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We analyze the ground-state entanglement entropy of the extended Bose-Hubbard model with
infinite-range interactions. This model describes the low-energy dynamics of ultracold bosons tightly
bound to an optical lattice and dispersively coupled to a cavity mode. The competition between
onsite repulsion and global cavity-induced interactions leads to a rich phase diagram, which ex-
hibits superfluid, supersolid, and insulating (Mott and checkerboard) phases. We use a slave-boson
treatment of harmonic quantum fluctuations around the mean-field solution and calculate the en-
tanglement entropy across the phase transitions. At commensurate filling, the insulator-superfluid
transition is signalled by a singularity in the area-law scaling coefficient of the entanglement en-
tropy, that is similar to the one reported for the standard Bose-Hubbard model. Remarkably, at
the continuous Z2 superfluid-to-supersolid transition we find a critical logarithmic term, regardless
of the filling. This behavior originates from the appearance of a roton mode in the excitation and
entanglement spectrum, becoming gapless at the critical point, and it is characteristic of collective
models.

Introduction. Entanglement measures play a special
role in the low-temperature physics of quantum many-
body systems, as they probe the existence and struc-
ture of quantum correlations [1]. Different entanglement
measures have been discussed and applied to classify the
emerging states of quantum matter [1, 2]. Among them,
the entanglement entropy (EE) captures the presence of
bipartite entanglement in pure states: the scaling of the
EE of a connected subsystem with its size exhibits univer-
sal properties [3–5] probing e.g. the presence of conven-
tional long-range order [6], or of topological order [7, 8].
Singularities in the scaling behavior of the EE can mark
in a universal way quantum phase transitions separating
ordered from disordered phases [9–12].

FIG. 1. The Bose-Hubbard model with competing short and
global interactions can be realized with atoms tightly bound
by an optical lattice that coherently scatter laser photons (Ω)
into the mode of a high-finesse cavity [13]. (a) The picture
shows the geometry of the A / B bipartition considered in this
work. (b) Illustration of competing processes of the Hamilto-
nian: the nearest-neighbor tunneling (with amplitude t), the
onsite repulsion (U0), and the global density-density interac-
tions (ULR), which are here attractive.

In this work we focus on the von Neumann EE, S, for

a spatial bipartition A and B of an extended quantum
system:

S = −Tr{ρA log ρA} , (1)

where ρA = TrB{|Ψ0〉〈Ψ0|} is the density matrix obtained
by tracing out the degrees of freedom of subsystem B from
the ground state |Ψ0〉. Our purpose is to characterize
the scaling of S at continuous phase transitions resulting
from competing short- and global-range interactions.

In fact, the interaction range can give rise to very dif-
ferent features. For short-range interactions the domi-
nant scaling term of the EE is the so-called area-law term.
This term grows with the size of the boundary between
A and B. For a lattice of d dimensions and L lattice sites
along each spatial dimensions the total number of lattice
sites is N = Ld and the EE scale as Ld−1 for a connected
subsystem A [3]. The area-law scaling can be taken as
an indication that quantum correlations between A and
B involve primarily lattice sites close to the boundary
[14]; yet, for bosonic/spin systems in d > 1 dimensions
it persists even for ground states exhibiting critical or
long-range correlations associated with the spontaneous
breaking of a continuous symmetry [15–17]. In fact, crit-
icality may lead at most to a singularity in the coeffi-
cient of the area-law scaling [11, 14, 18, 19], while long-
range correlations lead to the appearance of a universal
subleading contribution to EE scaling. This contribu-
tion scales with the number of Goldstone modes NG as
(NG/2)(d− 1) logL [6]. In contrast, for long-range inter-
actions that decay with the inter-particle distance r as
1/rα with α < d, the geometric boundary between A and
B becomes unimportant [20–22]. For example, the area-
law scaling disappears in the Dicke [23] and the Lipkin-
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Meshkov-Glick (LMG) model [24–26]. Here, the ground
state belongs to a symmetric subspace whose dimension
grows linearly with N and the EE scales as log(N) at
the quantum critical point [9]. To our knowledge, the
scaling behavior of the EE is unexplored in the regime
where short and global interactions compete.

