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The performance of quantum gates is often assessed using some form of randomized benchmarking. However,
the existing methods become infeasible for more than approximately five qubits. Here we show how to use a
simple and customizable class of circuits—randomized mirror circuits—to perform scalable, robust, and flexible
randomized benchmarking of Clifford gates. We show that this technique approximately estimates the infidelity
of an average many-qubit logic layer, and we use simulations of up to 225 qubits with physically realistic error
rates in the range 0.1-1% to demonstrate its scalability. We then use up to 16 physical qubits of a cloud quantum
computing platform to demonstrate that our technique can reveal and quantify crosstalk errors in many-qubit
circuits.

Quantum information processors suffer from a wide va-
riety of errors that must be quantified if their performance
is to be understood and improved. A processor’s errors are
commonly probed using randomized benchmarks that involve
running random circuits [1–21]—e.g., standard randomized
benchmarking (RB) [3, 4] or one of its many variants [3–
17] cross-entropy benchmarking [18], or the quantum volume
benchmark [21]. Randomized benchmarks are appealing be-
cause they aggregate many kinds of error into one number
that quantifies average performance over a large circuit en-
semble. Unlike tomographic techniques [22] that estimate a
set of parameters that may be exponentially large in the num-
ber of qubits (n), randomized benchmarks hold the potential
for scalable performance assessment.

Yet current randomized benchmarks have one of two scal-
ing problems. Quantum volume and cross-entropy bench-
marking require classical computations that are exponentially
expensive in n, becoming infeasible beyond n ∼ 50 [18–21].
In contrast, standard RB requires only efficient classical com-
putations but it benchmarks composite gates from the n-qubit
Clifford group. They require O(n2/log n) two-qubit gates to im-
plement [23–25], so the fidelity of a typical n-qubit Clifford
decreases quickly with n. Lower compilation overheads [e.g.,
O(log n)] are possible with access to many-qubit gates [26],
but in all realistic architectures the circuit depth required to
implement a typical Clifford will increase with the number of
qubits. As a result, standard RB has only been implemented
on up to three qubits [27], and even its streamlined variant “di-
rect RB” (DRB) has only been implemented on up to 5 qubits
[17].

In this Letter we introduce a simple, flexible, and robust
RB method that removes the Clifford compilation bottleneck
that limits current methods. We show how randomized mir-
ror circuits (Fig. 1a) enable scalable RB of Clifford gates.
This work advances circuit mirroring [28], a recently intro-
duced method for scalable benchmarking of quantum com-
puters. Ref. [28] shows how mirror circuits can be used to
map out how a quantum computer’s performance on circuits
depends on their widths and depths (volumetric benchmark-
ing [29]), but it doesn’t show how to quantify gate fidelity.
Here, we show how to use randomized mirror circuits to esti-
mate the infidelity of an average Pauli-dressed [30–33] n-qubit
circuit layer (Fig. 1a, grey boxes), and we present a theory
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Figure 1. Scalable RB with mirror circuits. (a) Randomized mir-
ror circuits over Clifford gates enable scalable RB. These circuits
contain d/2 pairs of layers consisting of a layer and its inverse (pink
boxes) sampled from some set of n-qubit Clifford layers, d + 1 layers
of uniformly random Pauli gates (green boxes), and a layer of uni-
formly random one-qubit Clifford gates and this layer’s inverse (blue
boxes). The number of “Pauli-dressed” layers (grey boxes) d is the
circuit’s benchmark depth. These circuits’ “effective polarization” S ,
a quantity closely related to success probability, decays exponential
with d. (b) Demonstrating our method on 1, 2, 4, 8 and 16 qubit sub-
sets of IBM Q Rueschlikon. Points (violin plots) are the means (dis-
tributions) of S versus d, and the curves are fits to S = Apd. Each r is
a rescaling of p that approximates the infidelity of an average Pauli-
dressed n-qubit layer (uncertainties are 1σ here and thoughout).

that proves that this method—mirror RB (MRB)—is reliable.
MRB can be applied whenever a typical n-qubit circuit layer
has significantly non-zero fidelity, enabling RB of hundreds or
even thousands of qubits with physically realistic error rates
[O(10−2)-O(10−3)]. We demonstrate and validate MRB on up
to 225 qubits using simulations (Fig. 2), and on up to 16 phys-
ical qubits using IBM Q’s cloud quantum computing platform
(Figs. 1, 3 and 4).

