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Fermi’s Golden Rule (FGR) applies in the limit where an initial quantum state is weakly coupled
to a continuum of other final states overlapping its energy. Here we investigate what happens away
from this limit, where the set of final states is discrete, with a nonzero mean level spacing; this
question arises in a number of recently investigated many-body systems. For different symmetry
classes, we analytically and/or numerically calculate the universal crossovers in the average decay
of the initial state as the level spacing is varied, with the Golden Rule emerging in the limit of a
continuum. Among the corrections to the exponential decay of the initial state given by FGR is the
appearance of the spectral form factor in the long-time regime for small but nonzero level spacing.

Introduction and motivation.—Fermi’s Golden Rule
(FGR) describes the decay of an initial state into a con-
tinuum of final states [1–3]. To have a true continuum of
final states we would need to have an infinite system, such
as an excited atom emitting a photon into an infinite vac-
uum. What happens if, instead, the set of final states is
discrete, with some nonzero average energy-level spacing?
This question, which is addressed in the present paper,
arises in multiple contexts in the study of the quantum
dynamics of isolated many-body systems.

When considering the thermalization of a finite-size
isolated many-body quantum system, we ask: Does this
system act as a “bath” for its own degrees of freedom?
As a finite-size system, it cannot be a perfect bath, since
it has a discrete spectrum. Two limiting situations are
rather clear: If the energy-level spacing in the putative
bath is large compared to the matrix elements coupling
our initial state to these final states, then the initial state
typically has no final states to decay to that are close
enough to on-shell, so the initial state typically does not
decay. The opposite limit is where Fermi’s Golden Rule
does apply, because the decay rate of the initial state is
large compared to the energy-level spacing of the final
states, so the discrete spectrum serves as a good approx-
imation to a continuum. In the present paper we analyt-
ically calculate the intermediate behavior between these
two limits for a single initial quantum state coupled to
a chaotic quantum dot modelled by a random matrix of
large dimension N , and show numerical results in full
agreement with those calculations.

The above considerations have become increasingly im-
portant recently, in an era where controlled and detailed
access to mesoscopic quantum many-body systems is a
reality [4–6]. Such systems can have states that may
decay into sets of other states of the system, depend-
ing on the degree to which an approximate continuum is
formed for the relevant decay processes. Manifestations
of this physics, to be discussed further near the end of
this paper, include: the crossover/transition at the onset

of heating in periodically driven (Floquet) systems [7–
9], “avalanche” instabilities of many-body localization
(MBL) in systems with short-range interactions [10–12],
the Fock-space localization description of the onset of
many-body quantum chaos in finite-size MBL systems
with long-range interactions [13–17], and finite-size sys-
tems with weakly broken integrability [18–20]. Our work
is also related to previous investigations of the thermal-
ization of single spins coupled weakly to finite quantum
systems [21, 22].

In the following we will define a concrete level-dot
model to use in exploring various qualitative and uni-
versal deviations from Golden Rule behavior. This also
reveals how FGR behavior emerges from the behavior of
finite systems with discrete spectra, as the limit of a con-
tinuous spectrum is approached. A more general two-dot
model is discussed in the supplement [24]. The two dots
may represent two states of a weakly-coupled spin.
Model and observable.— Consider a single level |0〉

weakly coupled to the N � 1 levels {|µ〉}µ=1,...,N of a
fully chaotic quantum dot. We first assume that time-
reversal symmetry is broken, and model the system by
the random matrix Hamiltonian

Ĥ =

N∑
µ,ν=0

|µ〉
(
ε0 W
W † H

)
µν

〈ν|, (1)

where H and W are a random hermitean N ×N matrix
and an N -component vector of independently distributed
complex variables, respectively. The matrix elements

have zero mean and variances 〈HklH
∗
mn〉H = λ2

N δkmδln

and 〈WkW
∗
l 〉W = gλ2

N δkl, and we assume ε0 = 0, so the
initial state resides at the band-center of the dot states.
The spectrum ofH forms the Wigner semicircle [23], with
the density of states at its band center being ν = N

πλ . Be-
low we will also generalize to cases where time-reversal
symmetry remains unbroken.

