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The rheology of biological tissue plays an important role in many processes, from organ forma-
tion to cancer invasion. Here, we use a multi-phase field model of motile cells to simulate active
microrheology within a tissue monolayer. When unperturbed, the tissue exhibits a transition be-
tween a solid-like state and a fluid-like state tuned by cell motility and deformability – the ratio of
the energetic costs of steric cell-cell repulsion and cell-edge tension. When perturbed, solid tissues
exhibit local yield-stress behavior, with a threshold force for the onset of motion of a probe particle
that vanishes upon approaching the solid-to-liquid transition. This onset of motion is qualitatively
different in the low and high deformability regimes. At high deformability, the tissue is amorphous
when solid, it responds compliantly to deformations, and the probe transition to motion is smooth.
At low deformability, the monolayer is more ordered translationally and stiffer, and the onset of mo-
tion appears discontinuous. Our results suggest that cellular or nanoparticle transport in different
types of tissues can be fundamentally different and point to ways in which it can be controlled.

The dynamics of cells in dense tissues is impor-
tant for understanding many biological processes, in-
cluding embryonic development [1], cancer metastasis
[2], and wound healing [3]. It underlies the epithelial-
mesenchymal transition observed in vivo [4–6], in which
stationary epithelial cells change to a more motile, mes-
enchymal phenotype. Experiments have also demon-
strated a transition from glassy, or solid-like, to liquid
dynamics in epithelial monolayers both in vitro [7–12]
and in vivo [7, 13]. Theoretical work on various models
of dense tissues, including multi-phase field [14], Voronoi
[15, 16], vertex [17–19], and cellular Potts models [20, 21],
has shown that this melting transition can be driven by
the interplay of cell surface tension, cell motility, and ac-
tive noise. An important question is whether the solid-
to-liquid transition has an impact in tissue function in
health and disease. Theory and experiments have begun
to address this issue by exploring the rheological and
mechanical properties of biological tissues, which have
key consequences to their macroscopic biophysical be-
havior [13, 22–31]. A mechanistic and quantitative un-
derstanding of the impact of cell surface tension and cell
motility on the rheology and transport properties of bio-
physical tissues is, however, still lacking.

To shed light on this aspect, we study the local re-
sponse of the tissue to the drag of an embedded col-
loidal probe. Constantly forced probes and oscillatory
active microrheology [32] have been used to study the
local material response in a wide variety of active and
passive systems, including colloidal suspensions [33–37],
biological tissues [23, 38], and active disks [39–41]. While
distinct from macrorheology that measures the material
response on macroscopic scales, the two methods often
yield qualitatively similar behavior when used to probe
the rheology of complex fluids [42]. Active microrheology
also provides a promising and nondestructive technique

for understanding how cells in dense tissues generate spa-
tially localized forces and transmit them to large scales.

Using a multi-phase field model [14, 43–50] of cells,
we show that solid-like tissues exhibit a finite threshold
for the onset of motion of an embedded probe pulled at
a constant force. In passive systems of rigid particles,
the existence of a finite threshold to probe motion cor-
relates with a yield stress at the macroscopic scale [38].
Although no macrorheology data are available for our
system, our finding suggests that our model tissue may
behave as a yield stress material even in the presence of
noisy cell motility [22, 51]. A finite yield stress has indeed
been reported in biological tissues [13] and in simulations
of sheared vertex models [28].

The onset of probe motion depends on cell deformabil-
ity, a measure of cell-edge tension. Near onset, velocity-
force curves become sharper for rigid monolayers, and
the probe’s instantaneous velocity behaves differently. At
high deformability, this velocity is sharply and evenly dis-
tributed around its mean as the probe smoothly squeezes
through compliant neighboring cells, resulting in small
local yield stress. At low deformability, the probe needs
to displace cells within its vicinity to move, resulting in
velocity distributions with fat tails and large local yield
stress. These differences correlate with the structural
topology of the solid-like state, which is near crystalline
for rigid cells, but glassy and defect-ridden for soft cells.
Model. We describe a tissue monolayer using a multi-

phase field model with N cells, each represented by a
scalar field φi(r). Phase field models incorporate cell
shape deformation (a measure of tissue fluidity [15, 17])
and allow for cell intercalation and density inhomo-
geneities, and they capture many properties of dense tis-
sue layers [45, 52, 53]. The free energy of the system is
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The first term sets φ0 = 2 and 0 in the interior and exte-
rior of each cell, respectively. The second term penalizes
gradients in the phase with a stiffness K. These two
terms determine the interfacial thickness ξ =

√
2K/α

and the cell-edge tension σ =
√

8Kα/9, which is in turn
controlled by cortex contractility and cell-cell adhesion.
The third term is a soft constraint on the cell area, with
the preferred area set to that of a circle of radius R = 12.
Finally, the fourth term models steric repulsion (ε = 0.1)
by penalizing cell overlap.