Randomized mirror circuits. MRB uses randomized mir-
ror circuits [28], shown in Fig. 1a. By design, each random-
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ized mirror circuit C should ideally always produce a sin-
gle bit string sC that is efficient to compute. Distributions
over these circuits are parameterized by an n-qubit layer set
L = {L} [34], a probability distribution Ω over L, and a bench-
mark depth d that specifies the number of Pauli-dressed layers
in the circuit. Both L and Ω are customizable, but we re-
quire that (1) each layer contains only Clifford gates, (2) each
layer’s inverse L−1 is also within L, (3) Ω(L) = Ω(L−1), and
(4) Ω-random layers quickly locally randomize an error (lo-
cal “twirling”) and spread it across multiple qubits. Condition
(4) is also required for reliable DRB, and the circumstances
under which it is satisfied have been studied in detail [17].
For all demonstrations herein, the layer set consists of parallel
applications of CNOTs between connected qubits and all 24
single-qubit Clifford gates. This enables transparent quantifi-
cation of the errors caused by native two-qubit gates, includ-
ing crosstalk. Note, however, that our method can be applied
to, e.g., CNOTs synthesized via SWAP chains, enabling com-
parisons between the errors in identical layer sets on different
devices. All our distributions Ω have a similar form whereby
sampling a layer consists of: (1) sampling some CNOTs, and
(2) sampling uniformly random single-qubit Clifford gates for
all qubits not acted on by those CNOTs.

Mirror RB. MRB aims to measure εΩ :=
∑

L Ω(L)ε(L), where
Ω is a user-chosen distribution over L, and ε(L) is the entan-
glement infidelity of the Pauli-dressed version of the n-qubit
layer L (grey boxes, Fig. 1a). In all our demonstrations we do
not compile the Paulis into the L layers, but this is permissi-
ble. MRB estimates εΩ using data from Ω-sampled random-
ized mirror circuit. For each circuit C that we run, we estimate
its effective polarization

S =
4n

4n − 1

 n∑
k=0

(
−

1
2

)k

hk

 − 1
4n − 1

, (1)

where hk is the probability that the circuit outputs a bit string
that is a Hamming distance of k from its target bit string (sC).
As our theory (below) shows, the simple additional analysis in
computing S mitigates the limited “twirling” enacted by our
circuits.

MRB is the following protocol:

1. For a range of integers d ≥ 0, sample K randomized
mirror circuits of benchmark depth d where d is even
(see Fig. 1a), using the distribution Ω, and run each one
N ≥ 1 times.

2. Estimate each circuit’s effective polarization S .

3. Fit S d, the mean of S at benchmark depth d, to S d =

Apd, where A and p are fit parameters, and then com-
pute rΩ = (4n − 1)(1 − p)/4n as an estimate of εΩ.

Theory. We now show that MRB is reliable, i.e., S d ≈ Apd

and rΩ ≈ εΩ under broad conditions. We assume that er-
rors are Markovian [22] but not necessarily gate-independent
(many, but not all, non-Markovian errors appear Markovian
within random circuits [35–37]). We use U(L) and φ(L) to

(a) (b)

Figure 2. Validating MRB with many-qubit simulations. Simula-
tions of MRB on up to 225 qubits show that it reliably approximates
the infidelity of n-qubit layers, i.e., rΩ ≈ εΩ. (a) rΩ versus εΩ for
randomly sampled error models. Each point was generated from an
independent simulation (sampling an error model and circuits, simu-
lating the circuits, and then applying the analysis to estimate rΩ) for
gates subject to stochastic Pauli errors. (b) rΩ and εΩ versus n for two
illustrative error models, with (model 2) and without (model 1) long-
range crosstalk. This demonstrates the power of MRB to highlight
crosstalk errors.