To study the decay of the initial state |0〉, we consider
the average of the time-dependent probability to stay in
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that state,

P (t) = 〈|〈0|0(t)〉|2〉H,W . (2)

Averages 〈...〉H,W here are over the random components

of H and W , and |0(t)〉 = e−iĤt|0〉 is the time-evolved
initial state. Before turning to concrete calculations, let
us formulate some qualitative anticipations.

In the case where we assume the quantum dot is a
perfect bath, Fermi’s Golden Rule gives the decay P (t) ∼
e−ΓGR|t| with the realization-averaged decay rate

ΓGR = 2π〈WlW
∗
l 〉W ν = 2gλ. (3)

The above result predicts a vanishing long-time “proba-
bility of residence” Pres ≡ P (t→∞) = 0. However, this
result cannot completely describe the decay of |0〉 into a
system of finite dimension, N : If the level-dot coupling
is strong, e.g., g = 1, the long-time state |0(t→∞)〉 will
be spread over the joint level-dot Hilbert space of dimen-
sion N + 1 ≈ N , i.e., there is a lower bound Pres ≈ 1/N ,
different from zero. For a diminished coupling, g < 1,
the level broadens to mix with only about ΓGRν ∼ gN
of the dot levels, so we anticipate an enhanced proba-
bility of residence Pres ∼ 1/(gN). Further diminishing
the coupling down to g ∼ O(N−1) leads into a regime
where the effects due to the nonzero dot level spacing
become strong, and ultimately to a limit where only rare
realizations have a dot level in resonant contact with the
initial state. In the process, FGR breaks down, and Pres

approaches unity.
Stationary limit.—To quantitatively describe this phe-

nomenon, we have applied non-perturbative methods of
(effective) matrix theory [24]. The result reads

Pres = 1− γ −√πγ
(

1

2
− γ
)
eγErfc(

√
γ), (4)

with γ ≡ gN and Erfc(x) = 2√
π

∫∞
x
dxe−x

2

the comple-

mentary error function. The limits N → ∞ and g → 0
have been taken jointly such that γ remains finite. This
formula (see the gray curve in panel (d) of Fig. 2) in-
deed predicts a crossover from the Golden Rule estimate
Pres = 1/γ = 1/gN for γ > 1 (the purple curve) to a fully
decoupled level, Pres = 1, at γ → 0. The blue dots are
results obtained via numerical diagonalization for matri-
ces of size N + 1 = 103, averaged over 104 samples, and
are in excellent agreement with our analytic result [26].

Dynamics.—We next turn to the interesting question
of how the above long-time limits are dynamically ap-
proached. Before turning to the quantitative compu-
tation of P (t), let us discuss some estimates based on
perturbation theory applied to the quantum mechanical

propagator P(t) = 〈0|0(t)〉 = 〈0|e−iĤt|0〉 of the level.
In the joint limits γ → ∞, g → 0, P(t) is structure-
less, except for incoherent FGR decay due to coupling

FIG. 1. Diagrammatic representation of the short-time
(τ < 1) correction to the FGR exponential decay of the ini-
tial state. Left diagram (one ladder): Classical probability
that a particle, escaped into the dot, returns to the weakly
coupled level. Right diagram (two ladders): Quantum inter-
ference correction to classical return probability. Dashed and
solid lines here represent the retarded (black)/advanced (red)
level- and dot-Green’s functions G±

i (ε) ∼ (ε − εi ± iΣi)
−1,

dressed by self-consistently calculated self energies Σ0 ∼ gλ
and Σµ ∼ λ, as indicated in the box. The ladder defines the
ergodic quantum dot mode D(ω) ∼ iλ2/(Nω+), and is re-
cursively defined in the third equation in the box. The solid
vertical line represents the coupling between |0〉 and quantum
dot states. See also the Supplemental Material for further de-
tails and a non-perturbative calculation addressing all times,
including τ > 1.