Extended Bose-Hubbard model. In this Letter we an-
alyze the scaling of the EE in the two-dimensional ex-
tended Bose-Hubbard model of cavity quantum electro-
dynamics [13, 27–29]– see Fig. 1 for a sketch. The Hamil-
tonian is the sum of the standard Bose-Hubbard Hamil-
tonian ĤBH [30] and the cavity-mediated long-range in-
teraction potential Ĥcav, namely, Ĥ = ĤBH+Ĥcav, with:

ĤBH = −t
∑
〈r,r′〉

b̂†r b̂r′ +
∑
r

[
U0

2
n̂r(n̂r − 1)− µn̂r

]
,(2)

Ĥcav = −ULR

N

[∑
r

(−1)rx+ry n̂r

]2
, (3)

where the parameters t, U0, and ULR are real and pos-
itive; b̂†r (b̂r) create (annihilate) a boson at the site

r = (rx, ry) of the square lattice; n̂r = b̂†r b̂r is the onsite
density, and 〈r, r′〉 indicates a pair of nearest neighbors.
In the following we assume periodic boundary conditions.

Theoretical studies of the phase diagram of the Hamil-
tonian Ĥ [28, 29, 31–35] reproduce the experimental re-
sults of Ref. [13] for a cavity wavelength which is twice the
periodicity of the optical lattice. This ground-state phase
diagram features a rich palette of phases: The nearest-
neighbor hopping with amplitude t favors the onset of
superfluidity (SF) while the onsite repulsion, with am-
plitude U0, stabilizes a Mott insulator (MI) at commen-
surate filling. Global interactions, with amplitude ULR,
induce a density modulation which supports scattering
of photons into the cavity field. The density modulation
can result either in a charge density-wave (CDW) insula-
tor, at integer or half-integer filling; or a supersolid (SS)
phase, when it also exhibits superfluidity. Experimen-
tally, the condensate fraction is revealed by time-of-flight
measurements, while the onset of diagonal long-range or-
der leads to the emission of coherent light at the cavity
output [13, 36].

The phase diagram is theoretically determined in the
grand-canonical ensemble via the Gutzwiller mean-field
(MF) approach [35]. The ground state is written in
the spatially factorized form |Ψ0,MF〉 = ⊗r|ψr,0〉 with

|ψr,0〉 =
∑nmax

n=0 f
(0)
r,n|n〉r, where |n〉r are the single-

site Fock states and nmax is a cut-off, chosen to be
nmax = 6 throughout this work, and leading to negli-
gible truncation errors. The single-particle state |ψr,0〉
is the ground state of the effective single-site Hamilto-
nian ĤMF

r , and it is determined self-consistently. Here,

ĤMF
r = −ztϕ̄r(b̂r + b̂†r − ϕr) + U0

2 n̂r(n̂r − 1) − µn̂r −
ULRΘ(−1)rx+ry n̂r + NULRΘ2/4 where z is the lattice
coordination number (z = 4) [35]. Superfluidity is sig-

FIG. 2. (color online) Color plot of the half-system EE S (1)
(see the partition in Fig. 1(a)) for (a) ULR/U0 = 0.3 and (b)
ULR/U0 = 0.6 as function of the tunneling t and the chemical
potential µ in units of U0 for a L × L square lattice with
L = 40. The non-analyticities of S coincide with the phase
transition lines predicted by mean-field theory (not indicated
here). The lower panels show S/L as function of t/U0 (c) at
fixed density ρ for ULR = 0.3U0; and (d) at fixed chemical
potential µ/U0 for ULR = 0.6U0. Here the system the size is
L = 60.

nalled by a non-vanishing value of the order parame-
ter ϕ̄r =

∑
r′ ϕr′/z, where ϕr = 〈b̂r〉 and the sum

runs over the nearest neighbors r′ of r. The onset of
a density modulation is revealed by the order param-
eter Θ = 2〈

∑
r(−1)rx+ry n̂r〉/N . The upper panels of

Fig. 2 display the phase diagram as a function of the ra-
tios t/U0 and µ/U0, the color scale gives the value of the
EE, whose determination is discussed below. The sub-
plots are evaluated for two values of the global poten-
tial ULR, chosen (a) below and (b) above the threshold
U th
LR = U0/2, at which the MI phase becomes unstable.