denote the n-qubit superoperators that represent a layer L’s
perfect and imperfect implementations, respectively, and E(L)
its error map, i.e., φ(L) = E(L)U(L). Our theory starts from a
single randomized mirror circuit C of benchmark depth d. So
C = F−1

0 PdL−1
1 · · · P1+d/2L−1

d/2
Pd/2Ld/2 · · · P1L1P0F0, where (1) Pi

are Pauli layers, (2) F0 and F−1
0 consist of one-qubit Clifford

gates, and (3) Li are Ω-sampled layers and L−1
i their inverses.

The components (1), (2) and (3) are sampled independently.
To compute S d, as a function of E(L), we can therefore aver-
age over (1-3) separately in turn.

The Pauli layers (green boxes, Fig. 1a) are independent,
uniformly random, and interleaved between every other layer.
They therefore have two effects: they randomize the target
bit string (s), which guarantees that S d → 0 as d → ∞ to a
good approximation [38], and they twirl the errors on the Li
layers into stochastic Pauli errors [30–33]. So we can ana-
lyze the “residual” circuit C = F−1

0 L−1
1 · · · L

−1
d Ld · · · L1F0 with

each Li’s error map E(Li) a stochastic Pauli channel. The com-
posite superoperator for this circuit is φ(C) = φ(F−1

0 )Edφ(F0)
where Ed ≡ φ(L−1

1 ) · · · φ(L−1
d )φ(Ld) · · · φ(L1) is a stochastic

Pauli channel, as each U(Li) is a Clifford operator.
The intial layer (blue boxes, Fig. 1a) F0 contains indepen-

dent, uniformly random single-qubit Clifford gates. Averag-
ing over this implements local 2-design twirling on each qubit
[39]. That is, Ed ≡

1
24n

∑
F0

[U(F−1
0 )EdU(F0)] is a stochastic

Pauli channel with equal marginal probabilities to induce an
X, Y or Z error on any fixed qubit. An error induced by Ed
flips at least one output bit iff it applies X or Y to at least
one qubit. So, if Ed induces a weight k error (an error on k
qubits) the circuit outputs sC with a probability of 1/3k. Gen-
erally, a weight k error causes flips on j of the output bits
with probability M jk =

(
k
j

)
2 j

3k . So ~h = M~p where hk and pk

are the probabilities that k bits are flipped and that Ed in-
duces a weight k error, respectively, with k = 0, . . . , n. By
inverting M, we obtain p0 =

∑n
k=0 (−1/2)k hk ≡ H. Because

p0 = 1 − ε(Ed) where ε(Ed) is Ed’s entanglement infidelity, H
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therefore equals Ed’s entanglement fidelity, and S [Eq. (1)] its
polarization γ(Ed) := 1 − 4nε(Ed)/(4n − 1). State preparation
and measurement (SPAM) errors also contribute to S (and H),
as do errors in F0 and F−1

0 . But their effect is approximately
d-independent, so S ≈ Aγ(Ed) for some A.

We have related a randomized mirror circuit’s S to the po-
larization of its superoperator [γ(Ed)]. Now we relate γ(Ed) to
the polarizations of the circuit’s constituent layers [γ(E(Li))].
If every E(Li) is an n-qubit depolarizing channel, with layer-
dependent error rates, then γ(Ed) =

∏d
i=1 γi−1γi where γi ≡

γ(E(Li)). More generally we argue that γ(Ed) ≈
∏d

i=1 γi−1γi.
For two stochastic Pauli channels EA and EB, γ(EAEB) =

γ(EA)γ(EB) + η where η =
∑

j(εA, j −
ε[EA]
4n−1 )(εB, j −

ε[EB]
4n−1 ]) and

~εi is the vector of 4n − 1 Pauli error probabilities for Ei. η
quantifies the rate that errors cancel when composing the two
channels, relative to the rate that they cancel when compos-
ing n-qubit depolarization channels. It is negligible unless ~εA
and ~εB are sparse (e.g., if ~εA = ~εB and the error probability is
equally distributed over K errors, then η = ε(EA)2

[
1
K −

1
4n−1

]
).