Cell dynamics is overdamped due to friction with the
substrate and is governed by the equation

∂φi
∂t

+ vi ·∇φi = − 1

γ

δF
δφi

, (2)

where γ = 10 is an inverse mobility. Cell motility en-
ters through advection by the cell self-propulsion veloc-
ity vi = v0(cos θi, sin θi). As in active Brownian particle
models, we assume that, in isolation, all cells move at the
same speed v0, while the direction of motion θi is random-
ized by noise at rate Dr, dθi(t) =

√
2Dr dWi(t), where

Wi(t) is a Wiener process and Dr = 10−4. This minimal
version of the model has been shown to capture the orga-
nization of epithelial monolayers [53]. We quantify cellu-
lar activity through the Péclet number Pe = v0/(RDr),
with v0/Dr the cells’ persistence length. Both v0 and
Dr can be mapped to physical values via mean squared
displacement (MSD) data of cells.

When cells interact, they may change their area (at
a cost λ), overlap (cost εξR), or deform their perime-
ter and shape (cost σR). We quantify cell deformabil-
ity via the dimensionless parameter d = εξR/(σR) and
vary it from 0.3 to 6.0 by changing σ for fixed ξ = 2.
The compressibility χ = λ/(εξR) characterizes the com-
petition between area changes and overlap and is fixed
to χ = 125/3, giving polydisperse systems without cell
overlap (physically corresponding to extrusion out of the
plane in a cell monolayer [14]). Further details of imple-
menting the model are discussed in the Supplementary
Materials (SM) and in [14].

We embed in the tissue a probe particle described by
a rigid phase field (d = 0.015, χ = 2500) of the same
size as the cells and subject to the same free energy, so
that it remains circular at all times. The probe is pulled
at a constant force F along the x axis, and we mea-

sure its velocity as vb(t) = xb(t+∆t)−xb(t)
∆t , with xb(t) the

instantaneous x position of the probe, over intervals of
∆t = 0.01D−1

r for a range of values of d and Pe.
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Figure 1. A typical velocity-force curve for a hard probe par-
ticle in a glassy tissue [(d,Pe) = (3.0, 0.1)] showing three dy-
namical regimes [from left to right: caging (brown), stick-slip
(green), and moving freely (purple)]. Upper inset: the rela-
tive strength of the velocity fluctuations decreases above the
critical force. Lower inset: a snapshot of the simulation setup.

We characterize the solid- or liquid-like state of the
system by studying the long-time behavior of cells’ MSD,
with MSD(t) ∼ tα (see SM). In the solid-like state the
cells behave subdiffusively (α < 1), whereas in the liquid-
like state they move diffusively (α = 1; Figs. S1 and S2).
Threshold force and local yield stress. In our solid-

like tissues, a finite threshold force Fc is required for the
probe to move at a non-zero velocity (Fig. 1). In colloidal
suspensions, the threshold force probed by microrheology
can be related quantitatively to the macroscopic yield
stress [42]. While the detailed form of such a relation has
not been established for the case of deformable particles,
this suggests that the behavior of Fc should be at least
qualitatively similar to that of the tissue yield stress.

A typical velocity-force curve for our rheological probe
is shown in Fig. 1. We identify three dynamical regimes.
At low forces, the probe rattles within its cage but is
unable to escape (light brown region). At greater forces
(green region), it deforms its neighbors strongly enough
to escape the cage but can be temporarily trapped in
new cages, resulting in stick-slip motion. As the force
increases further, the probe no longer spends any time
caged – its instantaneous velocity becomes finite at all
times, and the velocity-force curve turns almost linear.
We identify the threshold force Fc as that at which the
average long-time displacement of the bead’s position
∆xb = xb(200D−1

