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Persistent oscillatory dynamics in non-equilibrium many-body systems is a tantalizing manifesta-
tion of ergodicity breakdown that continues to attract much attention. Recent works have focused
on two classes of such systems: discrete time crystals and quantum many-body scars (QMBS).
While both systems host oscillatory dynamics, its origin is expected to be fundamentally different:
discrete time crystal is a phase of matter which spontaneously breaks the Z2 symmetry of the exter-
nal periodic drive, while QMBS span a subspace of non-thermalizing eigenstates forming an su(2)
algebra representation. Here we ask a basic question: is there a physical system that allows to tune
between these two dynamical phenomena? In contrast to much previous work, we investigate the
possibility of a continuous time crystal (CTC) in undriven, energy-conserving systems exhibiting
prethermalization. We introduce a long-range XYZ spin model and show that it encompasses both a
CTC phase as well as QMBS. We map out the dynamical phase diagram using numerical simulations
based on exact diagonalization and time-dependent variational principle in the thermodynamic limit.
We identify a regime where QMBS and CTC order co-exist, and we discuss experimental protocols
that reveal their similarities as well as key differences.

Introduction.— The basic tenet of thermodynamics
is that when a substance contains many constituents, its
macroscopic behavior can be efficiently described by just
a few variables such as pressure, volume, and tempera-
ture. Microscopic details typically only enter through the
mechanism of dissipation, which accounts for the energy
transfer from the large to the microscopic scale (heat-
ing). Generally, the higher the temperature the faster the
relaxation of any non-generic state that possesses some
ordering, such as magnetization, unless the latter is ex-
plicitly conserved by the system’s Hamiltonian.

It therefore came as a surprise when Rydberg atom
experiments [1] revealed long-lived oscillations of an or-
der parameter in a very high energy density initial state.
The oscillations were subsequently understood to be due
to quantum many-body scars (QMBSs): a dynamically-
decoupled subspace, spanned by non-thermalizing many-
body eigenstates, which are not protected by any sym-
metry [2, 3]. This system evades rapid relaxation due to
the fact QMBS eigenstates form “towers” with (nearly)
equidistant energy spacing. Superpositions of tower
states undergo periodic evolution, therefore avoiding the
dephasing that afflicts generic states. These QMBS tow-
ers can be understood semiclassically [4–8], based on an
analogy with quantum scars of a single particle in a sta-
dium billiard [9]. Importantly, this behavior was shown
to occur also in higher dimensions [10–12] and in the pres-
ence of certain kinds of perturbations [13–15] including
disorder [16]. More generally, QMBS subspaces are now
understood to originate from a (restricted) spectrum gen-
erating algebra (RSGA) [17–19], which has been shown to
arise in a number of non-integrable lattice models [17, 20–
29]. As the system remains non-integrable, these systems
represent a weak violation of the Eigenstate Thermaliza-
tion Hypothesis (ETH) [30, 31].

A seemingly distinct way of evading the ETH is the
formation of a continuous time crystal (CTC) [32]. In
the CTC phase, the system is in a prethermal state
that corresponds to a near-ground state in the rotating
frame, while being at a very high energy-density in the
lab frame [33]. Being at a low temperature in the ro-
tating frame, the system has the possibility to develop
an order parameter, spontaneously breaking a symmetry
which may be unique to the rotating frame. Eventually,
the system is expected to fully thermalize; however, if
both the pretermalization time scale and the thermal-
ization time scale (corresponding to full equilibration in
the lab frame) increase with the system size, the result
would be a long-lived, quasistatic ordering in the rotat-
ing frame, manifesting as a “rotating” order parameter
in the lab frame.