So, unless the Pauli error probability distributions of the Li are
sharply spiked, then γ(Ed) ≈

∏d
i=1 γi−1γi for any randomized

mirror circuit. Furthermore, because of the properties that
we demand of Ω (see above), our circuits are “scrambling”—
they locally randomize errors, and quickly spread them across
many qubits. This suppresses error cancellation further [17].
So γ(Ed) ≈

∏d
i=1 γi−1γi for a typical randomized mirror circuit.

Finally, we calculate the effect of averaging over the Li lay-
ers (pink boxes, Fig. 1a). They are independently sampled
from Ω, so S d ≈ A(

∑
L Ω(L)γL−1γL)d/2 where γL ≡ γ(E(L)).

That is, S d ≈ Apd where p2 ≈
∑

L Ω(L)γL−1γL. Rewriting
this in terms of εΩ and CovΩ = [

∑
L Ω(L)ε(L−1)ε(L)] − [εΩ]2

gives p2 ≈ (1 − 4n

4n−1 εΩ)2 + 4n

4n−1 CovΩ. So if CovΩ = 0 then
rΩ ≈ εΩ. CovΩ quantifies the correlation between the error
rate of a Ω-random layer L and its inverse L−1, so CovΩ , 0 is
likely. This covariance satisfies εΩ(1 − εΩ) ≥ CovΩ ≥ −ε

2
Ω

, so
εΩ + O(ε2

Ω
) ' rΩ '

εΩ
2 + O(ε2

Ω
). Therefore rΩ is never signifi-

cantly large than εΩ, and it can be smaller by at most a factor
of ≈ 2. The {ε(L)} distributions that get close to these bounds
on CovΩ are not physically typical, e.g., the upper bound is
saturated if ε(L) = ε(L−1) and ε(L) = 0 or ε(L) = 1 for each
L. We therefore conjecture that, for physically relevant {ε(L)},
rΩ typically only slightly underestimates εΩ. This is supported
by our simulations and our demonstrations on physical qubits.

Simulations. We simulated MRB on 1-225 qubits with ran-
domly sampled stochastic Pauli error models. The qubits
were arranged on a 15 × 15 lattice (the layer set is described
above). We independently sampled a total of 900 MRB cir-
cuit sets with a range of n ∈ [1..225]. We used a distri-
bution Ω whereby a layer sampled from Ω has an expected
CNOT density of 1/8. For each MRB circuit set we used a
different randomly sampled error model, consisting of biased
and correlated Pauli errors with one- and two-qubit gates hav-
ing an expected infidelity of 0.1% and 1%, respectively [40].
Fig. 2a shows εΩ versus rΩ. We observe that rΩ ≈ εΩ, with
rΩ typically slightly less than εΩ, as expected from our the-
ory. Quantifying estimation error by δrel = rΩ−εΩ

εΩ
, we find that

δrel > −0.32 in all 900 simulations and for each n its mean δrel

(a)

(b)

(c)

(d)

(e)

Figure 3. Validating MRB using cloud access experiments. MRB,
DRB and standard RB on 1-5 qubits of IBM Q Quito. (a-c) The
means (points) and distributions (violin plots) of the circuit polar-
izations versus benchmark depth (d), and fits to an exponential Apd

(curves). (d) Error rates (r) obtained from the fit’s decay rate for
DRB and MRB versus the number of qubits (n), and the values pre-
dicted from calibration data. The DRB and MRB error rates are
in close agreement, validating MRB against the reliable but unscal-
able DRB protocol. The measured r diverges from the predictions of
Quito’s calibration data as n increases, indicating crosstalk. (e) The
mean polarizations at d = 0 (S 0) decrease rapidly with n for DRB
and standard RB [at best log(S 0) = 1 − O(n2/ log n)] making them
infeasible beyond a few qubits, whereas log(S 0) = 1−O(n) for MRB.

satisfies 0.003 > δrel > −0.16. Although this systematic un-
derestimation of εΩ is undesirable, it is arguably small enough
to be insignificant (RB is typically used for rough estimates of
gate performance rather than precision characterization).

