(1) time and controlled-phase gates [51] between adja-
cent clusters in a time that depends on their spacing L. For
hardcore bosons, the entangling gate is constructed slightly
differently, and features an easiness result for the 1D nearest-
neighbor case.

The two-qubit gate uses free particle state-transfer as a sub-
routine [43, 44] to bring adjacent logical qubits near each
other. We implement the constant-depth circuit of Ref. [17],
which consists only of onsite and nearest-neighbor gates be-
tween qubits in a 2D grid. The total time for hardness un-
der this scheme takes time O(min [L ,Lα−D]) when α>D
and O(1) when α∈ [D/2, D]. In 1D, simulating a 2D circuit
introduces extra overhead. Nevertheless, we can recover the
same timescale up to an infinitesimal δ > 0 in the exponent by
only encoding nδ logical qubits.

Lastly, when α<D / 2, state transfer takes time o(1) but
the time for an entangling gate is O(1). We can still achieve
coarse hardness for time o(1) by mapping the system onto free
bosons, which we now come to.

In the noninteracting case, we implement the boson sam-
pling scheme of Ref. [10], which showed that a Haar-random
unitary applied tom sites containing n bosons gives a hard-to-
sample state. It also gave anO(n logm)-depth decomposition
of a linear-optical unitary in the circuit model without spatial
locality. We give a faster implementation for the continuous-
time Hamiltonian model, which can include simultaneous
noncommuting terms but imposes spatial locality, a result of
independent interest [46]. Specifically, we show that most
linear-optical states of n bosons on m sites can be constructed
in time min [O(nm1/D) , Õ(nmα/D−1/2]), which is faster
than the circuit model when α<D / 2. This result also uses
free-particle state transfer as a subroutine. As in the 1D inter-
acting case, we can implement the reduction on a polynomi-
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ally growing number of bosons nδ , resulting in the timescale
of Table I for free bosons. This result resolves an important
conceptual question posed by Ref. [20] for the noninteracting,
nearest-neighbor case by closing the gap between teasy and
thard. In this limit, the transition timescale is at Θ(L/v), both
with and without interactions, showing that the algorithm of
Ref. [20] is optimal and that the presence of interactions does
not change the phase diagram.

Sharp and coarse transitions— In the nearest-neighbor
limit α→∞, where the exponents on our hardness and easi-
ness timescales match up to an infinitesimal (δ), we can make
precise statements about the nature of the transition. In the
presence of interactions and in two dimensions and above, the
bounds on the timescale in the nearest-neighbor limit coin-
cide up to a multiplicative constant at teasy = thard = Θ(L),
proving the transition is sharp. However, in 1D, the hardness
timescale only matches up to an infinitesimal δ > 0 in the ex-
ponent chard = ceasy + δ. In this case, we show that chard
cannot be improved any further, proving that this is a coarse
transition.

To understand the physics behind the two kinds of transi-
tions, it is illuminating to study the approach to the transition
point from both sides. On the easiness side, the important
quantity is the many-body entanglement. At short times, the
wavefunction is approximately separable, implying easiness
of classical simulation. The separable state is computed us-
ing an HHKL decomposition, whose errors grow in time until
they become O(1) at the transition timescale. These errors
upper bound the amount of entanglement present across any
cut, so the easy phase corresponds to states with no entan-
glement, and the complexity transition occurs as the entan-
glement grows from zero entanglement to area-law entangle-
ment.

However, sampling complexity in one dimension is spe-
cial because area-law entanglement is classically simulable
using matrix product states [52, 53]. Specifically, in 1D, we
prove an extended easiness timescale of teasy = cL for any
constant c [46]. Thus, sampling is easy for all times O(L),
implying that the δ in the hardness exponent cannot be re-
moved, and the transition is coarse. Further, our results sug-
gest the sampling complexity increases smoothly as the en-
tanglement grows from area-law to volume-law, as explained
below. However, if D≥ 2, the argument based on entangle-
ment breaks down because tensor-network contraction takes
time exponential in the system size in both the worst case
and average case [54, 55], and there are known examples of
constant-depth 2D circuits that are hard to simulate [17].