r ) − xb(20D−1
r ) equals R. The precise

choice of the cutoff, or a definition based on the long-time
exponent with which displacement grows with time, does
not affect the qualitative behavior of Fc as a function of
Pe and deformability (Figs. S3–S5). Below Fc, the probe
is either completely caged or engages in very rare stick-
slip motion. Just above Fc, it instead moves substantially
through the tissue, in frequent stick-slip or steady mo-
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Figure 2. Probe velocity vb versus applied force F from varying cell motility and deformability. (a) Velocity-force curves
at high deformability (d = 3.0) versus Pe. Inset: The threshold force Fc versus Pe. Circles denote a glassy state with a
subdiffusive MSD, whereas squares indicate a liquid system with a diffusive MSD. (b) Velocity-force curves at Pe = 0.1 for
various deformability (d = 0.3, 0.75, 1.5, 3.0, and 6.0). Inset: Fc versus d. All points correspond to the tissue being in a glassy
state. (c)–(f) Normalized histograms of vb for d = 3.0 and 0.3 for forces F just below and above Fc. The values above Fc are
chosen as close as possible to give comparable values of F/Fc.

tion. The strength of velocity fluctuations relative to the
mean decreases for F > Fc (Fig. 1, upper inset), which
is further evidence for a dynamical transition associated
with local yielding.

To examine the effect of activity, we vary Pe at fixed
deformability. The resulting velocity-force curves are
shown in Fig. 2(a) for highly deformable cells (d = 3.0).
Increasing activity leads to a smoother transition at the
onset of motion. This is qualitatively similar to the ther-
mal rounding observed in depinning phenomena [54], al-
though in our system the probe velocity is zero over a
finite range of applied forces for small Pe, indicating that
the threshold force Fc is non-zero even in the presence of
noise. Specifically, Fc and the associated local yield stress
decrease with Pe, but remain finite within the precision
of our simulations until Pe = 0.4 [Fig. 2(a), inset]. This
is also the point at which the tissue melts, as shown by
MSD data (Fig. S1), suggesting the existence of a finite
local yield stress can be used to characterize the global
solid-like or fluid-like state of the tissue.

To examine the effect of deformability, we fix Pe = 0.1
and vary d, such that the system remains solid-like for
all values of d considered (Fig. S2). Figs. 2(b) and S7
show that the onset of motion changes qualitatively de-
pending on cell-edge tension (or deformability). Tissues
composed of cells with low tension are highly compli-
ant and can adapt to the deformation induced by the
probe simply through cell-shape changes. This gives a
smooth, continuous onset of motion and low local yield
stress. In contrast, rigid cells that resist deformation re-
sult in a sharp, almost discontinuous onset of motion and
large local yield stress, as in this case the probe needs to
push aside its neighbors to start moving. The decrease

of threshold force with increasing deformability can be
understood by assuming that Fc ∼ keff, where keff is the
effective spring constant felt by a caged particle. A cal-
culation shows that keff ∼ 1/d (see SM), consistent with
data shown in the inset of Fig. 2(b). A more detailed
analysis may require considering many-body interactions,
as in foams [55]. The qualitative difference in the behav-
ior at low and high deformability becomes apparent when
plotting histograms of the probe’s instantaneous veloci-
ties, which are much broader and exhibit fatter tails for
low d, especially in the vicinity of Fc [Figs. 2(c)–(f) and
S8].
Deformation patterns close to the probe. As the probe

is dragged around the tissue, it can substantially deform
cells nearby. To quantify the extent of such deformations,
we consider the deformation tensor Si [45], where

Si,αβ = −
∫
d2r

[
(∂αφi)(∂βφi)−

δαβ
2

(∂γφi)
2

]
. (3)

This tensor has eigenvectors n̂ei and n̂ci with eigenvalues

si and −si, respectively, where si =
√
S2
i,xx + S2

i,xy gives

the magnitude of the deformation. n̂ei = (sinϕi,− cosϕi)
points along the axis of greatest elongation, whereas n̂ci =
(cosϕi, sinϕi) is along the axis of greatest compression,
and ϕi is the angle between n̂ci and the x axis [Fig. 3(a)].
Using this tensor, we measure the degree of deformation
of each cell in the direction from the probe by defining
the radial compression field

C(r) =
∑
i

siH(φi(r)− φ0/2) cos (2(αi − ϕi)) , (4)

where H is the Heaviside function and the field is
smoothed to interpolate values on cell boundaries. Here,
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Figure 3. Quantifying cell deformation around the probe.
(a) Schematics explaining the radial compression field C(r),
computed based on the alignment of the cell compression axis
n̂c

i with the vector ûi pointing from the center of the probe
(blue) to that of the cell (yellow). (b) Heatmap of C(r) for
d = 3.0, Pe = 0.1, and F = 0.93Fc, showing the axis of cell
elongation n̂e

i . (c) Profiles of C(r) along the probe’s center in
the x direction, i.e., 〈C(x, y = yb)〉, for d = 0.3 and 3.0 with
Pe = 0.1. (d) Absolute values of the minima and maxima of
〈C(x, y = yb)〉 versus F for parameters as in (c).