To show how MRB can be used to reveal crosstalk er-
rors, we simulated it on our hypothetical 225-qubit proces-
sor with two illustrative models, one with and one without
crosstalk. The crosstalk-free model consisted of 0.5% readout
error on each qubit, and depolarization on the one- and two-
qubit gates, with 0.1% and 1% error rates, respectively. In the
crosstalk model, each CNOT also caused the error probability
for qubit q to increase by ε(q), with ε(q) a slowly decreasing
function of the distance (on the lattice) from q to the CNOT’s
location [40]. Fig. 2b shows rΩ (points) and εΩ (dotted line)
versus n for both models. We find that rΩ ≈ εΩ (averaged over
n, δrel ≈ −0.17 and δrel ≈ −0.08 for the crosstalk-free and
crosstalk models, respectively), and that rΩ grows quadrati-
cally at low n under the crosstalk model—an effect that cannot
be observed without running many-qubit circuits.

Validating MRB with cloud access experiments. To demon-
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IBM Q Rueschlikon Region

n-Qubit Error Rates Measured Using n-qubit MRB

n-Qubit Error Rates Predicted from Calibration Data

              (1- and 2-Qubit Standard RB)

(a)

(b)

Figure 4. Mapping out the performance of a 16-qubit processor.
MRB with was used to probe the performance of n-qubit regions
of IBM Q Rueschlikon. (a) The measured error rate (rΩ) for each
qubit subset that was tested (black lines are 1σ uncertainties) and (b)
the over-optimistic predictions from calibration data. The horizontal
axis is a device schematic (nodes are qubits and edges the available
CNOTs).

strate MRB and compare it to existing techniques, we ran
MRB, DRB [17] and standard RB [3] on 1-5 qubits of IBM
Q Quito [41]. DRB is designed to measure the same quan-
tity as MRB (εΩ) and is known to be reliable but unscalable
(because its circuits start by preparing a random n-qubit sta-
bilizer state). For DRB and MRB we sampled layers with an
expected CNOT density of ξ = 1/8 [40] (standard RB does
not have flexible sampling and its error rate is incomparable).
Fig. 3a-c shows that we observe exponential decays for all
three methods and all n (for all methods d = 0 corresponds
to the shortest allowed circuit, consisting of a random n-qubit
Clifford and its inverse for standard RB and preparation in
and measurement of a random stabilizer state for DRB). For
standard RB and DRB we rescale the success probabilities P
to polarizations (P − 1/2n)/(1 − 1/2n) [this has no effect on the
estimated r] for easier comparison with MRB.

Fig. 3a-c also highlights the fundamentally improved scal-
ing of MRB. The d = 0 polarization (Fig. 3e) decays much
more quickly with n for DRB and standard RB, because they
use subroutines containing O(n2/log n) gates, whereas d = 0
randomized mirror circuits use O(n) gates. The error rates es-
timated by DRB and MRB are in close agreement for all n
(Fig. 3d), validating MRB. We also predicted rΩ from Quito’s
calibration data [40]. These predictions (stars, Fig. 3d) are
consistent with our observations for n = 1, 2, but they are
over-optimistic as n increases. This discrepancy indicates
crosstalk errors caused by CNOTs. This is because IBM’s
one- and two-qubit calibration data are obtained from simul-
taneous one-qubit RB and isolated two-qubit RB (i.e., all other
qubits are left idle) [39, 41], respectively. Therefore, the one-
qubit error rates include contributions from any one-qubit gate

crosstalk, whereas the two-qubit error rates do not include
contributions from two-qubit gate crosstalk.