On the hardness side, many-body entanglement is neces-
sary but not sufficient for sampling hardness [1, 2, 56]. Since
our hardness results in the interacting case rely on mapping
bosons to qubits via a dual-rail encoding, we understand the
transition by counting the number of encoded logical qubits.
For coarse transitions, as the evolution time approaches the
transition timescale t∗ from above, the number of encoded
logical qubits shrinks as nδ , where δ→ 0 as t→ t∗. This il-
lustrates that while the problem is still asymptotically hard as

n→∞, one needs to go to higher boson numbers n to achieve
the same computational complexity. On the other hand, for
sharp transitions, as we approach the transition from the hard
side, the number of encoded logical qubits suddenly jumps
from Ω(nc) for some constant c to O(log n). In Ref. [46], we
elaborate on how to use the number of effective logical qubits
as an order parameter for the phase transition. Whether or
not such an order parameter is a universal way to characterize
complexity phase transitions deserves closer attention.

Finally, in the noninteracting case, we do not know the na-
ture of the transition in D ≥ 2. However, if the infinitesimal
in the hardness timescale cannot be removed, it would indicate
a coarse transition. Alternatively, there may exist a constant-
depth boson sampling circuit on a nearest-neighbor architec-
ture for which approximate sampling is classically hard. It
has been proved by Brod [57] that exact sampling of constant-
depth boson sampling is classically hard. Nevertheless, Brod
points out that it is unclear if this exact sampling hardness can
be extended to the approximate sampling hardness we con-
sider in this paper. As such, in D ≥ 2 without interactions,
the type of transition is an open problem.

Lastly, we note that the transition can also be studied for
the case when the bosons evolve under local random gates, as
is done in Ref. [58]. The authors observe a seemingly coarse
complexity transition as a function of depth, although the true
nature of the transition is open in this case as well.

Outlook.— We have mapped out the complexity of the long-
range Bose-Hubbard model as a function of the particle den-
sity β, the degree of locality α, the dimensionality D, and
the evolution time t. An interesting open question concerns
regions of the phase diagram at finite α without definitive
easiness/hardness results. These gaps are closely related to
finding state-transfer protocols which saturate Lieb-Robinson
bounds. Stronger Lieb-Robinson bounds can increase teasy,
and faster state-transfer can reduce thard, as evidenced by the
improvement over the first version of this manuscript [59] due
to results from Ref. [44]. These observations show that study-
ing complexity phase transitions provides a nice testbed for,
and gives an alternative perspective on results pertaining to
the locality of quantum systems.

Our results directly apply to a wide range of experimen-
tal platforms in quantum information, such as cold atoms and
trapped ions, as their Hamiltonians are special cases of the
one that we study, or straightforward extensions. Our model
is also ideal for studying dynamics in long-range interacting
systems and models of modular networks. We elaborate on
these connections in Ref. [46].

If the qualitative features of the phase diagram we have de-
rived for the Bose-Hubbard model hold more generally, our
results may hint at a notion of universality present in transi-
tions between complexity phases. In 1D, we have proved that
the transition is always coarse. However, in 2D and higher,
when there are interactions, the transition is sharp. In con-
trast, in 2D and higher for noninteracting transitions, the tran-
sition type is unknown. This dependence on the dimension
and possible dependence on interaction type hints at classify-
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ing complexity phases of matter, and the transitions between
them, based on generic features such as connectivity, dimen-
sionality, and kinds of interactions.

Along this line, it would be interesting to study whether
similar features occur for different kinds of complexity phase
transitions. In our work, the transition occurs in the dynamics
of a many-body Hamiltonian. However, different approaches
are possible. For example, one could consider open quan-
tum systems, where decoherence might drive dynamical tran-
sitions from hard to easy. A particularly rich class is that
of random quantum circuits with interspersed measurements
[60–62], which have distinct non-equilibrium phases and en-
tanglement phase transitions, and which may be promising
models to study complexity phase transitions.
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