The non-analyticities of the EE coincide with the mean-
field phase boundaries of Ref. [35].

The phase diagram features first-order phase transi-
tions and three main types of continuous quantum phase
transitions [28, 34, 35]: (type 1) A commensurate O(2)
phase transition, separating either the MI from the SF at
fixed integer density ρ, or the CDW from the SS at fixed
integer density and at half filling. This transition occurs
at the tip of the corresponding (MI or CDW) lobe; (type
2) A generic transition separating MI from SF and CDW
from SS at incommensurate densities. This appears ev-
erywhere along the borders separating either MI/SF or
CDW/SS, except for the lobe tips; (type 3) A continuous
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Z2 transition between the SS and the SF phase. Some of
these phase transitions change in fact from continuous to
first-order as the t/U0 and µ/U0 ratios are tuned across
the phase diagram. This is the case at the CDW/SS and
SS/SF for small t/U0, and at the SS/SF transition for
µ/U0 & 0.25 [see Fig. 2(b)]. We note that phase tran-
sitions changing from continuous to discontinuous as a
function of the control fields (or the temperature) have
also been reported for spin systems with competing short
and long-range interactions [20, 37].

Slave-boson approach. We determine the entanglement
properties in this rich phase diagram by including quan-
tum correlations which are not captured by the MF ap-
proximation. For this purpose we make use of a slave-
boson approach [11, 38], which we outline below and
detail in the Supplemental Material (SM [39]). Such
an approach consists of using the full basis {|ψr,α〉} of
eigenstates of HMF

r (α = 0, ..., nmax), and of defining
associated slave-boson operators γ̂r,α, γ̂

†
r,α. These op-

erators fulfill the hardcore constraint
∑
α γ̂
†
r,αγ̂r,α = 1

and are used to rewrite the original bosonic operators

b̂r =
∑
αβ

∑
n

√
n f

(α)
r,n−1f

(β)
r,n γ̂†r,αγ̂r,β in Ĥ. Within this

formalism, the MF approximation corresponds to the
condensation hypothesis of the ground-state slave bosons,
γ̂r,0, γ̂

†
r,0 = 1 and 〈γ̂†r,α>0γ̂r,α>0〉 = 0. The next level

of approximation is to retain a finite population for the
α > 0 bosons, and truncate the full quartic Hamilto-
nian Ĥ to quadratic order in the γ̂r,α>0, γ̂

†
r,α>0 operators,

by assuming that 〈γ̂†r,α>0γ̂r,α>0〉 � 1 and γ̂r,0, γ̂
†
r,0 ≈(

1−
∑
α>0 γ̂

†
r,αγ̂r,α

)1/2
. The resulting Hamiltonian then

reads Ĥ ≈ 〈Ψ0,MF|Ĥ|Ψ0,MF〉 + Ĥ(2) where Ĥ(2) is

a quadratic form in the γ̂r,α>0, γ̂
†
r,α>0 operators [39].

A Bogolyubov diagonalization of Ĥ(2) reconstructs the
quasi-particle spectrum ωk,p (where p is a mode index,
p = 1, ..., nmax), and it allows us to calculate the co-
variance matrix for subsystem A, CA = [Cr,r′ ]r,r′∈A,

where Cr,r′ = 〈Ψ0|(γ̂r, γ̂†r)T (γ̂†r′ , γ̂r′)|Ψ0〉 with γ̂r =
(γ̂r,1, γ̂r,2, . . .). For the remainder of this work, A will
be the L/2× L rectangle obtained by cutting the L× L
square lattice along the y coordinate axis. The matrix
CA contains all the information on the Gaussian reduced
density matrix ρ̂A = e−ĤA for subsystem A. Operator
ĤA is the so-called entanglement Hamiltonian, and it is
a quadratic form in the γ̂r,α>0, γ̂

†
r,α>0. By means of a

Bogolyubov transformation ĤA becomes diagonal

ĤA =
∑
ky,m

λky,md̂
†
ky,m

d̂ky,m , (4)

where d̂ky,m, d̂
†
ky,m

are bosonic operators, λky,m repre-

sents the so-called (one-particle) entanglement spectrum,
and we dropped a constant term. The entanglement spec-
trum is labeled by the wavevector ky along the cut and
by a further mode index m associated with the motion

perpendicular to the cut. The EE S corresponds then to
the entropy of a gas of free bosons whose dispersion rela-
tion is the entanglement spectrum: S =