In this paper we address the question: are CTC and
QMBS distinct mechanisms of ETH breaking? The two
a priori appear different: QMBSs reveal themselves for
very special initial states, while CTC, being a phase
of matter, is supposed to be characterized by an order
parameter, with the same order parameter configura-
tion (defined down to physically small but microscopi-
cally large volume) possibly originating from very dif-
ferent microscopic states. Nevertheless, one might won-
der if underlying the CTC there are scar-like towers of
states that violate the ETH. Below we introduce a long-
range XYZ spin model, experimentally motivated by sys-
tems of trapped ions and polar molecules, which real-
izes both QMBS as well as CTC route for evading the
ETH. For sufficiently long-range interactions, our simu-
lations using infinite matrix product state methods re-
veal signatures of spontaneous symmetry breaking in the
thermodynamic limit and the formation of CTC. For
weakly anisotropic couplings and irrespective of interac-
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FIG. 1. Schematic summary of the dynamical phase diagram
of the model in Eq. (1) as a function of U(1) symmetry break-
ing JU(1), SU(2) symmetry breaking JSU(2) and interaction
range α. Within the prethermal regime (yellow), CTC phase
emerges for small α and small JU(1) (green). QMBS (red)
are independent of α but require small JSU(2). The solvable
Lipkin-Meshkov-Glick (LMG) limit (α=0) is shown in grey.

tion range, we demonstrate the existence of QMBS. The
phase diagram shows that even though there are regimes
where CTC and QMBS co-exist, these are two distinct
phenomena. Finally, we discuss experimental protocols
that can distinguish between them.

The model and its phase diagram.— Recent ex-
periments [34–39] have realized discrete time crystals
(DTC), which dynamically break the Z2 Ising symme-
try of the Floquet drive [40–44] (for recent reviews of
DTCs, see Refs. [45–47]). By contrast, here we consider a
disorder-free, undriven XYZ spin model, with anisotropic
long-range couplings and in the magnetic field along the
z-axis, given by the Hamiltonian:

H =
1

N
∑
i>j

∑
ν=x,y,z

Jν
|i− j|α

σνi σ
ν
j + hz

∑
i

σzi , (1)

where σνi are the standard Pauli matrices on site i, and
α controls the power-law decay of the interactions. We
assume a 1D chain with open boundary conditions and
divide the interaction couplings Jν with the Kac norm,
N [48], which ensures the energy density is intensive.

Before presenting detailed numerical results on the
model in Eq. (1), we give their summary in Fig. 1.
The dynamical phase diagram is a function of α and
two symmetry-breaking parameters: the anisotropy that
leads to U(1) symmetry breaking, JU(1)≡|Jx − Jy|,
and SU(2) symmetry breaking in the rotating frame,
JSU(2)≡|(Jx + Jy)/2 − Jz|. The field hz is assumed to
be fixed to some large value, hz � Jν , and the remaining
dependence on Jν and α is sketched. We discuss four
main regions of this phase diagram, labelled in Fig. 1.

(i) The static prethermal theorem [33] shows that a
Hamiltonian of the form H = H0+hzZ, with Z =

∑
j σ

z
j

possessing an integer spectrum, in the limit of large hz,

can be brought into a form D+V+hzZ through a se-
ries of unitary rotations, where D commutes with Z
and V is an exponentially small correction in hz. Thus,
for exponentially long times in hz, the dynamics of our
model is governed by an effective prethermal Hamiltonian
Heff = D+hzZ, which has a U(1) symmetry generated
by Z. In [48] we explicitly perform the unitary rotation
to first order, finding that the correction terms in V con-
tain α via a power-law dependence similar to the orig-
inal Hamiltonian, with the overall prefactors J2

U(1)/hz,

JU(1)JSU(2)/hz. It follows that the prethermal phase is
robust, provided JU(1), JSU(2) � hz. Moreover, for fixed
hz, numerical scans point to weak dependence of the
prethermal phase on α [48]. Moreover, at first order in
1/hz, it follows that the prethermal phase has a stronger
dependence on JU(1) than on JSU(2). Thus, the prether-
mal region of the phase diagram roughly takes the shape
of an elliptic cylinder, sketched in Fig. 1.

(ii) The CTC phase must be a subset of the prethermal
region where the emergent U(1) symmetry of the effec-
tive Hamiltonian is spontaneously broken. Due to the
Mermin-Wagner theorem, in 1D this can only happen if
the interactions are sufficiently long-ranged [49, 50]. Con-
sistent with this, we observe a transition when α∼2.5
from a trivial U(1)-preserving phase to a CTC phase.
Thus, we expect the prethermal CTC phase to exists
within the bounded cylindrical region depicted in Fig. 1.