Mapping out a processor’s performance. MRB can be used
to map out performance of a processor’s n-qubit layers when
varying both n and the embedding of those qubits, as we
demonstrate on IBM Q Rueschlikon (16 qubits) [41]. For
n ∈ {1, 2, 4, 8, 16} we divided Rueschlikon into 16/n regions,
and ran randomized mirror circuits on each region (the one-
qubit circuits were performed simultaneously to match IBM’s
calibration experiments) [40]. In this demonstration, we fixed
the expected number of CNOTs in a layer to 1/2. Fig. 1b shows
exponential decays for one region of each size (the leftmost
regions in Fig. 4), and Figs. 4a and 4b show rΩ for all bench-
marked regions and the predictions from the calibration data,
respectively. The prediction underestimates rΩ for n > 2,
again signifying crosstalk induced by CNOTs (see discussion
above).

Discussion. In this Letter we have introduced a technique
that enables holistic RB of hundreds or thousands of qubits,
while retaining the core simplicity of standard RB—fitting
data from random circuits to an exponential. We anticipate
that techniques based on standard RB [10, 14, 39, 42–51] can
be enhanced using ideas introduced here. For example, MRB
does not require compilation of subroutines so it removes the
circuit scheduling complexities that plague simultaneous stan-
dard RB [14, 39], suggesting that MRB will be more power-
ful for probing crosstalk. Similarly, running multiple MRB
experiments with Ω varied could be used to isolate the er-
ror rates of different subsets of layers [17]. This would en-
able reliable predictions of the performance of many-qubit,
randomly-compiled circuits [30–33] (randomized compiling
guarantees that layer fidelities are sufficient to predict overall
circuit performance [35], which is not true otherwise [28]).

Our demonstrations on a cloud quantum computing plat-
form revealed and quantified crosstalk errors that are invisible
to one- and two-qubit RB, highlighting the need for scalable
methods like ours. Outside the paradigm of RB there are a
variety of methods for testing n-qubit circuit layers, and our
technique complements them. For example, cycle benchmark-
ing [33, 52] and Pauli noise estimation [53, 54] can charac-
terize a Pauli-dressed n-qubit layer. These techniques extract
more information about a layer’s errors, but, unlike MRB,
they test only one (or a few) of a processor’s many possible
n-qubit layers. Methods for extracting more information from
mirror circuit data, e.g., by using the techniques of Refs. [52–
54], are an intriguing possibility [55, 56].

Our method is built on a particular type of randomized mir-
ror circuits, but circuit mirroring [28] is a flexible tool that
could be used to construct a range of randomized benchmarks
with complementary properties to ours. For example, mirror
circuits can contain non-Clifford gates [28], which suggests a
route to scalable RB of universal gate sets, and scalable “full
stack” benchmarks.

Since the completion of this manuscript, Mayer et al. [57]
presented a complementary theory for MRB that assumes
gate-independent errors and a 2-design gate set.
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able noise estimation with random unitary operators,” J. Opt. B
Quantum Semiclass. Opt. 7, S347 (2005).

[2] Joseph Emerson, Marcus Silva, Osama Moussa, Colm Ryan,
Martin Laforest, Jonathan Baugh, David G Cory, and Ray-
mond Laflamme, “Symmetrized characterization of noisy quan-
tum processes,” Science 317, 1893–1896 (2007).

[3] Easwar Magesan, Jay M Gambetta, and Joseph Emerson,
“Scalable and robust randomized benchmarking of quantum
processes,” Phys. Rev. Lett. 106, 180504 (2011).

[4] Easwar Magesan, Jay M Gambetta, and Joseph Emerson,
“Characterizing quantum gates via randomized benchmarking,”
Phys. Rev. A 85, 042311 (2012).

[5] Emanuel Knill, D Leibfried, R Reichle, J Britton,
RB Blakestad, JD Jost, C Langer, R Ozeri, S Seidelin,
and DJ Wineland, “Randomized benchmarking of quantum
gates,” Phys. Rev. A 77, 012307 (2008).