to the dot continuum. Substituting the broadened am-
plitude into Eq. (2), we obtain the zeroth-order result
whose Fourier transform is P0(ω) ∼ 1/(ω + 2igλ). How-
ever, for finite N , coherent processes involving the prop-
agation of the retarded amplitude P(t) and its advanced
complex conjugate along identical dot-scattering paths
begin to play a role (see Fig. 1 for the first two correc-
tions of this type). While these processes are small in
phase volume, ∼ N−1, each introduces a factor in time,
t, indicating that the effective parameter of the pertur-
bative analysis is τ ≡ t/(2πν) ∼ tλ/N . Referring to the
Supplemental Material for details, the first order process
yields the contribution P1(ω) ∼ i/(gNω), where the fre-
quency dependence ω−1 → Θ(t) reflects the ergodicity
of the dot propagation on long time scales. To second
order, P2(ω) ∼ −λ/(g(Nω)2), and higher order pertur-
bative contributions do not exist (in the absence of time
reversal; see below). Fourier transformation to the time
domain yields initial exponential time dependence, P0(τ),
cut off by a constant value P1(τ) ≡ Poff , followed by a lin-
ear increase P2(τ) ∼ τ . We thus observe non-monotonic
dependence of the probability P (τ), where an initial fast
exponential decay is followed by an extended period of
slow partial recovery. The resemblance of this tempo-
ral profile to that of the spectral form factor of random
matrix theory [27] suggests that the late-time increase
of P (τ) will saturate at a plateau P (τ) ∼ (gN)−1 for
τ > 1. However, at this stage we are probing times t ∼ ν
of the order of the inverse average level spacing, outside
the regime of perturbation theory.
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FIG. 2. The probability P (t) to be in the initial state after time t. The total Hilbert space dimension is N + 1 = 103 and
numerical data are averaged over 104 samples. (a)-(c) The time dependence of P (t) for γ ∈ {46, 0.46, 0.022}, respectively. The
black curves are data from numerical simulations of the model Eq. (1). The red curves are theoretical predictions obtained by
evaluating the integral in Eq. (5) numerically. (d) The t → ∞ limit Pres. Blue dots are numerical data. The gray curve is
the theoretical prediction of Eq. (4). The purple curve is the FGR result 1/γ [26]. The small black arrows point to data that
correspond to the late-time limits of the three upper panels. (e) The spectral form factor arises in the time dependence of P (t)
for the three versions of our model derived from the three Wigner-Dyson classes (GOE, GUE, GSE). The black curves are data
from numerics, and the colored curves are Eq. (6) with parameters aX and bX as given in the main text. In panels (a)-(d) H
is GUE.

The above discussion suggests that the discreteness of
the level spacing is felt in two different ways: saturation
of P (t) at times beyond the Heisenberg time, tH = 2πν,
and the recovery of Pres ∼ 1 for small coupling γ . 1. To
quantitatively describe these phenomena, we apply non-
perturbative methods of (effective) matrix theory (see
Refs. [24, 28]). The idea of this approach is to trade the
complexity of an integral over the high dimensional ran-
dom matrices modeling the dot for a simpler one over a
four-dimensional (super-)matrix. The symmetry of the
problem affords a further reduction to an integral over
just two “radial coordinates”, leading to our main ana-
lytic result

P (τ) = e−4γτ + 2γ2

∫ 1

−1

dλf

∫ ∞
1

dλb
x2e−2γxλb

λb − λf

× [λbI0(zb)− µbI1(zb)] Θ (x) , (5)

where x = x(λf , λb, τ) = 2τ − λb + λf , zb = 2γxµb, with
µb =

√
λ2

b − 1, and Ik are modified Bessel functions of
the first kind. This expression captures the universal
long-time deviations from FGR for finite γ. For finite N
there will also be nonuniversal short-time deviations set
by ultraviolet details.

For large γ � 1, an approximate evaluation of the inte-
gral leads to P (τ) = e−4γτ + 1

2γ (1 + τ) Θ(1−τ)+ 1
γΘ(τ−

1), where the first two terms recover the results of our
previous perturbative estimate, and the third adds the
expected saturation at a plateau value. The numerical
evaluation of the full integral is shown in Fig. 2 (a)-(c)
for values γ = 46, 0.46, and 0.022 (red curves). Compar-
ison to numerical diagonalization of Eq. (1) with a total
of 103 levels shows excellent agreement. These curves
contain the main results of our analysis: for all coupling
strengths, we observe initial decay followed by a slow
partial recovery of P (t), which eventually terminates in
a stationary plateau. Diminishing the coupling leads to
a rounding of the temporal profile, and to an increase in
the stationary probability with a limiting value predicted
by Eq. (4).