(iii) The robustness of QMBS is determined by how
well the interactions approximately preserve a single
tower of Z eigenstates, which is solely dependent on the
model’s proximity to the isotropic point, Jx=Jy=Jz. At
this point the model possesses SU(2) symmetry irrespec-
tive of α, hence the QMBS region has no α-dependence
and it is bounded by two planes perpendicular to the
JSU(2) axis. The boundary is sharp as the QMBS behav-
ior diminishes exponentially with JSU(2) [48].

(iv) Finally, the limit α=0 limit is a fully connected
Lipkin-Meshkov-Glick (LMG) model [51, 52], which can
be described by only a few collective variables if ini-
tial states satisfy permutation symmetry [53–55]. The
paramagnetic state (Jν�|hz|) can be identified with a
CTC (Ref. [47] used a term “mean-field time crystal”
to distinguish this special type of CTC). In the Ising
limit, the thermalization time is estimated as τth∼Nβ/d,
where β= min(d−α, (1+d)/2) [56]. Thus for d=1 and
α<1/2, thermalization time (∼N1−α) is much longer
than prethermalization or order parameter melting time,
∼N1/2 [57, 58], both diverging with system size.

Numerical evidence for CTC.— For large hz, suf-
ficiently long-range interactions (α > d=1) and low tem-
peratures, Fig. 2 shows that a prethermal CTC phase
emerges in the model given by Eq. (1). Provided hz is
sufficiently large, the dynamics is described – up to a
timescale exponential in hz/JU(1) – by an effective Hamil-
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FIG. 2. Signatures of a continuous time crystal. (a) Expectation value of the prethermal Hamiltonian, Eq. (2), in the
time evolved state. The quantity is normalized by its value at time t=0. (b) Order parameter 〈σ+(t)〉 defined in the text.
(c) Entanglement entropy SE(t). All plots are for the infinite long-range XYZ model in Eq. (1) with α = 1.13, Jx= − 0.4,
Jy= − 2.0, Jz= − 1. The value of the field hz is indicated in panels (a), (b), (c), while hz=1 in panels (d), (e) and (f). The
initial state is given by Eq. (3) with φ=0 in (a), (b), (c), and φ = {0, π/6, π/4, π/3, π/2} in panels (d), (e) and (f). Dashed
lines in (f) denote the average magnetization cos(φ)/2 after the rapid initial relaxation.

tonian Heff = D + hz
∑
i σ

z
i where D is given by [32]

D =
∑
j>i

1

2
(Jx + Jy)

(
σxi σ

x
j

|i− j|α
+

σyi σ
y
j

|i− j|α

)
+ Jz

σzi σ
z
j

|i− j|α
.

(2)
This effective Hamiltonian has an emergent U(1) symme-
try which is spontaneously broken at low (effective) tem-
peratures for long-range interactions (α.2.5) [50]. To
avoid the challenges of observing spontaneous symmetry
breaking in finite volume, in Fig. 2 we use time-dependent
variational principle (TDVP) for infinite matrix product
states [59] to directly study the properties of the sys-
tem in the thermodynamic limit. The power-law inter-
actions in Eq. (1) were approximated as a sum of expo-
nential functions and we used bond dimension χ = 128
and timestep δt = 0.025 (see [48] for further details).

We restrict to states with a 2-site unit cell,

|ψ(0)〉 =
⊗
i

|+〉2i−1 (cosφ |+〉2i + i sinφ |−〉2i) , (3)

where φ=0 corresponds to spins polarized along the x-
axis. The CTC order parameter is defined as 〈σ+〉 ≡
(1/2)

∑
i=1,2 |〈σ

+
i 〉|, i.e., we average the absolute expec-

tation value of σ+≡(σx + iσy)/2 over the sites in the
unit cell. This is because, for our initial state, 〈σ+

2i−1〉 =

1/2 and 〈σ+
2i〉 = exp(−i2φ)/2, thus taking the absolute

value allows to detect the loss of magnetization due to
U(1) symmetry breaking, rather than phase cancellations
within the unit-cell due to the choice of the initial state.
We confirm that for α.2.5 the order parameter 〈σ+〉 ac-
quires a finite expectation value in the ground state of
D. The local hz field drives rotations in the xy-plane,
causing the order parameter to oscillate periodically –
the anticipated hallmark of the CTC phase. Fig. 2 il-
lustrates this by the dynamics of D(t) ≡ 〈ψ(t)|D|ψ(t)〉
(normalized by the value at t = 0), the von Neumann
bipartite entanglement entropy SE(t) and the order pa-
rameter 〈σ+(t)〉.