∑
ky,m

s(nky,m)

where s(x) = (1 + x) log(1 + x) − x log x and nky,m =
[exp(λky,m)− 1]−1 is the Bose distribution.
Entanglement phase diagram. Figures 2(a) and (b) dis-

play S in false colors throughout the phase diagrams.
Remarkably, the EE exhibits characteristic signatures
at all quantum phase transitions. In Fig. 2(c) we re-
port representative cuts at fixed density ρ = 1/2 and
ρ = 1 for ULR/U0 = 0.3. These cuts show the exis-
tence of a sharp cusp singularity at the O(2) MI/SF and
CDW/SS transition (type 1). This singularity is asso-
ciated with the appearance of a Higgs-like mode in the
entanglement spectrum becoming gapless at the transi-
tion, and reflecting the softening of the Higgs mode in
the quasi-particle spectrum [40]. The vanishing of the
gap of the Higgs-like mode gives a singular contribution
to the dominant, area-law scaling term. This behavior
was reported in Ref. [11] for the MI/SF transition in the
standard Bose-Hubbard model; and it also characterizes
the CDW/SS transition, see SM [39]. For the continuous
generic MI/SF and CDW/SS transition (type 2), occur-
ring away from the lobe tips in Fig. 2(a) and (b), the EE
singularity turns into a rounded maximum, similarly to
the behavior of the standard Bose-Hubbard model [11].
In the extended Bose-Hubbard model, therefore, the crit-
ical behavior of entanglement at these phase transitions
(type 1 and type 2) is due to the competition between
hopping and contact short-range interactions. The sin-
gularity of entanglement entropy for a transition of type
1 has been analyzed in Ref. [11].

On the contrary, the long-range interactions play a cru-
cial role for the continuous Z2 SS/SF transition (type 3)
and its entanglement properties, as we argue below. We
generally observe a smaller cusp-like singularity of the EE
at this transition. This is visible in the transition at fixed
chemical potential (µ = 0) in Fig. 2(d) as well as in the
transition at constant density (ρ = 1/2) in Fig. 2(c). In
fact, the cusp singularity marks the entire SS/SF bound-
ary whenever the corresponding transition is continuous.
This cusp behavior can be well distinguished from the
singularity at the MI/SF and CDW/SS transitions and
originates from a singularity in the log-correction of the
EE, as we shall explain later. The robustness of this sin-
gularity in the EE makes the SS/SF transition stand out
with respect to the MI/SF and the CDW/SS transitions
of the same model and it represents our most important
finding. Finally, when the transitions are first order, the
EE becomes discontinuous. This is visible in Fig. 2(d) for
the CDW/SS and the SS/SF transition at the constant
value of the chemical potential µ = 0.4U0.

Entanglement singularity from the roton mode. To un-
derstand the origin of the cusp singularity at the SS/SF
transition, it is useful to analyze the behavior of the ex-
citation spectrum at the SS/SF transition. The spec-



4

FIG. 3. (a) The roton-mode frequencies λrot = λπ,m̄ (m̄
being the index of roton-like mode) and ωrot in the entan-
glement and physical spectrum (respectively) as function of
4t/U0 across the SS-SF phase transition. Both frequencies
vanish at the SS-SF transition. (b) Entanglement spectrum
for 4t = 0.55U0, ULR = 0.6U0, µ = −0.05U0 and L = 60 as
function of ky. The roton mode in the entanglement spectrum
is highlighted by the red cross.

trum exhibits a vanishing gap throughout the SF and SS
phase, namely the Goldstone mode related to the break-
ing of the U(1) symmetry. Moreover, it is characterized
by the critical softening of the roton frequency ωrot at
wavevector krot = (π, π) [28], which is the precursor of
diagonal long-range order. The roton gap is displayed
in Fig. 3(a) as a function of t/U0. After closing at
the SS/SF transition it reopens in the SS phase: this is
a consequence of elementary excitations of a Z2 crystal
having a finite, non-vanishing gap just like in the CDW
phase. The spectrum has a characteristic dispersionless
and gapped structure in the vicinity of the critical roton
mode at krot, reflecting the fact that the Fourier spec-
trum of the global interaction potential is a δ-function at
this wavevector. Correspondingly, in the entanglement
spectrum [Fig. 3(b)] a (boundary) roton-like mode, be-
comes gapless only at the SS/SF transition, and only for
the frequency λrot. This means that the EE acquires the
critical roton contribution Srot = s(nrot) ≈ − log λrot as
λrot → 0.