αi is defined by the vector ûi = (cosαi, sinαi) pointing
from the center of the probe to that of cell i. Positive or
negative values of C(r), respectively, signify local com-
pression or elongation along r. Fig. 3(b) shows a snap-
shot of C(r), indicating a buildup of compression along
x in front of the probe and a wake of elongation behind.
The latter is reminiscent of the density voids found in the
wake of a colloidal probe dragged through granular mate-
rials [56–62], suspensions of active hard spheres [40, 41],
colloidal suspensions [63–65], and foams [66].

Compression and elongation are largest at about one
cell length from the probe, independent of F [Fig. 3(c)],
and the magnitude of the deformation increases with d.
While compression remains roughly constant beyond Fc,
as the probe only requires enough of a compression to
escape its cage, the magnitude of elongation behind the
probe is non-monotonic with F [Fig. 3(d)]. This behav-
ior arises because elongation requires the probe to create
free space where the cells behind it can expand. When
the probe undergoes stick-slip motion, the large instan-
taneous forces create empty regions behind it. Instead,
when the probe moves freely, the cells behind it follow
the motion smoothly, hence their elongation decreases.
The maximum elongation is found just at Fc for the low
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Figure 4. Reduction in the number of disclinations Nd within
the system over time at different deformability d. (a) Example
time series of Nd for d = 0.3 and 3.0. Snapshots show the
Delaunay triangulation of the system at tDr = 0 and 200.
Five- and seven-fold disclinations are shown as blue and red
circles, respectively, and the probe particle marked in gray.
(b),(c) Time series showing the percentage change in Nd over
time at various F for (b) d = 0.3 and (c) d = 3.0.

d case, but further away for high d, consistent with the
former being a sharper transition, where the transitional
stick-slip regime is narrower.
Defect statistics and topological healing. To identify

the physical mechanisms underlying the behavior at dif-
ferent deformability, we analyze the topological structure
of cell center packing in the solid-like state. Fig. 4 and
Fig. S9 show that defects obtained by Delaunay triangu-
lation of the cell centers of mass are strikingly different
at different d. The system is more ordered for rigid than
for deformable cells, and defects are rarer in the former
case [S10(a) and (b)]. This is because at small d, cells try
to minimize their perimeter by forming hexagonal shapes
that can tile the plane regularly, whereas at high d, shape
changes lead to a wider repertoire of possible emerging
amorphous structures.

At all values of deformability, the probe’s motion heals
the system, reducing the number of defects over time
[Figs. 4(b) and (c) and S10(a)]. The timescales associated
with this topological healing, however, depend on de-
formability and are smaller for low d. Again, this points
to a sharper transition for rigid monolayers, and to a
more compliant response of softer ones. While the probe
heals the system locally, global healing can be achieved
by increasing activity [Figs. S10(c) and (d)]. The free
motion of the probe therefore acts as noise in the sys-
tem. The behavior is qualitatively similar to that of two-
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dimensional extended systems pinned by quenched disor-
der, where a uniform external drive first depins the sys-
tem, setting it into motion, and then heals it at large ap-
plied forces, restoring partial translational order [67, 68].

To conclude, we used simulations to probe the local
mechanics in model cell monolayers. We found that the
monolayer responds to local deformations like a yield-
stress material even in the presence of noisy cell motil-
ity. We also showed that there is a fundamental rela-
tionship between the nature of the local yielding transi-
tion and microscopic cell properties such as cell-edge ten-
sion, as captured here by deformability, and cell motil-
ity. In monolayers of rigid cells local yielding requires
cell displacement, resulting in a large threshold force.
In contrast, monolayers of soft cells are compliant and
yield locally through cell deformation [69], resulting in a
smaller threshold force. As the surface tension of cancer-
ous cells is thought to be larger than that of healthy tis-
sues, these results suggest that intratissue dynamics may
change significantly in disease, and it would be of inter-
est to test this prediction experimentally – e.g., modify-
ing σ by blebbistatin or cadherin knockouts. Our results
are also relevant to recent dynamical measurements in
Drosophila embryos based on embedding a probe inside
a cell [38], or ferroelectric droplets in between neighbor-
ing cells [13], which suggest that local probes can provide
quantitative information on local tissue rheology in vivo.