We finally mention one more universal signature of the
profile P (t), namely, a factor of two between the mini-
mum Poff and the plateau (long-time residence) value
Ppl = Pres = 2Poff in the regime γ � 1. This universal
ratio is remarkable inasmuch as it connects an early time
semiclassical probability with a deep quantum signature
depending on the discreteness of the spectrum. In the
limits N � γ � 1, the semiclassical calculation yields
Poff = 1/(2γ). The connection to Ppl follows from a for-
mal decomposition of P (t) =

∑
αβ |ψα,0|2|ψβ,0|2ei(εα−εβ)t

in eigenfunctions. For times exceeding the inverse level
spacing, τ > 1, only the coherent diagonal sum α = β
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contributes. Noting that eigenfunctions of chaotic sys-
tems behave as Gaussian distributed random variables,
we obtain P (t)→ Ppl =

∑
α |ψα,0|4 ≈ 1/γ, twice as high

as the semiclassical value due to constructive quantum
interference.

Time reversal symmetry.—While the exponential de-
cay at short times does not depend on symmetries, later
stages of the dynamics do. Distinguishing between the
three cases T = (0, 1,−1) ≡ (U,O,S) of: broken time re-
versal invariance (U), and time reversal invariance with
(O) or without (S) spin rotation invariance, we note that
for O, the semiclassical probability to return to the initial
quantum state |0〉 doubles due to weak localization — i.e.,
constructive interference between a returning path and
its time reverse. No such doubling occurs for S, because
in this case the time reversed amplitude ends up in a spin
reversed state that is different from the initial state. We
thus expect Poff = (1, 2, 1)/(2γ). Turning to the asymp-
totic plateau value, wave functions in the presence of time
reversal (O and S) can be chosen real, and on this basis
we expect Ppl = (2, 3, 3)/(2γ). This leads to a generaliza-
tion of the universal ratios as Ppl/Poff = (2, 3/2, 3). To
understand the temporal profile at intermediate times,
we suggest the generalization of P (t) at coupling γ � 1
to be

PX(τ) = e−4γτ +
1

2γ
[aX + bXKX(τ)] , X ∈ {U,O,S},

(6)

i.e., a sum of incoherent decay, semiclassical return prob-
ability, and a slow partial revival described by the spec-
tral form factor KX(τ) [27, 29]. Assuming a normal-
ization K(τ → ∞) → 1, the values of the coefficients
aX = (1, 2, 1) and bX = (1, 1, 2) follow from the require-
ment that PU(∞) = Pres = γ−1 in the unitary case, and
from the above discussion of Poff and Ppl/Poff . Panel
(e) in Fig. 2 shows that this hypothesis is in excellent
and parameter-free agreement with our numerical analy-
sis. In each case, a reduction of γ will lead to a rounding
of these structures as we show explicitly for the unitary
case [panels (a)-(c)].

Applications.—Let us finally mention a few concrete
contexts where we expect the above coherent generaliza-
tion of FGR relaxation dynamics to be physically rele-
vant. The quantum many-body phenomenon that seems
to connect most directly to the results of the present pa-
per is the crossover/transition at the onset of heating in
periodically driven (Floquet) systems of finite size [7–9].
Generically, such systems are quantum chaotic both in
the non-heating regime and in the regime where they do
exchange energy with the periodic drive and thus heat
up. The basic decay process in this case changes the sys-
tem’s energy by one quantum of the drive’s energy, so
a state of the system at one energy decays to states at
another energy [7].

Another set of many-body systems where the discrete-

ness of the spectrum of a putative bath plays a central
role is the so-called “avalanche” instability of many-body
localization (MBL) in systems with short-range interac-
tions [10–12]. There, a small local rare region serves as
a finite bath with a discrete spectrum, and the question
is whether this bath succeeds in relaxing distant spins,
and thus grows in size or not [30–33]. If the coupling to
the bath falls off too rapidly with the distance between
the spin and the rare region, the discreteness of the finite
bath’s spectrum stops its ability to relax spins beyond
some finite distance, so the avalanche of thermalization
stops and the MBL phase can remain stable [10–12].

A third set of many-body systems where similar consid-
erations arise is in the Fock-space localization description
of the onset of many-body quantum chaos in finite-size
MBL systems with long-range interactions [13–17], and
relatedly, finite-size integrable systems with weak break-
ing of the integrability [18–20].