The scaling of the critical roton contribution with sys-
tem size L depends then on how the roton entanglement
frequency λrot vanishes upon increasing L. This shall
be handled with particular care. In fact, diagonalization
of the quadratic Hamiltonian Ĥ(2) leads to the unphysi-
cal result that the frequency ωrot vanishes for any finite
system size at the SS/SF transition (and so does the fre-
quency λrot of the entanglement spectrum). This is a
common problem to the treatment of harmonic quantum
fluctuations around a symmetry-breaking mean-field so-
lution. In order to have meaningful finite-size results, we
implement a regularization scheme by applying a size-
dependent field. This field couples to the order parame-
ter and introduces a finite gap both in the excitation as

FIG. 4. The half-system EE as function of the tunneling rate
t in units of U0 across the transition from SS-SF, for ULR =
0.6U0 and constant µ = −0.05U0. (b) Scaling of the S/L
values at the maximum (“o” symbols); for 4t/U0 = 0.56 (“x”
symbols); and for 4t/U0 = 0.53 (“+” symbols) for different
L. The coefficients A and B are obtained by fitting Eq. (5)
to S vs L and are given in the table. For all the data in this
figure the scaling exponent of the regularizing field h(L) has
been chosen as κ = 4.

well as in the entanglement spectrum [41] [42]. For the
Z2 critical point with infinite-range interactions, we add
a term −h(L)

∑
r(−1)rnr with h(L) ∼ L−κ. This choice

is such that the gap introduced in the “zero-modes” mim-
ics the scaling of the excitation gap at the transition
ωrot ∼ L−z, with z the dynamical critical exponent. The
size-dependent field h(L) also introduces a finite size scal-
ing for the entanglement frequency λrot ∼ L−ζ . The de-
termination of the scaling exponent κ reproducing the
correct z exponent goes beyond the scope of our work.
Yet, even though different power-law scalings of the ap-
plied field lead to different scalings λrot ∼ L−ζ(κ) for the
roton mode, all choices result in a singular logarithmic
correction to the area law of the form Srot ' ζ logL.
Scaling of the EE. We perform a scaling analysis of the

half-system EE using the fitting function

S = AL+B logL+ C. (5)

Figure 4 clearly shows that the spike in the EE at the
transition is due to a spike in the fittedB coefficient. This
spike appears on top of the value B ≈ NG(d−1)/2 = 1/2
related to the contribution of the Goldstone mode, and
is consistent with the singular logarithmic contribution
to the EE coming from the roton mode. This is revealed
by plotting S/L vs. L: the curves at the critical point
or away from it tend to a similar A value – the area-
law scaling term – but are offset sharply by the spike in
the subleading term B logL/L. It is interesting to frame
this result in the broader context of quantum phase tran-
sitions in models with global interactions [9]. In the SM
[39] we show that a slave-boson treatment of the LMG
model recovers exactly the logN scaling behavior of the
EE at the critical point. We relate this behavior quanti-
tatively to the appearance of an isolated vanishing mode
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λmin in an otherwise nearly dispersionless entanglement
spectrum.