Fig. 2 (a)-(c) are for the x-polarized (φ=0) initial state.
As hz is increased, the CTC phase is stabilized: D is well
conserved, while 〈σ+(t)〉 remains constant. For interme-
diate hz, D does not decay to zero as typically seen in
periodically driven systems [49]. This is due to the fact
that hz is a parameter in our Hamiltonian, rather than
a driving frequency which pushes the system to infinite
temperature. The fact that 〈σ+(t)〉 remains approxi-
mately constant implies periodic oscillations in σx(t) and
σy(t) with a period T ≈ 2π/hz. Due to the asymmetry
between Jx and Jy couplings, 〈σ+(t)〉 is not exactly con-
served over time even in the prethermal phase, instead it
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FIG. 3. Quantum many-body scars near the isotropic limit
of the model in Eq. (1), with Jx=− 0.8, Jy=− 1, Jz=− 0.95,
hz = 3 and system size N = 16. The initial state |ψ(0)〉 is x-
polarized [φ=0 in Eq. (3)]. Top row: Eigenstate overlap with
|ψ(0)〉 for both long-range (a) and short-range (b) models.
In both cases, the top band of eigenstates are the QMBS
eigenstates, which are well approximated by maximal spin
su(2) basis states in the z-direction, denoted by diamonds.
(c): Quantum fidelity revivals from the initial state | |ψ(0)〉,
for both long and short range model. (d): Finite-size scaling
of the fidelity density − ln(f0)/N , where f0 is the height of
the first fidelity revival. The fidelity density was obtained
using finite-TDVP with varying system size, bond dimension
χ = 300 and timestep δt = 0.02.

oscillates between maxima (minima) when pointing along
the x- or y-axis. This is also the cause of the small oscil-
lations observed in D on the prethermal plateau. As our
chosen initial state |ψ(0)〉 is close to the ground state of
Heff (but mid-spectrum for H), the growth of SE(t) is
strongly suppressed for large hz.

At high temperatures, the effective Hamiltonian transi-
tions out of the CTC phase to a trivial disordered phase.
The impact of energy density on the dynamics can be
seen by varying φ in Eq. (3) to increase the energy den-
sity of the initial state. Dynamics for various choices
of φ can be seen in Fig. 2 (d)-(f). These states are
spread through the spectrum of Heff , with D(0)/N ≈
{−0.35,−0.26,−0.15 − 0.05, 0.05} respectively. For all
these states, D is well conserved, thus we remain in a
prethermal phase. However, the increase in energy den-
sity means that the prethermal Gibbs state eventually
becomes a high-temperature state and CTC order is lost.
This is accompanied by 〈σ+(t)〉 decaying to zero and
faster growth of SE(t).

Many-body scars via “tunnels-to-towers”.—
Close to the isotropic point, Jx=Jy=Jz, we find QMBS
arise in the model (1) due to an approximate “tunnels to

towers” mechanism [19]. The Z field term in the Hamil-
tonian in Eq. (1) possesses a spectrum generating algebra
with respect to the raising operator of the standard su(2)
representation, [Z, σ+] = 2σ+. This trivially guarantees
the eigenstates of Z form equidistant ‘towers’. Taking
Z, one can define a Hamiltonian by adding some ad-
ditional term, specially chosen so as to preserve only a
single tower of eigenstates of Z as eigenstates of the full
Hamiltonian, while generically mixing other towers such
that the resulting model is non-integrable [19]. The pre-
served tower of eigenstates are found to be QMBS eigen-
states. For example, they have subthermal entanglement
entropy and coherent dynamics in all observables can be
witnessed by preparing initial states with dominant sup-
port on the scarred subspace. Previous constructions of
scarred Hamiltonians of this form have preserved a single
tower of eigenstates exactly, in the sense that they remain
exact eigenstates of the full Hamiltonian and therefore
remain equidistant in energy. Sufficiently close to the
isotropic point of the Hamiltonian in Eq. (1), these con-
ditions are satisfied approximately (in [48] we quantify
this). In this sense, a set of QMBS eigenstates are found
in the spectrum of the Hamiltonian, which are approxi-
mately equidistant in energy and resemble some subset
of exact eigenstates of Z. These QMBS eigenstates re-
quire weakly broken su(2) symmetry and their presence
is largely independent of α.