[6] Arnaud Carignan-Dugas, Joel J Wallman, and Joseph Emerson,
“Characterizing universal gate sets via dihedral benchmarking,”
Phys. Rev. A 92, 060302 (2015).

[7] Andrew W Cross, Easwar Magesan, Lev S Bishop, John A
Smolin, and Jay M Gambetta, “Scalable randomised bench-
marking of non-clifford gates,” npj Quantum Inf. 2, 16012
(2016).

[8] Winton G. Brown and Bryan Eastin, “Randomized benchmark-
ing with restricted gate sets,” Phys. Rev. A 97, 062323 (2018).

[9] A. K. Hashagen, S. T. Flammia, D. Gross, and J. J. Wallman,
“Real randomized benchmarking,” Quantum 2, 85 (2018).

[10] Easwar Magesan, Jay M Gambetta, Blake R Johnson, Colm A
Ryan, Jerry M Chow, Seth T Merkel, Marcus P da Silva,
George A Keefe, Mary B Rothwell, Thomas A Ohki, et al., “Ef-
ficient measurement of quantum gate error by interleaved ran-
domized benchmarking,” Phys. Rev. Lett. 109, 080505 (2012).

[11] Jonas Helsen, Xiao Xue, Lieven MK Vandersypen, and
Stephanie Wehner, “A new class of efficient randomized bench-
marking protocols,” npj Quantum Inf 5, 71 (2019).

[12] Jonas Helsen, Sepehr Nezami, Matthew Reagor, and Michael
Walter, “Matchgate benchmarking: Scalable benchmarking of
a continuous family of many-qubit gates,” Quantum 6, 657
(2022).

[13] Jahan Claes, Eleanor Rieffel, and Zhihui Wang, “Character ran-
domized benchmarking for non-multiplicity-free groups with
applications to subspace, leakage, and matchgate randomized
benchmarking,” PRX Quantum 2, 010351 (2021).

[14] David C McKay, Andrew W Cross, Christopher J Wood, and
Jay M Gambetta, “Correlated randomized benchmarking,”
arXiv:2003.02354 [quant-ph].

[15] Jonas Helsen, Ingo Roth, Emilio Onorati, Albert H Werner, and
Jens Eisert, “A general framework for randomized benchmark-
ing,” PRX Quantum 3, 020357 (2022).

[16] Alexis Morvan, VV Ramasesh, MS Blok, JM Kreikebaum,
K OBrien, L Chen, BK Mitchell, RK Naik, DI Santiago, and
I Siddiqi, “Qutrit randomized benchmarking,” Phys. Rev. Lett.
126, 210504 (2021).

[17] Timothy J Proctor, Arnaud Carignan-Dugas, Kenneth Rudinger,
Erik Nielsen, Robin Blume-Kohout, and Kevin Young, “Direct
randomized benchmarking for multiqubit devices,” Phys. Rev.
Lett. 123, 030503 (2019).

[18] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan
Babbush, Nan Ding, Zhang Jiang, Michael J Bremner, John M
Martinis, and Hartmut Neven, “Characterizing quantum
supremacy in near-term devices,” Nat. Phys. 14, 595 (2018).

[19] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon,
Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo,
Fernando GSL Brandao, David A Buell, et al., “Quantum
supremacy using a programmable superconducting processor,”
Nature 574, 505–510 (2019).

[20] Yunchao Liu, Matthew Otten, Roozbeh Bassirianjahromi,
Liang Jiang, and Bill Fefferman, “Benchmarking near-
term quantum computers via random circuit sampling,”
arXiv:2105.05232 [quant-ph].

[21] Andrew W Cross, Lev S Bishop, Sarah Sheldon, Paul D Na-
tion, and Jay M Gambetta, “Validating quantum computers
using randomized model circuits,” Phys. Rev. A 100, 032328
(2019).