Conclusions. We have shown that the entanglement
entropy (EE) sheds light onto the role of the interaction
range at the quantum phase transitions of the extended
Bose-Hubbard model of cavity quantum electrodynam-
ics (CQED). The continuous phase transitions separating
the insulating from the superfluid phases exhibit a singu-
larity in the coefficient of the area-law scaling of the EE,
as in the short-range Bose-Hubbard model. Remarkably,
at the continuous Z2 superfluid/supersolid transition, the
EE’s behavior is is accompanied by a critical logarith-
mic scaling term of the EE, originating from the singular
vanishing of the roton gap. The behavior of a vanishing
gap in a dispersionless roton mode is similar to the one
reported at the quantum phase transition of collective
spin models and is determined by the global-range poten-
tial. This analysis can be extended to characterize quan-
tum phase transitions of driven-dissipative CQED mod-
els [43–45]. The perspective of studying cavity-induced
correlations in quantum gas microscopes [46] opens the
possibility of measuring EE via the replica [47] or the
random-measurement approach [48] and it suggests that
our predictions could be accessible to future experiments.
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Frérot, Lukas Himbert, and Astrid Elisabeth Niederle
for discussions and helpful comments. This work has
been supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) via the priority
program No. 1929 “GiRyd” and the CRC-TRR 306
“QuCoLiMa”, Project-ID No. 429529648, and by the
German Ministry of Education and Research (BMBF)
via the QuantERA project NAQUAS. Project NAQUAS
has received funding from the QuantERA ERA-NET Co-
fund in Quantum Technologies implemented within the
European Union’s Horizon 2020 program. SBJ acknowl-
edges support from the NSF Q-SEnSE Grant No. OMA
2016244; NSF PFC Grant No. 1734006. TR acknowl-
edges support from ANR (EELS project) and QuantERA
(MAQS project).

∗ Equal contribution
[1] L. Amico, R. Fazio, A. Osterloh, and V. Vedral, Rev.

Mod. Phys. 80, 517 (2008).
[2] R. Horodecki, P. Horodecki, M. Horodecki, and

K. Horodecki, Rev. Mod. Phys. 81, 865 (2009).
[3] J. Eisert, M. Cramer, and M. B. Plenio, Rev. Mod. Phys.

82, 277 (2010).
[4] M. B. Plenio, J. Eisert, J. Dreißig, and M. Cramer, Phys.

Rev. Lett. 94, 060503 (2005).
[5] M. Cramer, J. Eisert, and M. B. Plenio, Phys. Rev. Lett.

98, 220603 (2007).
[6] M. A. Metlitski and T. Grover, arXiv:1112.5166 (2011).
[7] M. Levin and X.-G. Wen, Phys. Rev. Lett. 96, 110405

(2006).

[8] A. Kitaev and J. Preskill, Phys. Rev. Lett. 96, 110404
(2006).

[9] J. Vidal, S. Dusuel, and T. Barthel, Journal of Statis-
tical Mechanics: Theory and Experiment 2007, P01015
(2007).

[10] P. Calabrese and J. Cardy, Journal of Physics A: Math-
ematical and Theoretical 42, 504005 (2009).
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M. H. Szymańska, PRX Quantum 2, 010319 (2021).
[46] C. Gross and W. S. Bakr, Nature Physics 17, 1316 (2021).
[47] R. Islam, R. Ma, P. M. Preiss, M. Eric Tai, A. Lukin,

M. Rispoli, and M. Greiner, Nature 528, 77 (2015).
[48] T. Brydges, A. Elben, P. Jurcevic, B. Vermersch,

C. Maier, B. P. Lanyon, P. Zoller, R. Blatt, and C. F.
Roos, Science 364, 260 (2019).

[49] J. Blaizot and G. Ripka,
Quantum Theory of Finite Systems (The MIT Press,
Cambridge, MA, 1986).

[50] H. F. Song, S. Rachel, and K. Le Hur, Phys. Rev. B 82,
012405 (2010).

http://dx.doi.org/10.1103/PhysRevB.75.085106
http://dx.doi.org/10.1103/PhysRevB.92.115129
http://dx.doi.org/10.1103/PhysRevB.92.115129
http://dx.doi.org/10.1103/PhysRevLett.123.053601
http://dx.doi.org/ 10.1103/PhysRevResearch.4.013089
http://dx.doi.org/ 10.1103/PhysRevResearch.4.013089
http://dx.doi.org/10.1103/PRXQuantum.2.010319
http://dx.doi.org/10.1038/s41567-021-01370-5
http://dx.doi.org/10.1038/nature15750
http://dx.doi.org/10.1126/science.aau4963
http://dx.doi.org/10.1103/PhysRevB.82.012405
http://dx.doi.org/10.1103/PhysRevB.82.012405

	Quantum critical behavior of entanglement in lattice bosons with cavity-mediated long-range interactions
	Abstract
	Acknowledgments
	References