The work by A.H. and M.C.M. was supported by
the National Science Foundation Grant No. DMR-
1720256 (iSuperSeed) with additional support from
DMR-2041459. This research has received funding (B.L.)
from the European Research Council under the Euro-
pean Union’s Horizon 2020 research and innovation pro-
gramme (grant agreement No. 851196).

[1] M. Chuai, D. Hughes, and C. J. Weijer, Collective Ep-
ithelial and Mesenchymal Cell Migration During Gastru-
lation, Current Genomics 13, 267 (2012).

[2] A. Haeger, M. Krause, K. Wolf, and P. Friedl, Cell jam-
ming: Collective invasion of mesenchymal tumor cells im-
posed by tissue confinement, Biochimica et Biophysica
Acta - General Subjects 1840, 2386 (2014).

[3] M. Poujade, E. Grasland-Mongrain, A. Hertzog,
J. Jouanneau, P. Chavrier, B. Ladoux, A. Buguin, and
P. Silberzan, Collective migration of an epithelial mono-
layer in response to a model wound, Proceedings of the
National Academy of Sciences 104, 15988 (2007).

[4] J. P. Thiery, H. Acloque, R. Y. Huang, and M. A. Nieto,
Epithelial-Mesenchymal Transitions in Development and
Disease, Cell 139, 871 (2009).

[5] E. W. Thompson and D. F. Newgreen, Carcinoma inva-
sion and metastasis: A role for epithelial-mesenchymal
transition?, Cancer Research 65, 5991 (2005).

[6] J. A. Mitchel, A. Das, M. J. O’Sullivan, I. T. Stancil,
S. J. DeCamp, S. Koehler, O. H. Ocaña, J. P. Butler,
J. J. Fredberg, M. A. Nieto, D. Bi, and J. A. Park, In

primary airway epithelial cells, the unjamming transition
is distinct from the epithelial-to-mesenchymal transition,
Nature Communications 11, 5053 (2020).

[7] L. Atia, D. Bi, Y. Sharma, J. A. Mitchel, B. Gweon, S. A.
Koehler, S. J. Decamp, B. Lan, J. H. Kim, R. Hirsch,
A. F. Pegoraro, K. H. Lee, J. R. Starr, D. A. Weitz,
A. C. Martin, J. A. Park, J. P. Butler, and J. J. Fredberg,
Geometric constraints during epithelial jamming, Nature
Physics 14, 613 (2018).

[8] C. Malinverno, S. Corallino, F. Giavazzi, M. Bergert,
Q. Li, M. Leoni, A. Disanza, E. Frittoli, A. Oldani,
E. Martini, T. Lendenmann, G. Deflorian, G. V.
Beznoussenko, D. Poulikakos, K. H. Ong, M. Uroz,
X. Trepat, D. Parazzoli, P. Maiuri, W. Yu, A. Fer-
rari, R. Cerbino, and G. Scita, Endocytic reawakening of
motility in jammed epithelia, Nature Materials 16, 587
(2017).

[9] S. Garcia, E. Hannezo, J. Elgeti, J.-F. Joanny, P. Sil-
berzan, and N. S. Gov, Physics of active jamming during
collective cellular motion in a monolayer, Proceedings of
the National Academy of Sciences 112, 15314 (2015).

[10] J. A. Park, J. H. Kim, D. Bi, J. A. Mitchel, N. T.
Qazvini, K. Tantisira, C. Y. Park, M. McGill, S. H. Kim,
B. Gweon, J. Notbohm, R. Steward, S. Burger, S. H.
Randell, A. T. Kho, D. T. Tambe, C. Hardin, S. A. Shore,
E. Israel, D. A. Weitz, D. J. Tschumperlin, E. P. Henske,
S. T. Weiss, M. L. Manning, J. P. Butler, J. M. Drazen,
and J. J. Fredberg, Unjamming and cell shape in the
asthmatic airway epithelium, Nature Materials 14, 1040
(2015).

[11] K. D. Nnetu, M. Knorr, J. Käs, and M. Zink, The im-
pact of jamming on boundaries of collectively moving
weak-interacting cells, New Journal of Physics 14, 115012
(2012).

[12] T. E. Angelini, E. Hannezo, X. Trepat, M. Marquez, J. J.
Fredberg, and D. A. Weitz, Glass-like dynamics of collec-
tive cell migration, Proceedings of the National Academy
of Sciences 108, 4714 (2011).

[13] A. Mongera, P. Rowghanian, H. J. Gustafson, E. Shelton,
D. A. Kealhofer, E. K. Carn, F. Serwane, A. A. Lucio,
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