[22] Erik Nielsen, John King Gamble, Kenneth Rudinger, Travis
Scholten, Kevin Young, and Robin Blume-Kohout, “Gate set
tomography,” Quantum 5, 557 (2021).

[23] Scott Aaronson and Daniel Gottesman, “Improved simulation
of stabilizer circuits,” Phys. Rev. A 70, 052328 (2004).

[24] Ketan N Patel, Igor L Markov, and John P Hayes, “Efficient
synthesis of linear reversible circuits,” Quantum Inf. Comput.
8, 282–294 (2008).

[25] Sergey Bravyi and Dmitri Maslov, “Hadamard-free circuits ex-
pose the structure of the clifford group,” IEEE Trans. Inf. The-
ory 67, 4546–4563 (2021).

[26] Nikodem Grzesiak, Andrii Maksymov, Pradeep Niroula, and
Yunseong Nam, “Efficient quantum programming using EASE
gates on a trapped-ion quantum computer,” Quantum 6, 634
(2022).

[27] David C McKay, Sarah Sheldon, John A Smolin, Jerry M Chow,
and Jay M Gambetta, “Three qubit randomized benchmarking,”
Phys. Rev. Lett. 122, 200502 (2019).

[28] Timothy Proctor, Kenneth Rudinger, Kevin Young, Erik
Nielsen, and Robin Blume-Kohout, “Measuring the capabili-
ties of quantum computers,” Nat. Phys. 18, 75–79 (2022).

[29] Robin Blume-Kohout and Kevin C Young, “A volumetric
framework for quantum computer benchmarks,” Quantum 4,
362 (2020).

[30] E Knill, “Quantum computing with realistically noisy devices,”

http://iopscience.iop.org/article/10.1088/1464-4266/7/10/021/meta
http://iopscience.iop.org/article/10.1088/1464-4266/7/10/021/meta
http://science.sciencemag.org/content/317/5846/1893
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.106.180504
https://journals.aps.org/pra/pdf/10.1103/PhysRevA.85.042311
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.77.012307
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.92.060302
http://www.nature.com/articles/npjqi201612
http://www.nature.com/articles/npjqi201612
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.97.062323
https://doi.org/10.22331/q-2018-08-22-85
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.109.080505
https://doi.org/10.1038/s41534-019-0182-7
https://doi.org/10.22331/q-2022-02-21-657
https://doi.org/10.22331/q-2022-02-21-657
https://doi.org/10.1103/PRXQuantum.2.010351
http://arxiv.org/abs/2003.02354
http://arxiv.org/abs/2003.02354
http://arxiv.org/abs/2003.02354
https://doi.org/10.1103/PRXQuantum.3.020357
https://doi.org/10.1103/PhysRevLett.126.210504
https://doi.org/10.1103/PhysRevLett.126.210504
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.030503
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.030503
https://www.nature.com/articles/s41567-018-0124-x
https://www.nature.com/articles/s41586-019-1666-5
http://arxiv.org/abs/2105.05232
http://arxiv.org/abs/2105.05232
http://arxiv.org/abs/2105.05232
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.032328
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.100.032328
https://doi.org/10.22331/q-2021-10-05-557
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.70.052328
https://arxiv.org/abs/quant-ph/0302002
https://arxiv.org/abs/quant-ph/0302002
https://doi.org/10.1109/TIT.2021.3081415
https://doi.org/10.1109/TIT.2021.3081415
https://doi.org/10.22331/q-2022-01-27-634
https://doi.org/10.22331/q-2022-01-27-634
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.200502
https://www.nature.com/articles/s41567-021-01409-7
https://doi.org/10.22331/q-2020-11-15-362
https://doi.org/10.22331/q-2020-11-15-362


6

Nature 434, 39–44 (2005).
[31] Joel J Wallman and Joseph Emerson, “Noise tailoring for scal-

able quantum computation via randomized compiling,” Phys.
Rev. A 94, 052325 (2016).

[32] Matthew Ware, Guilhem Ribeill, Diego Ristè, Colm A. Ryan,
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