Finally, our work is also related to previous investiga-
tions of the thermalization of finite many-body systems
with a single weakly coupled spin [21, 22]. In Ref. [21],
Crowley and Chandran study deviations from FGR be-
havior in autocorrelation functions of the weakly coupled
spin. In that case the analogous quantum dot model is
two weakly coupled dots, each with N levels, which is a
different limiting case of the more general two-dot model
that we consider in the Supplemental Material.

Summary and discussion.—We studied the decay of
a quantum state |0〉 coupled to a system with a large
but, importantly, finite dimension, N , acting as an im-
perfect bath. Assuming quantum chaos, we modelled the
latter by a Gaussian-distributed random matrix of spec-
tral range λ. We analytically calculated the probability,
P (t), to remain in |0〉 at time t for the case of weak cou-
pling g � 1, where the initial state hybridizes with only
∼ γ = gN � N of the bath states. Our main observation
is that the decay dynamics is generically non-monotonic:
At early times ∼ (gλ)−1, P (t) decreases to an offset
value Poff ∼ 1/(gN). This is then followed by a slow
process of partial recovery up to a stationary (plateau)
value Ppl, where the ratio Ppl/Poff = (2, 3/2, 3) is, for
N � γ � 1, universal and depends only on the symme-
try class U, O, or S (broken time reversal, and time re-
versal invariant with or without spin rotation symmetry,
respectively). We established a quantitative connection
between the dynamics of recovery and the spectral form
factor of quantum chaos, thus demonstrating that the
phenomenon relies on the repulsion of individual levels
in the resulting joint level-dot system. This level of sen-
sitivity is remarkable inasmuch as the naive Golden Rule
“smearing” of the initial state over energy ∼ gN exceeds
the level spacing by far. In the opposite case where only
a few levels are coupled [g ∼ O(N−1)] the decay dynam-
ics is more complicated [Eq. (5)] and effectively described
by a washed out version of the form factor. The above
phenomena are universal in that they require only rel-
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atively mild inducers of quantum chaos. For example,
we have checked numerically and analytically that ran-
domly distributed dot-level couplings {Wµ} to a bath of
Poisson-distributed levels suffices to generate the above
structures. Finally, we have identified a number of ex-
amples of genuine many-body dynamics where we expect
the phase coherent generalization of Fermi’s Golden Rule
introduced in this paper to become physically important.
However, the concrete discussion of how the fundamental
physics discussed in this paper will manifest itself in such
applications remains a subject of future research.
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[20] M. Žnidarič, Weak integrability breaking: Chaos with
integrability signature in coherent diffusion, Phys. Rev.
Lett. 125, 180605 (2020).

[21] P. J. D. Crowley and A. Chandran, Partial thermalisation
of a two-state system coupled to a finite quantum bath,
SciPost Phys. 12, 103 (2022).

[22] D. Sels and A. Polkovnikov, Thermalization of
dilute impurities in one dimensional spin chains
10.48550/ARXIV.2105.09348 (2021).

[23] G. Livan, M. Novaes, and P. Vivo, Introduction to Ran-
dom Matrices (Springer International Publishing, 2018).

[24] See the Supplemental Material, where we provide details
on the calculation of Pres, summarize the spectral form
factor for the three Wigner-Dyson classes, and which in-
cludes Ref. [25].

[25] A. D. Mirlin, Statistics of energy levels and eigenfunc-
tions in disordered systems, Physics Reports 326, 259
(2000).

[26] Eq. (4) requires an O(1) correction factor as γ → N for
finite N because of the nonuniform density of states of
the dot. However, we focus on γ � N in this paper.

[27] J. Liu, Spectral form factors and late time quantum
chaos, Phys. Rev. D 98, 086026 (2018).

[28] K. Efetov, Supersymmetry in Disorder and Chaos (Cam-
bridge University Press, 1999).

[29] F. Haake, Quantum Signatures of Chaos (Springer-
Verlag, Berlin, Heidelberg, 2006).

[30] P. J. D. Crowley and A. Chandran, Avalanche induced
coexisting localized and thermal regions in disordered
chains, Phys. Rev. Research 2, 033262 (2020).

[31] I.-D. Potirniche, S. Banerjee, and E. Altman, Exploration
of the stability of many-body localization in d > 1, Phys.
Rev. B 99, 205149 (2019).

[32] M. Goihl, J. Eisert, and C. Krumnow, Exploration of the
stability of many-body localized systems in the presence
of a small bath, Phys. Rev. B 99, 195145 (2019).
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