In Fig. 3 we demonstrate the existence of QMBS eigen-
states by exact diagonalization of a N=16 site chain. We
consider couplings close to the isotropic point, Jx=−0.8,
Jy=−1, Jz=−0.95. In Figs. 3(a)-(b) We plot the over-
lap of eigenstates with the x-polarized state [φ=0 in
Eq. (3)], for both long-range (α=1.13) and short-range
(α=3) models. In both cases, we see a top band of scarred
eigenstates and note they resemble the large spin su(2)
basis states in the z-direction, |S=N/2,m〉. These are
precisely the eigenstates of Z which are approximately
preserved as eigenstates of the full Hamiltonian. We
note that in sectors with smaller total-S the towers of
Z eigenstates no longer accurately describe the eigen-
states of the full Hamiltonian (e.g., for the Néel state
in the x-direction there are no visible towers). As the
x-polarized state has dominant support on the QMBS
eigenstates which are approximately equidistant in en-
ergy, it follows that initializing the system in this state
results in a periodic trajectory in the Hilbert space and
revivals in the many-body wavefunction, demonstrated
by the revivals in quantum fidelity, f(t) = |ψ(0)|ψ(t)〉|2,
in Fig. 3(c). We confirm that the non-ergodicity in the
dynamics from such initial states persists in the ther-
modynamic limit by performing finite-size scaling of the
fidelity density − ln(f0)/N , where f0 is the amplitude of
the first fidelity revival. The fidelity density in Fig. 3(d)
is found to converge to a value much smaller than ln 2,
expected for a random initial state in a thermalizing sys-
tem. The extrapolated value is of the same order for both
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long- and short-range models, indicating the persistence
of ergodicity breaking due to QMBS.

Conclusions.— We demonstrated that a long-range
interacting XYZ spin model in a magnetic field real-
izes two types of weak ergodicity breaking phenomena
– a CTC phase and QMBS states – allowing us to
controllably tune between them by varying the interac-
tion anisotropies. While generally distinct phenomena,
QMBS and CTC coexist when both JU(1) and JSU(2) are
small, as indicated in Fig. 1, raising interesting questions
about their distinguishability in that regime. A possible
intertwining of QMBS with discrete, rather than contin-
uous, time crystal was explored in recent works [12, 60],
which studied QMBS in the presence of external periodic
driving. It was found that when the drive period is ap-
proximately half of the QMBS revival time, the QMBS
can be stabilized, while avoiding thermalization due to
the same principles that suppress thermalization in our
case for large hz. The interplay is subtle: the ideal
drive pulses lead to a complete cancellation of the Flo-
quet Hamiltonian, such that all initial states revive [60].
Imperfect driving leads to nontrivial dynamics, which –
surprisingly – tends to better preserve some QMBS than
generic states. There is a very rich phenomenology that
is being uncovered in this setting but many questions
regarding the stabilization mechanism and sensitivity to
the initial state remain open [61, 62].

Our results on the undriven XYZ model suggest that
CTC and QMBS can be distinguished by the quench dy-
namics from different initial states. QMBS occur for ini-
tial states that have a large overlap with the large-S spin
sector (such as the x-polarized state), regardless of en-
ergy density. The lifetime of the scarring revivals is ex-
ponentially sensitive to 1/JSU(2). Moreover, QMBS place
stronger constraints on the dynamics, leading to the wave
function fidelity revivals, in addition to the oscillations of
a local order parameter. In contrast, the CTC manifests
for initial states that have low energy density with respect
to D, but not necessarily large support on a large-S spin
sector. Hence, CTC will persist for other initial states,
such as the 2-site unit cell states in Eq. (3), as long as
those are below critical energy density with respect to D.
The CTC oscillations depend weakly on JSU(2) but their
lifetime is exponentially long in JU(1)/hz. In future work,
it would be interesting to analyze the behavior of CTC
for initial states beyond period-2, e.g., the spiral states
recently used in Ref. [63], as well as possible realizations
of CTC and QMBS in local models in higher dimensions.
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